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Abstract—Federated learning (FL) provides a promising
collaborative framework to build a model from distributed
clients, and this work investigates the carbon emission of
the FL process. Cloud and edge servers hosting FL clients
may exhibit diverse carbon footprints influenced by their
geographical locations with varying power sources, offering
opportunities to reduce carbon emissions by training local
models with adaptive computations and communications. In
this paper, we propose FedGreen, a carbon-aware FL approach
to efficiently train models by adopting adaptive model sizes
shared with clients based on their carbon profiles and locations
using ordered dropout as a model compression technique.
We theoretically analyze the trade-offs between the produced
carbon emissions and the convergence accuracy, considering
the carbon intensity discrepancy across countries to choose the
parameters optimally. Empirical studies show that FedGreen
can substantially reduce the carbon footprints of FL compared
to the state-of-the-art while maintaining competitive model
accuracy.

Index Terms—federated learning, carbon emission, model
compression, ordered dropout

I. INTRODUCTION

With the proliferation of the Internet of Things (IoT)
devices and smartphones, Federated learning (FL) has been
extensively studied to leverage the valuable data generated
by these devices, where the clients do not share data and
only model updates are shared and transmitted to the server.
FL could involve millions of devices to generate an effective
global model collaboratively. The coordination following FL
protocols could cost an unprecedented scale of distributed
computing and communication, continuously consuming en-
ergy and generating carbon emissions. Meanwhile, such
large-scale coordination offers opportunities for optimizing
the workload distribution of computation in FL, leading to
overall lower carbon emissions. With over 120 countries
committing to the net-zero emissions goal by 2050 [1],
carbon emissions by cloud and edge computing have become
a major concern as data centers and edge servers hosting the
FL tasks may still be powered by fossil energy [2]. Promoting
carbon-intensive computing will jeopardize the net-zero goal.

Existing FL methods rarely considered the carbon emis-
sions of the process or assumed that all participants have

FL server

FL client 1 on a low carbon 
footprint host (p1 = 1)

FL client 2 on a high carbon 
footprint host (p2 = 0.75)

Fig. 1: The proposed FedGreen model size adaptation method. pi is the
remaining rate of neurons. For the clients on hosts with higher carbon
footprints, smaller models are sent. For those with lower carbon footprints,
larger models are sent.

uniform carbon intensity levels during the training process,
leading to all clients transmitting models of the same size
mirroring the global model. However, the real-world scenario
presents a stark contrast, where edge devices and cloud
computing instances, as FL participants, exhibit varying
carbon intensity rates and significant disparities in power
sources based on locations and computing architectures.
Consequently, it becomes imperative to acknowledge and
address this inherent system heterogeneity. When applying
this concept to deep neural networks, we must consider the
carbon intensity concerning the geographical locations of the
clients. This variability can manifest in various ways, such
as adjustments in neural network depths (i.e., the number of
layers) and widths (i.e., the number of hidden channels). Can
such variability positively contribute to a carbon-aware FL
solution for a greener training process?

The model size is a primary indicator of carbon emissions
in FL since both the computation and communication cost
positively correlate to the model size [2]. To adaptively
adjust the size of the models in FL, in this paper, we
explore ordered dropout to use dynamically configurable
sizes of models for local training and model aggregation
based on the carbon intensity of the clients [3]. By employing
dropout and sending different model sizes to clients with
varying carbon footprints, as shown in Fig. 1, we aim to
reduce the carbon footprint of the overall process in FL.
Additionally, we explore and formulate the adjustment of

ar
X

iv
:2

40
4.

15
50

3v
1 

 [
cs

.L
G

] 
 2

3 
A

pr
 2

02
4



various parameters, including the local training epochs for FL
and the combinations of model size scaling rates, to minimize
the overall carbon emissions while maintaining the desired
level of accuracy.

The remaining sections are organized as follows. Section
II reviews the related works. In Section III, we model the
carbon emission and introduce our proposed approach. The
FedGreen algorithm is then introduced in Section IV. We
examine our proposed approach with empirical studies in
Section V. Section VI concludes the paper.

II. RELATED WORK

McMahan et al. [4] proposed FL as a privacy-preserving
method for training the model. In [3, 5], the authors pro-
posed methods to send adaptive models for clients with
heterogeneous capabilities and training data by using model
pruning. The authors in [6] used neural composition to
address the system heterogeneity and training capacity of
the clients. Jiang et al. [7] proposed a method to reduce
the Communication and computation overhead in Feder-
ated Learning using model pruning. Shi et al. [8] allowed
the clients to participate in cooperative training without
directly conducting local gradient calculations. Qiu et al.
[2] proposed and evaluated a carbon emission model with
sources of energy and consumption in both computation
and communication aspects. In [9], the authors proposed a
method to optimize energy consumption in federated learning
using adaptive size models. These methods aimed to enhance
accuracy and robustness within the context of diverse models
in heterogeneous systems. In contrast, FedGreen centers its
efforts on reducing the carbon emission in the same rate of
convergence accuracy. FedGreen has also a rigorous study to
reduce carbon cost in the context of heterogeneous systems
profiles. We also provide theoretical analysis for FedGreen.

III. PROPOSED METHOD

A. Model Compression

In this paper, we draw inspiration from previous works.
Specifically, we explore ordered dropout (OD) [3] to organize
the representation of knowledge within nested submodels of
the original network. The ordered dropout process, initiated
by dropping adjacent components of the model rather than
random neurons differs from random dropout (RD) [10]. It
entails resulting in computational advantages and improve-
ments in accuracy rates [3]. Compared to reducing network
depth, reducing network width can be more effective in
terms of parameter and memory footprint reduction during
inference, a significant advantage for edge devices [11].

Our approach involves adapting the network width as
the method of choice for resource adjustment. Furthermore,
networks with adjusted width still belong to the same
model class and share similar fundamental characteristics.
As observed in previous studies, this continuity in the model
architecture is preferable for maintaining stable training and

model aggregation [3, 5]. Moreover, we utilize a scaling
factor denoted as p to adjust the number of active channels in
each layer based on the carbon footprints of the computing
infrastructure. Slimming down the network width by a factor
of p reduces both model size and computational cost by a
factor of p2 [3].

To distribute different-sized models to clients based on
their locations, we consider a predefined set of representative
capacity ratios denoted as p (e.g.,{p1, p2, p3}).

B. Optimizing the Carbon Emission

We observe that the energy usage for each FL client
can be categorized into two components: computation usage
and communication usage. Suppose there are N clients
participating in the FL. We use ci ∈ [1, N ] to denote the
client i. A total of R rounds of training will be performed.
We use j ∈ [1, R] to represent the round j. We define
CFL as the total carbon emission produced in the entire
training process of FL. Ccom denotes the carbon cost in
the communication process, and Ccmp represents the carbon
emission in computation for all N clients over R rounds.
Their relationship follows: CFL = Ccmp + Ccom.

We apply our problem definition following [1, 9] to
determine the carbon footprints of FL, demonstrating that
for each client, its energy usage and carbon emissions have
a linear correlation. We use θi,j to define the carbon intensity
factor, which means the amount of CO2 produced for each
kWh of electricity at the round j for the ci.

The power consumption (e.g., CPU and memory) of ci at
the round j is denoted by ecmp

i,j . The energy consumption for
client ci at the round j is influenced by the duration of the
computation, denoted by T cmp

i,j . In Equation (1), pi,j is the
scaling factor of the model for the client ci in the round j,
and fi,j is the computation frequency of the hardware. W is
the total learning time of one data sample. |Di| is the number
of samples on ci. E is the number of the local rounds. Then
we have Equation (2).

T cmp
i,j =

p2i,jEW |Di|
fi,j

, Ccmp
i,j = T cmp

i,j ecmp
i,j θi,j (1)

Ccmp =

R∑
j=1

N∑
i=1

Ccmp
i,j =

R∑
j=1

N∑
i=1

θi,jp
2
i,jEW |Di|ecmp

i,j

fi,j
(2)

The energy consumption in communication for N clients
over R rounds, considering the hardware power for ci to be
ecomi , can be represented by the formula Ccom. Equation (5)
incorporates several factors, including the size of the model,
denoted by S, in megabytes, the power of the router, er, and
the power of the idle client, eidle. The formula also considers
the client’s upload speed U and download speed D, measured
in megabytes per second (MBps). In Equation (3), pi,j is
the scaling factor of the model. Define the duration of the



communication for transmitting model updates for client ci
at the round j as T com

i,j .

T com
i,j = p2i,jS

(
1

D
+

1

U

)
(3)

Ccom
i,j = T com

i,j θi,je
com
i,j = p2i,jS

(
1

D
+

1

U

)
θi,j (er + eidle,i)

(4)

Ccom =

R∑
j=1

N∑
i=1

Ccom
i,j

=

R∑
j=1

N∑
i=1

p2i,jS

(
1

D
+

1

U

)
θi,j (er + eidle,i)

(5)

In Equation (6), we calculated the total carbon emitted
for the ci in the round j. In this context, we use a constant
ai,j to represent the constant value associated with the client
ci based on the number of local epochs and other hardware
capacity parameters.

CFL
i,j = Ccmp

i,j + Ccom
i,j

= p2i,jθi,j

[
S

(
1

D
+

1

U

)
(er + eidle,i) +

EW |Di|ecmp
i,j

fi,j

]
= p2i,jθi,jai,j

(6)

Define a set p with scaling rates of p1, ..., pm for a total
of M clusters, where m ∈ [1,M ]. By tuning p, we can
minimize the carbon emissions produced during the training
process to reach a target accuracy Ω. Suppose it takes R
rounds to reach the target accuracy and if the client ci belong
to cluster m, then pi,j = pm. In Equation (8), Am is the
average of

∑
i∈Nm

θi,jai,j for the cluster m for R rounds,
where Nm represents the set of clients in the cluster m.

Am =

∑R
j=1

∑
i∈Nm

θi,jai,j

R
(7)

CFL =

N∑
i=1

R∑
j=1

CFL
i,j

=

M∑
m=1

p2mR

∑R
j=1

∑
i∈Nm

θi,jai,j

R
= R

M∑
m=1

p2mAm

(8)

argmin
pm∈p

CFL(p) = R

M∑
m=1

p2mAm (9)

In Equation (9), we want to minimize the total carbon
cost CFL(p) by choosing the p vector. As we will show
in further experiments, R has a positive correlation with the

inverse of the mean value of pm ∈ p, denoted by µ(p).
R is also positively correlated to the standard deviation of
pm ∈ p, denoted by σ(p).

R ∝ σ(p)β

µ(p)λ
(10)

In Equation (10), λ is a constant based on the effect of the
mean value on the accuracy rate of the model. β is another
constant based on the effect of the standard deviation of
scaling rate factors on the accuracy rate of the model. These
constant parameters are based on the model architecture and
diversity of data among the clients. By finding p, which
minimizes the Equation (11) we can find the minimum cost
function for the federated system.

argmin
pm∈p

CFL(p) =

(
σ(p)β

µ(p)λ

M∑
m=1

p2mAm

)
(11)

IV. THE FEDGREEN ALGORITHM

The FedGreen algorithm aims to identify the set p, i.e.,
the scaling rate for the model size values that prioritizes
minimizing carbon emissions while maintaining reasonable
accuracy. We have observed that carbon intensity of the
clients depend on their geolocations and energy sources,
which can lead to varying rates of carbon emissions produced
by clients in each global round. In this case, we aim to
send models of different sizes to the clients based on the
scaling rate of the cluster to which they will be assigned
by their carbon profile. Under this method, each cluster of
clients would have a scaling rate from parameters in p, which
denotes as pm. During the communication phase, the server
then broadcasts the compressed model to a set of clients Sj

in round j. On the client side, each sub-model runs E local
iterations using its compressed model. The updated weights
wp(i,j) from each device i in round j are then sent to the
server. The aggregation process should also be heterogeneous
as the client updates are heterogeneous. To achieve this, the
following aggregation method, shown in Equation (12), is
utilized to combine the client updates [3].

wj+1
pm
\wj+1

pm−1
= WA

({
w

(i,j,E)
ipm

\w(i,j,E)
pm−1

}
i∈Sm

j

)
(12)

In Equation (12), wj+1
pm
\wj+1

pm−1
are the weights belong

to the model of cluster m and not cluster m − 1 in the
round j+1. WA represents the weighted average for updated
weights of the clients in Sm

j = {i ∈ Sj : pi,j ≥ pm}.
In the proposed FedGreen algorithm, the server performs

clustering of the clients based on their θi values and number
of clusters before starting the global epochs. This clustering
helps to group clients with similar carbon intensity factors.
Each cluster, denoted by m, is assigned a scaling rate of
the model compression in p(the clusters with higher average
θi will usually have lower scaling rates). In each global



Algorithm 1 The FedGreen Algorithm
Inputs: Total number of global training rounds R. Local
training epochs E. The whole set of clients S. Carbon
intensity set for the clients θi. Number of clusters M . Set
of scaling rates p. Number of clients N.
1: Initialize w0

2: Server make M clusters of clients based on the θi
3: Assign specific pm of p to m’th cluster.
4: for j ← 0 to R− 1 do
5: Sj ← (random set of N clients)
6: Server sends the weights of pi submodel to i’th client.
7: for e ← 0 to E − 1 do
8: Clients update the weight of the local model.
9: Client i send the updated weights w(i,j,E)

10: Server updates wj+1 as in Equation (12)

epoch, the server creates submodels of the original model
based on the assigned scaling rate for each cluster. These
submodels are then sent to the corresponding clients in their
respective clusters. After the clients receive the submodels,
they perform local epoch updates by training the submodel
with their local data. Once the local weights w(i,j,E) are
updated, the clients send the weights back to the server
for aggregation. Given the heterogeneity of the models, it
follows that the updates for each client’s model will also
exhibit heterogeneity. To address this variation, we adopt
the aggregation rule described in Equation (12). Finally,
the server updates the global model based on the averaged
weights received from the clients. This iterative process of
clustering, submodel distribution, local updates, and weight
averaging allows FedGreen to dynamically adjust the size of
the models sent to clients based on the carbon intensity of
their location.

V. EVALUATION RESULTS

A. Experimental Setups
1) Simulation environment: We assessed the performance

of FedGreen using the NVIDIA GeForce 4070 Ti GPU as
our hardware platform. In all the scenarios, the idle power
consumption eidle = 10 Watts. The power consumption of
the clients and the router er = 4 Watts. Also, the average
client power consumption rate eclient = 40 Watts.

2) Dataset and model: We utilized the EMNIST [12], a
dataset for character image classification. It contains 671K
28 × 28 images of digits and letters. As for the model, we
employed a shallow CNN architecture with nearly 100,000
parameters, consisting of two convolutional layers.

3) Configuration: The total number of clients was set to
N = 80. In each global round, 10% of the clients, i.e., 8
clients, were selected for sending the model and learning
process. In this experiment, the mini-batch size was 16 for
each step, the learning rate was 0.01, and the number of local
epochs was set to E = 1 and E = 5. We used 80% of the
data for training and 20% for testing on each client.

4) User heterogeneity: In the context of the EMNIST
dataset, we employed a Dirichlet distribution to simulate
non-iid data, often denoted as Dir(α), where a smaller α
value corresponds to greater data diversity. We illustrated
how varying α values impact the statistical diversity within
the EMNIST dataset by using 1 and 0.01 for the α values
in our experiments.

5) Carbon Profile: We set the carbon intensity rate θ
using two methods. a) Actual carbon intensity. In the first
scenario, we relied on data obtained from six different
countries’ carbon intensity maps1 whose rates are obtained
from governmental sources or on the website Climate Trans-
parency. These countries and their corresponding carbon
intensity values in grams per kilowatt-hour (g/kWh) for
electricity consumption are as follows: Poland (895 g/kWh),
Germany (441 g/kWh), Spain (236 g/kWh), Austria (155
g/kWh), France (47 g/kWh), and Sweden (15 g/kWh). b)
Simulated carbon intensity. In the second scenario, we em-
ployed a simulated carbon intensity approach by considering
six different carbon intensity rate values: 0.01 g/kWh, 0.1
g/kWh, 1 g/kWh, 10 g/kWh, 100 g/kWh, and 1000 g/kWh.

B. Experimental Results

1) Mean and standard deviation sensitivity analysis for
p: To gauge the influence of the mean value for p, denoted
by µ(p), we manipulated the scaling rate while keeping the
number of clusters at 1. Specifically, when the pi = 1,
the entire model was transmitted to all clients, rendering
our algorithm equivalent to the FedAvg [4]. Moreover, two
distinct scenarios were considered in evaluating the p’s
standard deviation assigned to the clusters, denoted by σ(p).
In these instances, we held µ(p) while altering the σ(p).
Notably, with three clusters, a particular value in the p was
fixed to match a consistent µ(p). As presented in Table I,
we specifically examined two scenarios: one with α set to 1,
indicating a less non-IID data distribution, and another with
α set to 0.01, which is a highly non-IID case. Corresponding
to different α, fixed accuracy levels of 73% and 78% were
employed.

A reduction in the mean value of the scaling rate is
observed to correlate with a decrease in the associated carbon
emission cost and a concurrent increase in the number of
global epochs. This observed pattern holds across diverse
non-IID settings and varying numbers of local epochs. Also,
these results prove Equation (10) that the number of rounds
has an inverse correlation with the µ(p) which the power of
this relation λ is based on the training and model parameters.

Our investigation into standard deviation analysis involved
the examination of two distinct scenarios. In the initial
scenario, we considered two clusters with a constant mean
value for their scaling rate. Subsequently, in the second
scenario, we explored three clusters, wherein we maintained
the scaling rate of one cluster at the mean value of the three

1Electricity Maps. https://app.electricitymaps.com/map



Clusters µ(p) σ(p)
E = 1, α = 0.01 E = 5, α = 0.01 E = 1, α = 1 E = 5, α = 1

rounds cost rounds cost rounds cost rounds cost

1 1 0 89 18.93 47 74.46 48 12.60 17 19.65
1 0.8 0 92 14.43 46 36.68 54 10.43 20 15.58
1 0.6 0 108 11.78 51 22.06 63 5.89 23 9.06
1 0.4 0 123 6.44 57 13.36 93 4.45 34 7.40
1 0.2 0 200 1.98 84 3.90 158 1.71 86 3.69
2 0.6 0.1 115 7.81 53 15.11 68 4.53 25 8.46
2 0.6 0.2 118 6.19 57 15.30 80 4.17 27 8.06
2 0.6 0.3 142 6.83 62 12.72 84 3.43 28 6.29
2 0.6 0.4 148 7.69 70 12.86 88 3.80 33 8.18
3 0.6 0.08 110 9.40 51 19.50 65 5.69 24 8.31
3 0.6 0.16 110 8.11 54 17.76 65 4.24 23 7.69
3 0.6 0.24 122 8.71 59 19.41 74 4.47 25 9.72
3 0.6 0.32 123 6.79 59 17.53 74 4.36 30 8.26

TABLE I: Effects of µ(p) and σ(p) with varying numbers clusters, local epochs E = 1, 5, data heterogeneity α = 0.01, 1, and target accuracy levels of
73%, 78% on EMNIST.

(a) E = 1, α = 0.01 (b) E = 1, α = 0.01 (c) E = 5, α = 0.01 (d) E = 5, α = 0.01

(e) E = 1, α = 1 (f) E = 1, α = 1 (g) E = 5, α = 1 (h) E = 5, α = 1

Fig. 2: This batch of figures represents a Sensitivity Analysis for Clustering, specifically focusing on varying hyperparameters that exhibit non-identically
distributed (non-IID) characteristics and the number of local epochs.

clusters while varying the scaling rates of the remaining two
clusters. The results demonstrate that an increase in standard
deviation in both the 2-cluster and 3-cluster cases leads to
a consistent elevation in the number of epochs required to
achieve a predetermined accuracy across all experiments.
This escalation is particularly pronounced when the data
exhibits greater non-IID characteristics. Specifically, when
we had 2 clusters with 1 epoch for each global round, the
impact on the increase in epochs was more pronounced,
highlighting the sensitivity of the system’s performance to
non-IID data distribution. These results prove Equation (10)
which the number of rounds correlates with the σ(p) which
the power of this relation β is based on the data diversity
between clients.The observed trend indicates that as the
standard deviation rises, the number of epochs required for
convergence increases while the carbon emissions per global

epoch decreases. This underscores a discernible trade-off
associated with increasing the standard deviation, suggesting
the need for a judicious balance to achieve optimal outcomes.

From Table I, it is observed that σ(p) is more sensitive
when α is smaller. Consequently, in instances of high data
heterogeneity, a preliminary warm-up step in determining
hyperparameters becomes imperative.

2) Clustering Sensitivity Analysis: We delved into the
varying cluster numbers and compared outcomes across
various scenarios with baseline approaches. We introduced
an augmented degree of standard deviation for scenarios
involving two and three clusters, where the vector p assumed
the values of 0.2, 1 and 0.2, 0.6, 1, respectively, in concor-
dance with the number of clusters under consideration. In this
experiment, we explored four distinct scenarios characterized
by variations in the α parameter, set at values of 1 and



(a) Real intensity profile (b) Simulated intensity profile (c) Real intensity profile (d) Simulated intensity profile

Fig. 3: This batch of figures represents a sensitivity analysis for carbon intensity profile using two different approaches(Simulated and Real) for the carbon
profile of the clients in two and three clusters scenarios.

0.01. Additionally, we manipulated the local epoch count,
considering both E = 1 and E = 5. In Fig. 2, each of the
four distinct parameter configurations exhibits two distinct
types of graphical representation. One depicts test accuracy
as a function of the number of communication rounds, while
the other illustrates test accuracy in relation to the carbon
emissions measured in kilograms (kg). In these experiments,
we used the real intensity scenario for the carbon profile of
the clients.

In Fig. 2b and Fig. 2d, it is evident that a substantial
accuracy gap(9.6% and 9.4%) exists between the baseline,
represented by FedAvg, and the scenarios involving two
and three clusters. This discrepancy is noticeably significant,
indicating the method’s competence in handling highly non-
IID data. Furthermore, 2.5% and 3.4% accuracy difference
is also apparent between scenarios featuring two and three
clusters and the one-cluster setting with equivalent mean
values, particularly when employing only a single epoch. The
observed gap diminishes as the number of epochs increases.
This reduction in the gap can be attributed to the lower
difference in the convergence rate of models with varying
sizes, particularly when more epochs are employed in the
process, as evident from Fig. 2c.

For a more IID data distribution in Fig. 2e, the disparity in
test accuracy related to communication rounds between the
two-cluster, three-cluster, and baselines is notably smaller.
However, in Fig. 2f, a discernible gap still persists, particu-
larly in comparison to the FedAvg baseline, emphasizing the
influence of the clustering configurations on carbon emission.
In the scenario characterized by more IID data and a local
epoch count of 5, the gap between the different cluster
configurations is minimized. However, there still exists a
noticeable accuracy gap between these configurations and
the FedAvg baseline, as illustrated in Fig. 2h.

3) Carbon Intensity Profile Analysis: In this experiment,
we conducted a comparison between the real carbon intensity
profile, which includes data from six European countries,
and the simulated carbon intensity profile. The simulated
profile is characterized by a more significant value disparity
between green and non-green clients, specifically concerning
carbon intensity data. To assess the impact of this contrast,

we introduced changes in the standard deviation of the
p vector for scenarios involving two and three clusters,
as demonstrated in Fig. 3. As the plots illustrate, when
the carbon profiles become more diverged, the gap in test
accuracy between the three-cluster and two-cluster scenarios
widens. In such cases, a higher standard deviation exerts a
more pronounced influence, and the optimal point appears to
align with this parameter.

VI. CONCLUSION

In this paper, we proposed FedGreen to mitigate carbon
emissions in FL by dynamically assigning model sizes to
clients based on the carbon intensity rate of their respec-
tive locations. Additionally, we aimed to choose parameters
optimally for our model size of different clusters of clients
to achieve the best possible trade-off between accuracy rate
and carbon emissions. Through a series of experiments, we
demonstrated our proposed method’s significant advantages
and effectiveness.
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