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ABSTRACT

Soil moisture sensing through biomass or vegetation canopy
has challenged researchers, even those who use SAR sen-
sors with penetration capabilities. This is mainly due to the
imposed extra time and phase offsets on Radio Frequency
(RF) signals as they travel through the canopy. These offsets
depend on the vegetation canopy moisture and height, both
of which are typically unknown in agricultural and forest
fields. In this paper, we leverage the mobility of an un-
manned aerial system (UAS) to collect spatially-diverse radar
measurements, enabling the joint estimation of soil mois-
ture, above-ground biomass moisture, and biomass height,
all without assuming any calibration steps. We leverage the
changes in time-of-flight (ToF) and angle-of-arrival (AoA)
measurements of reflected radar signals as the UAS flies
above a reflector buried under the soil. We demonstrate the
effectiveness of our algorithm by simulating its performance
under realistic measurement noises as well as conducting lab
experiments with different types of above-ground biomass.
Our simulation results conclude that our algorithm is capa-
ble of estimating volumetric soil moisture to less than 1%
median absolute error (MAE), vegetation height to 11.1cm
MAE, and vegetation relative permittivity to 0.32 MAE. Our
experimental results demonstrate the effectiveness of the
proposed method in practical scenarios for varying biomass
moistures and heights.

Index Terms— Soil moisture, biomass, radar, unmanned
aerial system (UAS), agriculture, forestry
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1. INTRODUCTION

Soil moisture sensing plays a vital role in numerous agricul-
tural and environmental monitoring applications, from crop
monitoring [1] and irrigation control [2] in precision agri-
culture to wildfire risk assessment in forestry environments
[3, 4]. Existing solutions leverage passive and active remote
sensing systems to estimate soil permittivity and derive soil
moisture. However, the majority of agricultural and forestry
sites are covered by canopy layer, rendering remote sensing
solutions ineffective. Typical active remote sensing systems
[5, 6, 7, 8, 9] leverage satellite or UAS equipped with radars
to associate the received signal strength or the Time of Flight
(ToF) of the backscattered signal from the ground to soil
moisture levels. However, without calibration aids, these
systems cannot separate the effect of surface-layer vegetation
from soil moisture estimates [10]. This is because the signal
must penetrate through the vegetation to reach the soil, the
moisture content and height of which will contribute pro-
portionally to the ToF and absorption of radar signals. This
makes the dissection of the individual contributions of soil
and biomass much more challenging.

Previous works leverage Ultra-Wideband (UWB) radars
at C-band combined with either transmission line models [11,
12] or phase information from an antenna array [13] to com-
pensate for the vegetation effect. However, these works ei-
ther make an assumption about the height of vegetation [11]
or assume a limited vegetation layer height [14, 13] that is
not applicable in agricultural settings. On the other hand,
multi-polarization radars are also used in satellite SAR sys-
tems to separate the scattering due to vegetation reflections
from the soil surface reflections [10, 15, 16]. However, they
are also prone to errors due to atmospheric disturbances and
sub-surface scattering effects.

Another challenge in estimating soil moisture through
canopy originates from the lack of ground references to mark
the source of reflections. Existing SAR systems which do
not use on-ground infrastructure cannot be certain that the
strongest radar reflections originate from the biomass, sur-
face, or ground. This can significantly vary the outcome of
remote soil moisture algorithms due to multipath and scat-
tering effects that could potentially mask the reflections from
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underground and soil surface. To address this challenge, we
propose an RFID tag design, based on our previous work
[17, 18]. The tag acts as a ground reference and marks the
reflections penetrated through biomass and soil by modulat-
ing the radar reflection. We install two of these RF reflectors,
one on the soil surface and one buried in the soil at a known
depth, to separate the radar reflections that carry the biomass
and soil effects (shown in Figure 1). Practically, this installa-
tion can be done at the start of a field’s growing season, after
sowing.

We propose a radar sensing algorithm that fuses spatially-
diverse ToF measurements of the two ground reflectors to
jointly infer soil and biomass characteristics without mak-
ing assumptions about the above-ground biomass properties
or requiring calibration steps. Unlike the previous terrestrial
soil sensing methods that use radar measurements from only
one location [13, 11], we leverage the movement of the radar,
either mounted on a drone or agricultural machinery, to col-
lect ToF measurements at multiple locations. We then ap-
ply Snell’s law of refraction to build a system of equations
from independent ToF measurements at different azimuth po-
sitions. Next, we employ an iterative non-linear solver to
jointly estimate 3 parameters: vegetation height, vegetation
permittivity, and soil permittivity. Finally, we can infer soil
moisture from soil permittivity using the Topp equation [19].

We evaluate our proposed system using simulation with
realistic noise parameters as well as lab experimentation us-
ing a custom-built step-continuous-wave radar operating at
1.5-2.5GHz and custom-designed RF reflectors. The results
demonstrate the effectiveness of this method in accurately
estimating soil moisture in the presence of different above-
ground biomass and canopy vegetation. We also demon-
strate the effectiveness of radar mobility in characterizing the
biomass height and permittivity. Next sections elaborate our
methodology and obtained results.

2. METHODOLOGY

The proposed system consists of a portable radar, flying or
moving above the canopy layer in a forestry or agricultural
field, and passive RF reflectors that are sparsely deployed on
and under ground as references. As the radar flies above the
field of interest, it transmits and receives the RF signals and
measures the ToF and angle-of-arrival of the reflected signals.
While the proposed method is independent of the radar wave-
form or the antenna geometry, we perform our experimen-
tation using a stepped frequency continuous-wave (SFCW)
radar operating at 1.5 to 2.5GHz. We obtain basic FFT-based
signal processing techniques [18] to extract the tag reflections
and estimate their ToFs. Without loss of generality, we as-
sume homogeneous layers of air, vegetation, and soil between
the ground reflectors and the radar (shown in Figure 3). It is
worth noting that we do not make any assumptions about the
above-ground biomass height, h1, or vegetation permittivity,

Fig. 1. Leveraging radar mobility and the effect of refraction
to jointly estimate soil and above-ground biomass character-
istics

ϵ1, given that they can vary over time as the growing season
progresses [11].

In this model, the soil layer extends from the depth of the
buried reflector to the base of the vegetation layer, a height of
h2 and permittivity of ϵ2. While the soil permittivity is one
of the unknown variables, the soil depth can be recorded dur-
ing the tag installation. Finally, it is assumed that the radar is
located above the biomass layer at altitude of h0 + h1 from
the ground, where h0 defines the air layer height and h1 is
the biomass height. While neither of these individual heights
are known, we assume that the drone is equipped with navi-
gational sensors capable of measuring the overall altitude.

As the radar signal propagates from the radar TX antenna
towards the ground, it will vary in speed v = c/

√
ϵ as it

passes through new layers of dielectric, where c defines the
speed of light and ϵ defines the relative permittivity of the
corresponding layer. At each dielectric interface, some of the
signal energy will scatter back towards the radar, producing
peaks in the time domain reflectrometry (TDR) output of the
radar capture. We place a passive RF reflector at the dielectric
interface of biomass and soil to accurately distinguish the sig-
nal reflections at this interface from lower layers in the TDR
signal. According to Snell’s Law, part of the signals at each
dielectric interface refracts at an angle θi:

n1 sin(θ1) = n2 sin(θ2) (1)
where ni defines the relative permitivity of each layer at the
interface. We can see that the refracted angle inside the new
medium is a function of the incident angle and the permit-
tivities of the adjoined layers. As such, the signal path can
be modeled as a series of adjoined line segments of length
li. Once the signal impinges on the reflector, it will scatter
in many directions, but according to the law of reciprocity
[20], the signal that will be received by the radar will be the
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one that will backtrack along the same path that brought it to
the reflector. Therefore, the reflection path is the same as the
transmission path. Pulling everything together, the one-way
ToF of a radar signal can be defined as:

τ =
1

c

N−1∑
i=0

lini (2)

To express this in terms of measurable and unknown
quantities, we expand li term by defining the two ”pierce
points,” the points at which the radar signal crosses a dielec-
tric interface. Both pierce points, pveg and psoil, shown in
Fig 1, are defined relative to the normal line originating from
the deployed RF reflectors. In order for the radar signal to
reach the reflector, the radar signal first enters the vegetation
layer at

pveg = x0 − h0 tan(α) (3)
where α is the angle of incidence of the radar transmission or
the angle-of-arrival (AoA) of the radar reflection. Note that
this angle is different from the angle that would be formed if
the signal traveled along the shortest path between the drone
and the reflector due to the refraction effects. The AoA α
can be estimated using an antenna array at the radar or it can
be approximated using the known location of the tag and the
radar using alternative sensors such as GPS. Our simulation
results will elaborate on the impact of α measurement. The
second pierce point, psoil, can also be derived using basic ge-
ometry:

psoil = pveg − h1 tan(β)

= x0 − h0 tan(α)− h1 tan(β) (4)
Combining equations 1 to 4, we can rewrite psoil as

psoil = x0 − h0 tan(α)

− h1 tan

(
arcsin

(
n1 sin(α)

n2

))
Note that both the pveg and psoil expressions comprise a
mix of measurable quantities (x0, α) and unknown quantities
(h0, n1, n2). Now that we have defined expressions for the
pierce point locations, we can determine the segment lengths
through each medium by applying the Pythagorean theorem:

l0 =
√
h2
0 + (x0 − pveg)2 (5)

l1 =
√
h2
1 + (pveg − psoil)2 (6)

l2 =
√
h2
2 + p2soil (7)

Expanding these terms using equation 2,

τ =
1

c

√
h2
0 + (x0 − pveg)2

+
n1

c

√
h2
1 + (pveg − psoil)2

+
n2

c

√
h2
2 + p2soil

(8)

This nonlinear equation contains all of the unknowns of in-
terest (h1, n1, n2) and the measurable quantities (τ , α, x0,
h0 + h1). For every new measurement location x0 at altitude
h0 + h1, the drone collects a new Time of Flight τ (and, op-

tionally, AoA α), thus producing a new nonlinear equation.
By collecting these equations into a nonlinear system, we can
solve for the three unknowns.

3. SIMULATION RESULTS

We have simulated the performance of our nonlinear solver
across a variety of agricultural environments. For each sim-
ulation run, we randomly sample vegetation and soil proper-
ties from realistic distributions of each variable. We sample
the groundtruth soil permittivity ϵ2 from the uniform distri-
bution between 2 and 20, corresponding to a VWC between
near-0% and 34.5%. For vegetation simulation, we sample
the biomass height h1 between .2 to 2 meters and biomass
permittivity ϵ1 from a uniform distribution between 1.1 and
5, representing a wide range of biomass types from woody
biomass to a plant-based canopy layer. To simulate the radar
mobility, we consider the drone hovering above the ground
reflectors at 0 displacement and moving horizontally, making
measurements every .5m up to 2.5m total horizontal displace-
ment.

First, we ran our simulator using exact ToFs and AoAs
that would be measured by a noiseless radar. We compared
the performance of the algorithm using static measurements,
collected while the UAV hovers over the reflector, to the per-
formance using dynamic measurements, collected while the
UAV approaches the reflector. To show the impact of reflec-
tors, we also compare the results of only a single reflector
buried under the soil with a two-reflector scenario, one under
the soil and one on the soil surface. Table 1 summarizes the
errors in estimating soil Volumetric Water Content (VWC),
above-ground biomass permittivity and biomass height. The
overall performance of our algorithm across all these simula-
tions are shown in Figure 2.

In single reflector scenario, the soil VWC median error
using the dynamic measurements is comparable to that of the
static measurements, but we can see that the dynamic mea-
surements significantly improves the characterization of veg-
etation parameters. The main reason is that the optimization
problem is under-constrained with a single static measure-
ment when modeling more than one dielectric layer, which
affects the performance in estimating the parameters of the
top layer (in this case, the biomass layer). Figure 2 also shows
the performance of the proposed method in dissecting the soil
layer from biomass for different biomass heights. As we can
see, the use of the two reflectors allows us to accurately esti-
mate the soil volume water content regardless of the density
or height of the biomass layer above the soil.

Second, we ran our simulator using perturbed ToF’s that
would be similar to the measurements collected by a com-
modity radar. The measurement noises necessitates the use
of the second tag at the surface layer to differentiate the re-
flections from soil surface and under the soil. Comparing
the static and dynamic measurement results in Table 1 for
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Fig. 2. The radar mobility improves the performance of joint soil and biomass characterization (3 left plots), it maintains the
high performance regardless of the above-ground biomass height (right plot)

Simulation Settings Noiseless, One Reflector Noisy, Two Reflectors

Static Dynamic Static Dynamic

Above-ground biomass permittivity median error 0.43 0.34 0.34 0.32
Above-ground biomass height median error (cm) 18.7 5.0 13.0 11.1
Soil VWC median error 5.5% 2.8% 0.008% 0.003%

Table 1. 3-Parameter Estimation Performance in Simulation
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Fig. 3. Our experimental evaluations confirm the capability
of our joint soil and biomass characterization for different
above-ground biomass materials

the noisy scenario, we can see that the dynamic measurement
method improves the estimation of vegetation properties over
the static measurement method.

4. EXPERIMENTAL RESULTS AND CONCLUSION

We performed lab-based experiments to show the real-world
validity of our solver using a Keysight Streamline Vector Net-
work Analyzer (VNA) [21] with step-CW waveform spanning
1.5 to 2.5GHz and a Vivaldi antenna [22] attached to port 1
of the VNA. We then capture the complex S11 values (single-
antenna frequency-domain channel estimates) and perform
the Inverse Fast Fourier Transform to extract the TDR sig-
nal. We use a match filtering algorithm similar to [18] to
detect and separate the reflections from the modulating RF
reflectors.

First, we conducted a set of experiments to demonstrate
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Fig. 4. Radar setup for experimental evaluation (left) and the
accuracy of above-ground biomass properties estimations in
low and high biomass moisture and heights

the robustness of soil moisture estimation in the presence of
different above-ground biomass materials. In these experi-
ments, the radar is at a fixed position in front of the reflector
at a distance of 1.5m. In front of the reflector, there is a soil
layer with a fixed depth of 13cm. We then place different
biomass materials of different height in front of soil such as
two corn plants, a box of wood shavings with an average par-
ticle size of 2.5mm, and a box of straw with 6.4mm particle
size. The results are summarized in Fig 3 and we can see the
effectiveness of our proposed method in accurately estimat-
ing soil moisture in the presence of above-ground biomass.
We can see a small performance degradation in wood shaving
scenario, which is mainly due to high density of this biomass
material and the resulting reduction in signal to noise ratio.

Next, we show the effectiveness of radar mobility in
jointly estimating biomass height and permittivity above
the soil. We run 4 different scenarios which represent two
biomass moisture levels (measured relative permittivity of
1.51 and 1.89 using the Teros-12 sensor) and two biomass
height levels (35cm and 51cm). We fixed the biomass type
to wood shavings in all these experiments. To emulate radar
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movements, we collected ToF measurements at four different
horizontal displacements between 0m to 1.0m. The results of
these experiments are summarized in Fig 4. We can see that
the dynamic measurement method can characterize biomass
permittivity and height to levels of precision useful to farmers
and wildland managers. As part of our future work, we plan
to extend these experiments to in-field testing by mounting
the radar on a drone.
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