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Abstract In this article, three-dimensional (3D) lid-driven flows in semicir-
cular cavities are studied. The numerical solution of the Navier-Stokes equa-
tions modeling incompressible viscous fluid flow in cavities is obtained via
a methodology combining a first-order accurate operator-splitting scheme, a
fictitious domain formulation, and finite element space approximations. The
critical Reynolds numbers (Recr) for having oscillatory flow (a Hopf bifurca-
tion) are obtained. The associated oscillating motion in a semicircular cavity
with length equal to width has been studied in detail. Based on the averaged
velocity field in one period of oscillating motion, the flow difference (called
oscillation mode) between the velocity field and averaged one at several time
instances in such period shows almost the same flow pattern for the Reynolds
numbers close to Recr. This oscillation mode in a semicircular cavity shows
a close similarity to the one obtained in a shallow cavity, but with some dif-
ference in a shallow cavity which is triggered by the presence of two vertical
side walls and downstream wall.

Keywords Lid driven cavity flow, semicircular cavities, Taylor-Görtler-like
vortices, Hopf bifurcation, projection method.

1 Introduction

Lid-driven cavity flow is a classical benchmark flow problem for validat-
ing numerical methods and comparing results obtained from laboratory and
computational experiments due to its geometrical simplicity and unambigu-
ous boundary conditions (e.g., see [2], [3], and [4]). This flow problem is
important to the basic study of fluid mechanics, including boundary layers,
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primary vortex, secondary flows (such as the corner vortices and Taylor-
Goertler-like vortices), various instabilities and transitions, and turbulence;
this flow system is also relevant to many industrial applications (e.g., see [2]
and [5]). Most lid-driven cavity flows were studied in two-dimensional (2D)
and three-dimensional (3D) rectangular cavities; but, e.g., some other shapes
like those with triangular, polar or sectorial cross section were also considered
(see a review article [4] for some of those non-rectangular cases). For cavities
with a circular shape boundary, there are fewer results available (compared
to rectangular cavities) as pointed out in [4] and [6]. In [7] and [8], lid-driven
cavity flows have been obtained in a hemispherical cavity and its transition
has been studied in [8]. In [9], a spectral element discretization was developed
to solve lid-driven flows in a full disk with a moving circular lid. A similar
one was also considered later in [6], and a circular cavity with an horizontal
top boundary was also studied in [6]. Although two-dimensional flows were
obtained in [6], their 3D linear stability analyses were done and confirmed
by spectral direct numerical simulations with periodic flows in the spanwise
direction. In a 2D semicircular cavity, a classic finite element approach was
used to solve lid-driven flows in [10]. Such method has shown no difficulty at
capturing the formation of primary, secondary and tertiary vortices as Re in-
creases; it also has the capability in capturing the transition from steady flow
to oscillatory flow (a Hopf bifurcation phenomenon). In [11], a 3D semicircu-
lar cavity was one of several cavity shapes used to study experimentally the
shape influence on the birth and evolution of recirculating flow structures in
cavities. The evolution of lid-driven flow in a semicircular cavity was studied
up to the dimensionless time t=12 since semicircular flow seems to reach its
steady state as claimed in [11] and flow transition to oscillatory one was not
mentioned.

It is known that, depending on the solution method, boundary condi-
tions and mesh size used in simulation, the critical Reynolds number (Recr)
for the occurrence of transition from steady flow to oscillatory flow varies
in cavities. For example, Iwatsu et al. [12] obtained numerically a pair of
Taylor-Görtler-like vortices for a cubic lid-driven cavity flow at Re=2000.
Giannetti et al. [13] also obtained that the cubic lid-driven cavity flow be-
comes unstable for Re just above 2000 via the three-dimensional global linear
stability analysis. Feldman and Gelfgat [14] obtained the critical Reynolds
number for transition occurring at Recr = 1914. Liberzon et al. [15] experi-
mentally obtained the critical Reynolds number is in the range [1700, 1970].
In [16], Pan et al. found the critical Reynolds number value is between 1894
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and 1895 for lid-driven flows in a cube. In this article, we have studied nu-
merically the transition from steady flow to oscillatory one in semicircular
cavities. We have applied a first-order accurate operator-splitting scheme,
the Lie scheme (e.g., see [8] and [17] for its details), with a fictitious domain
approach and finite element method to obtain numerical solutions of the
Navier-Stokes equations. This numerical methodology is an extension of the
investigations reported in [18] and [19]. The resulting methodology is easy
to implement and quite modular since, at each time step, one has to solve a
sequence of four simpler sub-problems. To investigate the mode associated
with the transition from steady flow to oscillatory flow, we have focused on
the flow fields at Reynolds numbers close to Recr. The difference of flow field
with respect to the averaged flow field in one period of the oscillation has
been studied and compared with those that occurred in a shallow cavity with
unit square base. The outline of this paper is as follows: We first introduce
the formulation of the flow problem and then the numerical method briefly
in Section 2. In Section 3, numerical results obtained for lid-driven flows in
semicircular cavities are presented. Then the transition from steady flow to
oscillatory flow has been studied, especially on the comparison of oscillatory
modes in two different cavities. Conclusions are summarized in Section 4.

2 Problem formulation

Figure 1: An example of a semicircular cavity ω.

The governing equations for modeling incompressible viscous Newtonian
fluid flow in a cavity ω ⊂ IR3 (see Figure 1) for T > 0 are the Navier-Stokes
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equations, namely

∂u

∂t
− ν∆u+ (u ·∇)u+∇p = 0 in ω × (0, T ),(1)

∇ · u = 0 in ω × (0, T ),(2)

u(0) = u0, with ∇ · u0 = 0,(3)

u = uB(x) on ∂ω × (0, T ) with

∫

∂ω

uB · n dγ = 0 on (0, T ),(4)

where u and p are the flow velocity and pressure, respectively, ν is a viscosity
coefficient, and n is the unit outward normal vector at the boundary γ = ∂ω.
For lid-driven flows considered in this article, the boundary data uB(x) is
(1, 0, 0)t on the top moving lid and zero elsewhere on the boundary of ω. We
denote by v(t) the function x → v(x, t), x being the generic point of IR3.

Figure 2: An example of a semicircular cavity ω embedded into a simple
shape fictitious domain Ω.

To solve problem (1)-(4) numerically, we have first embedded the fluid
flow domain ω into a larger simple shape domain Ω (so-called fictitious do-
main, see Figure 2) and obtained its fictitious domain formulation

∂U

∂t
− ν∆U + (U ·∇)U +∇P = λ in Ω× (0, T ),(5)

∇ ·U = 0 in Ω× (0, T ),(6)

U(0) = U0, with ∇ ·U0 = 0,(7)

U = UB(x) on ∂Ω × (0, T ) with

∫

∂Ω

UB · n dγ = 0 on (0, T ),(8)

U = 0 in Ω \ ω̄ × (0, T ),(9)

4



where λ is a distributed Lagrange multiplier, which vanish in ω, and acts as
a pseudo body force so that U = 0 is enforced in Ω \ ω̄, U0|ω = u0, andUB

is (1, 0, 0)t on the top moving lid of ω and zero elsewhere on the boundary
of Ω. Actually, the above distributed Lagrange multiplier approach has been
successfully applied to simulate the motion of particles freely moving in a
fluid (see, e.g., [20], [21], [22]). Then via the Lie scheme (see, e.g., see [8]
and [17] for the details) to obtain the numerical solution of lid-driven flow
problem, we have time-discretized problem (5)-(9) into a sequence of four
sub-problems for each time step, namely: (i) using a L2-projection Stokes
solver à la Uzawa to force the incompressibility condition, (ii) an advection
step, (iii) a diffusion step, and (iv) enforcement zero velocity outside the
cavity ω. A similar one for simulating lid-driven flow in a hemispherical
cavity can be found in [8] (Ch. 7). Lie scheme is first-order accurate in
time, but its low order time accuracy is compensated by its modularity, easy
implementation, stability, and robustness properties. The first three steps
were used to obtain numerical results of lid-driven flow in shallow cavities
reported in [16].

For the space discretization, we have used, as in [23] (Chapter 5) and
[24], a P1-iso-P2 (resp., P1) finite element approximation for the velocity field
(resp., pressure) defined on uniform “tetrahedral” meshes Th (resp., T2h) due
to the simple shape of fictitious domain. The resulting four sub-problems
via the Lie scheme are very classical problems and each one of them can be
solved by a variety of existing methods, this being one of the key points of the
operator-splitting methodology. For the first one, an L2-projection (equiva-
lent to a saddle-point problem), it can be solved by an Uzawa/preconditioned
conjugate gradient algorithm as discussed in [23] (Section 21). The advec-
tion problem at the second step is solved by a wave-like equation method
(see, e.g., [25], [26], and [8] (Ch. 3)) which is explicit and does not introduce
numerical dissipation. Since the advection problem is decoupled from the
others, a sub-time step satisfying the CFL condition can be chosen easily.
A classical elliptic problem at the third step can be solved easily. The last
one is also a saddle-point problem, which is solved by a conjugate gradient
algorithm as discussed in, e.g., [8] (Ch. 7).
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Figure 3: A semicircular cavity ω of width 2, depth 1, and height 0.5 (em-
bedded into a fictitious domain Ω) where the radius of circular sector is 0.5.

3 Numerical Results and discussions

For the first semicircular cavity shown in Figure 3, we have taken Ω =
(−2h, 1 + 2h) × (0, 2) × (−2h, 0.5) as a computational domain (fictitious
domain) where h is the mesh size for the velocity field and the radius of
circular sector is 0.5 and defined the Dirichlet data UB by
(10)

UB(x) =

{

(1, 0, 0)T on {x | x = (x1, x2, 0.5)
T , 0 < x1 < 1, 0 < x2 < 2},

0 elsewhere on ∂Ω,

Then the Reynolds number is Re=1/ν. We assumed that a steady state
has been reached when the change between two consecutive time steps,
‖Un

h −Un−1

h ‖
∞
/△t, in the simulation is less than 10−7, and then took Un

h as
the steady state solution. This semicircular cavity was one of several cavity
shapes used in [11] to study the shape influence on birth and evolution of
recirculating flow structures in cavities. The Reynolds number for the experi-
ment considered in [11] is Re=1000. To validate the numerical methodologies
briefly described in the previous section, we have obtained the initial phase
of the flow establishment with the velocity mesh size h = 1/96 and time
step △t=0.001. For the star-up flow, numerical results were computed for
the first 9 seconds (see Figure 4). In Figure. 5, the vortex-core trajectory
of numerical results on the middle vertical plane x2 = 1 shows a very good
agreement with those obtained in [11]. Our numerical results suggest that
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Figure 4: Projected velocity vectors on the plane x2 = 1 at different times
for Re=1000.

the critical Reynolds number for the transition from steady state flow to os-
cillatory one is close to Re=790. The critical Reynolds number suggested
in [11] is higher than 1000 since they believed that the lid-driven flow in a
semicircular cavity reported in [11] is steady for Re=1000.

To investigate the effect of semicircular shape on the transition of lid-
driven cavity flows, we have considered the second semicircular cavity as
shown in Figure 6. Its radius of circular sector is 0.5 and fictitious domain is
Ω = (−2h, 1 + 2h)× (0, 1)× (−2h, 0.5). The Dirichlet data UB is defined as

(11) UB(x) =

{

(1, 0, 0)T on {x | x = (x1, x2, 0.5)
T , 0 < x1, x2 < 1},

0 elsewhere on ∂Ω,
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Figure 5: Primary vortex-core trajectory in a semicircular cavity for
Re=1000: Experimental data (∗) taken from [11] and numerical results for
1 ≤ t ≤ 9 sec (red solid line with ◦’s).

Figure 6: A semicircular cavity ω of width 1, depth 1, and height 0.5 (em-
bedded into a fictitious domain Ω) where the radius of circular sector is 0.5.

We like to compare the resulting flows in this semicircular cavity with those
in a shallow cavity with a unit square base and height 0.5 discussed in [16].

The steady flow velocity vectors for Re=400 and 900 are shown in Fig-
ures 7 and 8, respectively where the velocity field vectors for Re=400 (resp.,
Re=900) are projected onto the three planes, x2 = 0.5, x1 = 63/96, and
x3 = 0.3125 (resp., x2 = 0.5, x1 = 54/96, and x3 = 0.3125). The length
of vectors has been enlarged two times in the two planes, x1 = 54/96 and
x3 = 0.3125, to improve clarity. The two plots on x2 = 0.5 show that the cen-
ter of primary vortex moves toward the central region as Re increases from
400 to 900. At Re=400, on x1 = 63/96, there is a vortex occurring close
to each bottom corner but another pair of vortices is shown in the central
region on x1 = 54/96 for Re=900. Similarly, four established vortices appear
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Figure 7: (i) Re=400: Comparisons of the numerical results obtained for
h = 1/96, 1/128, and 1/160 (top), (ii) Steady flow velocity vector projected
on planes: x3 = 0.3125 (bottom left), x2 = 0.5 (middle right), and x1 = 63/96
(bottom right) for h = 1/96 and △t=0.001. (In the bottom left and right
plots, vector scale is two times of the actual one to enhance visibility.)

on x3 = 0.3125 for Re=900; but not for Re=400.
For lid-driven flows in a cavity, one of many interesting questions is to

locate the critical Reynolds number Recr for a transition from a steady lid-
driven flow to oscillatory one. In, e.g., [14] and [15], Recr was predicted
to be less than 2000 for lid-driven flows in a cubic cavity. On the other
hand, Gianetti et al. found (ref. [13]) that the cubic lid-driven cavity flow
becomes unstable for Re just above 2000 via a global linear stability analy-
sis. Kuhlmann and Albensoeder [27] obtained numerically that the critical
Reynolds number value is 1919.51. In [16], Pan et al. found the critical
Reynolds number value is between 1894 and 1895 in a cubic cavity. These
results indicate that the Hopf bifurcation related to the oscillating flows oc-
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Figure 8: (i) Re=900: Comparisons of the numerical results obtained for
h = 1/96, 1/128, and 1/160 (top), (ii) Steady flow velocity vector projected
on planes: x3 = 0.3125 (bottom left), x2 = 0.5 (middle right), and x1 = 54/96
(bottom right) for h = 1/96 and △t=0.001. (In the bottom left and right
plots, vector scale is two times of the actual one to enhance visibility.)

curs for Re slightly below 2000 for lid-driven flows in a cubic cavity. To
study the effect of cavity shape on the transition of lid-driven flows, we first
like to locate the value of Recr for lid-driven flows in a semicircular cavity
(see Figure 6) and then study the oscillation flows for the Reynolds numbers
close to Recr. We have computed the flow velocity un

h for different Re val-
ues and mesh sizes h and analyzed its history of L2-norm (i.e., plot of ‖un

h‖
versus t). For h = 1/96 and △t=0.001, the flow field evolves to a steady
state and the amplitude of its L2-norm oscillation decreases in time for Re
≤ 927 (see Figure 9). For Re ≥ 928, the steady state criterion is not satisfied
and the amplitude of oscillation increases in time (see Figure 9). Thus we
conclude that the critical Reynolds number Recr for the occurrence of tran-
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Figure 9: Histories of ‖uh‖ for Re = 927 (top two) and 928 (bottom two)
obtained with h = 1/96 and △t=0.001.

sition is somewhere between 927 and 928. The oscillating angular frequency
is between 0.70376 and 0.70345. Applying the same analysis to the histories
of flow velocity L2-norm for h = 1/160 and △t=0.001, the critical Recr is
between 934 and 935. The oscillating angular frequency is between 0.70645
and 0.70629.

Concerning the oscillation shown in the history of L2-norm ‖un
h‖, we have

first computed the averaged velocity field from those obtained at different
time instances denoted by “*” in one period as shown in the top plot of
Figure 10 for Re=927. Then we look into the change of velocity field by
comparing it to the average one obtained in the same period. The difference
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Figure 10: History of ‖uh‖ for one period in a semicircular cavity for Re =
927 (top), averaged velocity field projected one planes: x3 = 0.25 (bottom
left), x2 = 0.5 (middle right), and x1 = 55/96 (bottom right) for h = 1/96
and △t=0.001. (In the bottom left and right plots, the vector scale is four
times that of the actual one to enhance visibility.)

between averaged velocity field and the one at four time instances in the
same time period are shown in Figure 11 for Re=927. The flow direction of
the difference of velocity field projected on plane x2 = 55/96 at t = 15008
(resp., t = 15010.5) is opposed to the one at t = 15012.5 (resp., t = 15015),
but the flow circulation pattern is almost the same. Similar behavior of flow
direction and pattern are also found for the projection on plane x3 = 0.25
in Figure 11. Since the difference between velocity field and the average
one is a kind of “oscillation mode” (as shown in Figure 11), we shall look
into the difference of velocity field obtained from the first half of the period
in following discussion. Even though the oscillating amplitude for Re=927
decreases in time, the same oscillation mode has been obtained for Re=928
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Figure 11: Velocity field oscillation (difference) projecting on the planes x1 =
55/96 (top four) and x3 = 0.25 (bottom four) at t = 15008, 15010.5, 15012.5,
and 15015 (from left to right and then from top to bottom) for Re=927. The
velocity vectors have been magnified in those plots to enhance visibility.
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Figure 12: History of ‖uh‖ (top) and that of one period (2nd one from top)
in a semicircular cavity for Re = 930, averaged velocity field projected on
planes: x3 = 0.25 (bottom left), x2 = 0.5 (middle right), and x1 = 55/96
(bottom right) for h = 1/96 and △t=0.001. (In the bottom left and right
plots, the vector scale is four times of the actual one to enhance visibility.)

(whose oscillating amplitude increases in time as shown in Figure 9). For
Re=930 and 950, both histories of ‖uh‖ do oscillate with fixed amplitudes,
respectively (see Figures 12 and 13). The angular frequencies are 0.7031317
and 0.6981317 for Re=930 and 950, respectively. Their averaged velocity
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Figure 13: History of ‖uh‖ (top) and that of one period (2nd one from top)
in a semicircular cavity for Re = 950, averaged velocity field projected on
planes: x3 = 0.25 (bottom left), x2 = 0.5 (middle right), and x1 = 55/96
(bottom right) for h = 1/96 and △t=0.001. (In the bottom left and right
plots, the vector scale is four times of the actual one to enhance visibility.)

plots in Figures 12 and 13 show very close similarity to those in Figure 10
for Re=927. To find out how oscillation mode evolves from Re=927 to 950,
we have compared the snapshots of oscillation mode for Re=930 and 950
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Figure 14: Oscillation mode projecting on plane x1 = 55/96 in a semicircular
cavity for Re=927 (left) at t =15006, 15007, 15008, 15009, 15010, and 15010.5
(from top to bottom), Re=930 (middle) at t = 14006.5, 14007.5, 14008.5,
14009.5, 14010.5, and 14011 (from top to bottom), and Re=950 (right) at
t = 3007.65, 3008.65, 3009.65, 3010.65, 3011.65, and 3012.15 (from top to
bottom). Velocity vectors have been magnified to enhance visibility.

at several instances to those for Re=927 as shown in Figures 14 and 15. It
is interesting to find out that the oscillation mode is almost the same for
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Figure 15: Oscillation velocity field (difference) projecting on plane x3 = 0.25
for Re=927 (left) at t =15006, 15008, and 15010 (from top to bottom),
Re=930 (middle) at t =14006.5, 14008.5, and 14010.5 (from top to bottom),
and Re=950 (right) at t =3007.65, 3009.65, and 3011.65 (from top to bot-
tom). Velocity vectors have been magnified to enhance visibility.

those three Reynolds numbers. Those computational results for Re=927,
930, and 950 suggest that the oscillation mode in Figures 14 and 15 is the
one associated with the Hopf bifurcation and originated at Re less than the
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Figure 16: Velocity field projecting on the planes x1 = 55/96 (left six) at
t = 3007.65, 3008.65, 3009.65, 3010.65, 3011.65, and 3012.15 (from top to
bottom) and x3 = 0.25 (right three) at t = 3007.65, 3009.65, and 3011.65
(from top to bottom) for Re=950.
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Figure 17: History of ‖uh‖ for one period in a shallow cavity with a unit
square base for Re = 1364 (top), averaged velocity field projected on planes:
x3 = 0.25 (bottom left), x2 = 0.5 (middle right), and x1 = 62/96 (bottom
right) for h = 1/96 and △t=0.001. (In the bottom left and right plots, the
vector scale is four times that of the actual one to enhance visibility.)

critical Reynolds number.
Since the oscillation amplitude of ‖un

h‖ in a time period shown in Figure
10 is about the order of 10−11 for Re=927, the change of velocity field from
the average velocity field is very hardly to be observed. But for Re=950,
the change of velocity field (due to the oscillation mode) can be observed in
Figure 16 via the comparison to those in Figure 13. On plane x1 = 55/96
the size of vortices in the middle of those plots varies periodically and they
oscillate slightly up and down. Similar on the plane x3 = 0.25, the size of
vortices in the middle of those plots varies periodically. Another observation
is that the Taylor-Görtler-like vortices are not presented at the bottom of
projected velocity field on the plane x1 = 55/96 in Figures 14 and 16 for this
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Figure 18: Oscillation mode projecting on plane (i) x1 = 55/96 for Re=927
in a semicircular cavity (left) at t =15006, 15007, 15008, 15009, 15010, and
15010.5 (from top to bottom) and (ii) x1 = 62/96 for Re=1364 (right) in
a shallow cavity at t = 26005, 26006.1, 26007.19, 26008.29, 26009.39, and
26009.9 (from top to bottom). Velocity vectors have been magnified to en-
hance visibility.
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Figure 19: Oscillation velocity field (difference) projecting on plane x3 = 0.25
for Re=927 (left) at t =15006, 15008, and 15010 (from top to bottom) and
for Re=1364 (right) in a shallow cavity at t = 26005, 26007.19, and 26009.39
(from top to bottom). Velocity vectors have been magnified to enhance
visibility.

21



case.
To find out the effect of semicircular shape on lid-driven cavity flows,

we have compared the above computational results at Re=927 to those in a
shallow cavity with a unit square flat bottom and height of 1/2. As reported
in [16], the critical Reynolds number for lid-driven flow in this shallow cavity
is between 1364 and 1365 for the mesh size h = 1/96 and time step △t =
0.001. The averaged velocity field and one period of ‖uh‖ for Re=1364 are
shown in Figure 17. The averaged velocity field projected on x2 = 0.5 is quite
different from the one in a semicircular cavity shown in Figure 10 due to the
two different cross section shapes. But the similarity of averaged velocity
field on the planes x3 = 0.25 and x1 = 62/96 in Figure 17 can be found from
those on planes x3 = 0.25 and x1 = 55/96 shown in Figure 10. Snapshots of
oscillation mode for Re=1364 from the first half of a period are presented in
Figures 18 and 19. Comparing to those of Re=927 in a semicircular cavity
(see Figures 18 and 19), we have found a very close similarity of the main flow
circulation pattern. But in a shallow cavity, the main difference in Figure 18
is that small vortices always exist at two lower corners, which are triggered
by the presence of two vertical side walls and downstream wall.

4 Conclusion

In this article, we have studied numerically the transition from steady flow
to oscillatory one in a semicircular cavity of width and depth 1. Our simu-
lation results show that the value of critical Reynolds number Recr for the
transition from steady flow to oscillatory (a Hopf bifurcation) lie somewhere
in the interval (927, 928) for h = 1/96. The oscillating angular frequency
is between 0.70736 and 0.70345. The flow velocity oscillation at Re close to
Recr has been investigated in detail. We have visualized how the oscillating
mode evolves for different Re values. Numerical results indicate that the
oscillation mode starts before Re=927 is the one associated with the Hope
bifurcation at Re=930 and 950. Concerning the effect of semicircular shape
on lid-driven cavity flow, we have found that the oscillation mode in a semi-
circular cavity shows a close similarity to the one obtained in a shallow cavity,
but with some difference triggered by the presence of two vertical side walls
and downstream wall in a shallow cavity.

22



References

[1] Z. Feng and H. Lim, “Multi-relaxation time lattice Boltzmann simu-
lations of oscillatory instability in lid-driven flows of 2D semi-elliptical
cavity,” J. Vis. 22, 1057-1070 (2019).

[2] P. N. Shankar and M. D. Deshpande, “Fluid mechanics in the driven
cavity,” Annu. Rev. Fluid Mech. 32, 93-136 (2000).

[3] J.-L. Guermond, C. Migeon, G. Pineau, and L. Quartapelle, “Start-up
flows in a three-dimensional rectangular driven cavity of aspect ratio 1:
1: 2 at Re = 1000,” J. Fluid Mech. 450, 169-199 (2002).
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