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FIGURE 1 The CIRCLES Consortium at the experiment headquarters with partners listed.

Abstract
Previous controlled experiments on single-lane ring roads [1] have shown that a single partially autonomous vehicle

(AV) can effectively mitigate traffic waves. This naturally prompts the question of how these findings can be generalized
to field operational, high-density traffic conditions. To address this question, the Congestion Impacts Reduction via CAV-
in-the-loop Lagrangian Energy Smoothing (CIRCLES) Consortium conducted MegaVanderTest (MVT), a live traffic control
experiment involving 100 vehicles near Nashville, TN, USA. The purpose was to implement various controllers to
smooth stop-and-go traffic waves.

This article is a tutorial for developing analytical and simulation-based tools essential for designing and executing a
live traffic control experiment like the MVT. It presents an overview of the proposed roadmap and various procedures
used in designing, monitoring, and conducting the MVT, which is the largest mobile traffic control experiment at the
time. The design process is aimed at evaluating the impact of the CIRCLES AVs on surrounding traffic. The article
discusses the agent-based traffic simulation framework created for this evaluation. A novel methodological framework
is introduced to calibrate this microsimulation, aiming to accurately capture traffic dynamics and assess the impact
of adding 100 vehicles to existing traffic. The calibration model’s effectiveness is verified using data from a six-mile
section of Nashville’s I-24 highway. The results indicate that the proposed model establishes an effective feedback loop
between the optimizer and the simulator, thereby calibrating flow and speed with different spatiotemporal characteristics
to minimize the error between simulated and real-world data. Finally, We simulate AVs in multiple scenarios to assess
their effect on traffic congestion. This evaluation validates the AV routes, thereby contributing to the execution of a safe
and successful live traffic control experiment via AVs.

Traffic congestion, particularly during rush hours, is a pervasive issue that results in substantial direct and indirect
costs while also affecting fuel efficiency and road safety. In this context, vehicular traffic control can play a significant
role in alleviating congestion. Although traffic models have been in development since the middle of the 20th century,
focusing on macroscopic and microscopic dimensions, experimental efforts to understand traffic flow began with Bruce
D. Greenshields in 1933 [2]. He utilized a camera mounted on a mobile platform to precisely record the movements of
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a single vehicle. This groundbreaking experiment laid the foundation for subsequent studies aimed at evaluating the
effectiveness of traffic models.

While there have been promising results in both theoretical and applied settings with controlled environments, live-
highway experiments remain relatively rare. Over the past two decades, the focus of these experiments has shifted
from merely measuring and understanding vehicle flow to actively attempting to influence it. This change has been
facilitated by partially automated vehicles (AVs); these AVs have a driver at all times and are limited to longitudinal
control. Researchers can leverage AVs to test the implementation of new ideas, technologies, and algorithms designed
to improve traffic conditions [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

A practical understanding of the formation of traffic jams in the absence of bottlenecks was achieved by [19],
conducting an experiment on a ring road with a circumference of 230 meters and 22 vehicles. A camera situated
at the center of the circle recorded the movements of the vehicles. The study found that small variations in the speed
of leading vehicles were amplified by the vehicles following them, thereby propagating a wave. These findings are
consistent with theoretical microscopic models.

In 2010, the Mobile Century field experiment [20] used GPS technology in order to track mobile phones inside vehicles
traveling on California’s I-880 freeway. This experiment served as a proof of concept for the use of GPS technologies in
real-world traffic studies. It demonstrated that key traffic characteristics, such as speed, could be effectively captured
[21].

Building on these foundational experiments, efforts have emerged to actively control traffic, typically in similar
settings such as single-lane circular roads. The experiment detailed in [22] serves as a proof of concept for smoothing
traffic waves to reduce energy costs for all vehicles on the road. Using a circular track with 20 vehicles, it was
observed that traffic waves naturally form when vehicles are solely human-controlled, as previously demonstrated
in [19]. However, these waves can be effectively dissipated by introducing a small fraction of controlled vehicles into
the mix. Remarkably, the experiment showed significant wave dampening with just one vehicle equipped with a control
algorithm among 20 human-driven counterparts.

This development raises questions about the feasibility of replicating these controlled experiments in actual highway
settings. Specifically, it prompts inquiries regarding the required penetration rate of AVs relative to human-driven vehicles
(HDVs), as well as the concept of vehicle platooning, where vehicles are closely grouped together. The current article
focuses on the design and execution of a large-scale live traffic control experiment aiming to replicate the findings of
the controlled circular road experiment and quantify specific outcomes, such as energy savings.

This live experiment, referred to as the MegaVanderTest (MVT), was conducted on Interstate 24 West towards Nashville,
TN, depicted in Figure 2(a). Designed over a three-year period, MVT aimed to alleviate stop-and-go traffic waves using
AVs. This article elaborates on the comprehensive planning that included experiment design, simulation tests, and
driver training. Leveraging state-of-the-art design validation tools, monitoring systems, and control algorithms, 100
AVs were deployed to navigate and influence traffic flow. The flexible design allowed for real-time adaptability to both
foreseen and unforeseen obstacles, such as needing to hire more drivers as we approached the test and off-loading
100 dashcams worth of data as the storage became full. Preliminary analyses suggest a measurable impact on highway
traffic, contributing to safer and more efficient road usage.

1. THE “MEGAVANDERTEST” EXPERIMENT

Building on insights gained from ring road experiments [22] and a small 4-AV test in 2021 [5], the main 100 AV
experiment run by the CIRCLES Consortium, named the MVT, aims to intervene in the bulk traffic flow on Interstate
24 (I-24) West towards Nashville, TN. Unlike traditional adaptive cruise control systems, which are string-unstable and
exacerbate traffic waves [23], MVT employs a fleet of 100 AVs enhanced with dynamically changing cruise control
to implement real-time, adaptive interventions. This technology is designed to react to immediate leader vehicles
(the vehicle in front), though differently than typical Adaptive Cruise Control (ACC), but also it is able to utilize
downstream traffic data to anticipate major slow downs. Key metrics we aim to measure include changes in energy
consumption, traffic speed variability, and the frequency of braking events. The I-24 MOTION system [24], [25] serves as
the monitoring infrastructure, capturing high-resolution data for rigorous post-analysis of the effect on the surrounding
traffic. The instrument captures approximately 230 million vehicle-miles of travel annually, and experiences regular
recurring congestion. The MOTION system [26], [27], [28] consists of a computer vision pipeline, a trajectory post
processing pipeline [29], [30], and a visualization tool [31].

The mid-November morning traffic on I-24 highway in 2022 seemed indistinguishable from typical rush hours,
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(a) Mapping data ©Google maps. (b) SUMO Microsimulation Network.

(c) Sample of intersections of I-24 SUMO network verified with
online mapping data.

FIGURE 2 I-24 road network: The MVT experiment testbed shown with ©Google maps and SUMO .

densely packed with vehicles. The AVs were designed to prevent abrupt "jack-rabbit" starts and stops often observed
during congested traffic periods [32]. These AVs appear to influence the driving behavior of the following cars,
potentially mitigating intense traffic fluctuations and promoting a more consistent flow. Initial observations, based
on data from the first few days of the experiment week, suggest that even a minor presence of AVs might have the
potential to moderate stop-and-go patterns [33], which could lead to better energy efficiency for the majority of vehicles
[34]. This potential benefit might not just be restricted to energy; it could also result in reduced emissions and possibly
improve road safety [35]. It’s worth noting that past studies have pointed out a 36% surge in crash injury risk during
high-traffic periods in addiction to traffic wave alleviation [36], [4], [37].

2. MVT EXPERIMENT DESIGN

The planning and preparation for the MVT were extensive. Devised and spearheaded by the CIRCLES Consortium,
steps were rigorously executed to ensure participant safety and to maximize the penetration rate of AVs within the I-24
MOTION testbed. The primary objective was to assess the impact of the AVs on general traffic behavior. Coordinating a
project of this scale, which involved an interdisciplinary team from multiple universities, auto manufacturers engineers,
along with others, required meticulous planning, installation, and simulation, as illustrated by the project road map
(Figure 4).

This article focuses on the methodological framework used to design and conduct the MVT experiment. We outline
the comprehensive three-year planning process and preparation, which includes the selection of experimental dates and
times, route planning, hardware installation, and developing and simulating control algorithms. Drivers were trained
in order to operate the control vehicles both safely and efficiently, and dynamic agent-based simulations were utilized
to assess various scenarios and refine the experimental design (see Figure 2).

The first two steps in Figure 4 are detailed through sidebars: step 1 is elaborated in "MegaVanderTest testbed location,"
and step 2 in "Integrated hardware installation overview." “Daily workflow and AV release schedule,” step 3 in sections
“Methodological Framework to Generate the Background Traffic to Conclusion” step 4 in “MegaVanderTest testbed
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location” and “Optimized Deployment Schedule” step 5 in “Driver safety procedures and training.” The following
section details step 5 of the road map. Here the creation and calibration of the agent-based simulation framework to
represent actual traffic is presented in detail. This was used to design and evaluate the AV routes and driving schedule
for the MVT experiment, as well as important details like the clustering of AVs, additional queue length, congestion
on arterial roads, and the potential for queues to overflow off-ramps. The sidebar, “Optimized vehicle deployment and
online monitoring system” details the live monitoring system needed to conduct the MVT experiment. This allows us
to know the status of the AVs at all times, keeping all AVs and their drivers accounted for.

Detailed planning covered various aspects, including the design of AV routes, their entry points onto I-24, and
measuring the impact on congestion near traffic lights. We also evaluated the potential impact of 100 AVs driving in
repetitive loops through the testbed, taking into account factors such as queue lengths at on/off ramps, traffic light-
induced congestion, and the clustering of AVs.

To further understand these complex variables, we employed the Simulation of Urban MObility (SUMO) environment
[39]. While agent-based models allow for detailed representations of individual vehicle behavior, the calibration of
these models presents challenges due to the limitations of available data sets. For the MVT simulation framework,
calibration relied on flow data from the Tennessee Department of Transportation (TDOT) and speed data from INRIX [40].
A primary challenge lies in the differing spatiotemporal characteristics between these two data sets. Subsequent sections
will illustrate how the proposed framework addresses this challenge in order to accurately represent traffic dynamics.

FIGURE 3 The I-24 MOTION system [24], [25] comprises 276 cameras mounted on 40 poles ranging from 110 ft to 135 ft above the
freeway along a 4.2 mile stretch of Interstate 24, southeast of Nashville, Tennessee.
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FIGURE 4 Road map showing the planning and execution sequence of project milestones.
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MegaVanderTest testbed location

by Sean T. McQuade and Mostafa Ameli

FIGURE S1 Parking space of 100 AVs during the MegaVan-
derTest experiment.

The Interstate 24 (I-24) MOTION testbed [25], [27] is located
Southeast of Nashville. The locatio was chosen to capture rush
hour traffic dynamics including recurring stop and go driving.
This is also ideal to test the ability to smooth traffic waves in
congestion, and it became the testbed for the MVT experiment.
Historical data was used to determine when the peak conges-
tion would occur on the testbed. The CIRCLES Consortium
decided that these conditions lead to an abundance of stop-
and-go traffic waves, and this gives us the highest chance for
the algorithms to smooth traffic.

To positively impact the traffic flow, there must be suffi-
cient partially autonomous vehicles (AVs) relative to background
traffic on the road [38]. The metric quantifying this is called
the penetration rate, which is defined as the proportion of
AVs of the total traffic (further detailed in section "Penetra-
tion rate estimations"). We estimated the penetration rate we
could achieve with various strategies using an official report
from the Tennessee Department of Transportation (TDOT). This
report, titled “I-24 Ramp Metering Study (From I-840 to I-40)
Rutherford and Davidson Counties Traffic Operations Report
July 2021,” provided counts of vehicles on parts of I-24 and the
on/off ramps. This data served as the basis for estimating the
penetration rate and the total vehicles through traffic lights.

The initial strategy to maximize the penetration rate of
the 100 AVs was to release them to I-24 just before rush
hour and have the vehicles repeatedly drive from exit 66 to
exit 57 westbound(WB), turn around at this exit, and drive
eastbound(EB) returning to exit 66. This route requires that the

AVs would drive through four traffic lights (two at each end of
the route to turn around; the exit 57 traffic lights are labeled
in Figure 5 as black dots 7, and 8). Two key considerations
were: (1) would the extra vehicles overflow the traffic light
and result in a long queue forming on the highway, and (2)
would the AVs cluster at the lights since they would be a large
proportion of the vehicles that make two lefts consecutively
to return to I-24 EB from I-24 WB (likely close to 100%).

It was found that all 100 AVs driving this route would
add approximately 176 control vehicles per hour to each
traffic light (the loop would take approximately 34 minutes).
Comparing this to traffic light 7 from Figure 5 reportedly has
355 vehicles making the left turn onto Haywood lane from
the I-24 off ramp during 6:30-7:30. The team decided that this
would likely produce a large queue and disrupt traffic. To
reduce the adverse impact on traffic light queuing, we decided
to have two separate routes. The two routes would overlap
on the road where the highest penetration is needed, but they
have different end points, distributing the AVs among more
traffic lights. The two routes, called the “orange” and “yellow”
routes (exit 64 to 57, exit 66 to 60 respectively), are shown in
Figure S2. Drivers were given QR codes, and their phones
were plugged into the center console of the AVs to display
the route on screen.

FIGURE S2 Two routes (orange and yellow) and I-24 MO-
TION [24], [25] coverage (green dashed). AVs only occupied
lanes 2, 3, and 4. The QR codes that were provided to drivers
are shown.
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FIGURE 5 Throughput data for July 2021. The pairs of numbers indicate how many vehicles drove through the section of road
indicated by the green line during peak congestion. The number on the left shows the count of vehicles between 6:30am to 7:30am,
and the number on the right shows the count between 7:30am and 8:30am.

3. DYNAMIC AGENT-BASED SIMULATION FRAMEWORK

This section presents the creation and calibration of a high-fidelity microscopic simulation scenario using available data
on the I-24 road network (Figure 2). The goal is to generate a realistic scenario and introduce AVs before the experiment
in order to monitor the traffic condition and verify the experiment scenario by simulation.

3.1. Dynamic traffic simulation

In the realms of both academic inquiry and practical application, dynamic traffic simulators and Dynamic Traffic
Assignment (DTA) models are noteworthy tools for replicating real-world traffic conditions and forecasting the impacts
of novel policies or infrastructure changes. These models are underpinned by a multitude of parameters and decision
variables, which are essential in faithfully capturing the dynamics of actual traffic [44]. Proper calibration of these
variables, informed by real-world data, is vital to align the simulation’s outcomes closely with observed traffic patterns.

In the initial phase of the study, a comprehensive literature review was conducted, focusing on both macroscopic
and microscopic traffic models [45]. These models offer a foundation for developing a comprehensive method to gauge
the effects of integrating AVs into existing traffic networks. Summaries of these models are presented in "Microscopic
Traffic models" and "Macroscopic Traffic models" for ease of reference. However, to secure both the safety of the AVs and
a detailed representation of their interactions with human-driven vehicles, we employ agent-based traffic simulation.
This method accommodates a granular level of detail, encompassing road infrastructure, traffic signals, and even lane-
changing behaviors. Note that the AVs do not change the lane in the highway in the experiment zone described in "AVs
Deployment in MVT Test"

The use of an agent-based approach [46] allows us not only to understand the present state of traffic but also to assess
how the incorporation of new vehicles might exacerbate or alleviate congestion. This article delineates the methodology
we employed to calibrate this sophisticated, simulation-based DTA framework, thereby enhancing the reliability and
applicability of our findings in the domains of transportation planning and policy evaluation.

The required inputs for a microsimulation are a network (presented in Figure 2(b)), dataset origin-destination (OD)
demand, and the demand distribution over time and paths [47]. The traffic data are used to calibrate and validate the
simulation. TDOT provides us with a flow data set (#vehicles/hour, see Figure 5), the Level of Service (LOS) data, and
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Integrated hardware installation overview

by Matt Bunting
Vehicles needed to be outfitted with various components

to enable control and collect data. When outfitting the very
first vehicle, it took one person about 5 hours to perform the
installation task. Scaling this to 100 vehicles results in 20 days
of continuous effort. Certainly increasing personnel can reduce
the installation time, however training takes time and training
too many tasks can lead to missed steps.

Various hardware components arrived on different days
prior to the experiment, meaning hardware installation had
to be dynamically adapted to resources currently available.
One of the final components, a libpanda-supported custom
PCB named the “mattHat,” was obtained prior to the first
experiment [41]. Teams were created to perform different tasks
based on the hardware availability and task complication.
Some tasks required multiple people, like the removal of the
center console due to its weight and position. Training for the
center console removal can be seen in figure S3. Following
the factory service manual also required procedures like dis-
connecting the battery when working around the airbag or
when disconnecting electrical modules to install a custom wire
harness.

FIGURE S3 Training on removing the center console to gain
access to the vehicle’s wire harness so that custom hardware
can be attached. Sean McQuade (center) is demonstrating for
Tianya Zhang (right)

The set of major tasks to install the hardware were as
follows:

» Dashcams - Wires needed to be routed out of view of
the driver, meaning along the A-pillar which contained
a passenger airbag. The battery had to be disconnected
according to the factory service manual.

» Data Recording - This required tapping into the vehicle’s
CAN bus harness near an electrical module hidden
under the center console. Disconnection of the electrical
module also required a battery disconnect.

» ACC wire for control - A particular wire harness con-
nector was located in the driver foot well quarter panel,
requiring removal of the hood latch. A solid core wire
(wire intended for home door bells) was then inserted
into the connector so the other end could attach to the
“mattHat.”

» Generic cable routing - Various cables had to be routed

in a manner that would not cause safety issues, like
obstructing the driver’s view or mechanically compro-
mising the vehicle controls, like the pedals.

» Raspberry Pi Stack - the main hardware component
involved a Raspberry Pi along with HAT (Hardware
Attached on Top) modules that could be pre-assembled
in the headquarters and brought to each vehicle in a
marked tote. This configuration process also included
flashing software.

» Cradlepoint MiFi - These devices were on a generous
loan and needed to be returned in factory-perfect con-
dition, meaning that they were given special careful
handling when being transferred to and out of the
vehicles.

While installation was a time consuming task that took
weeks to accomplish, a secondary daunting task was the
removal process of all hardware to return the vehicles to a
factory state for their return. Fortunately, many of the tasks for
hardware removal followed the same procedure for installa-
tion with the benefit that wires were getting removed instead
of neatly run and that there were no holdups on obtaining
supplies. Teams were already experienced in doing such a task,
however we were motivated to return the vehicles as quickly
as possible.

FIGURE S4 The hardware installed in each vehicle along with
dash cams.

To speed up the hardware removal process even further
along with handling new volunteers, tasks were highly com-
partmentalized. A leader would task each volunteer with a
minimal task to be performed on all vehicles. This created
an assembly-line process where individuals could be become
highly skilled with a basic task rather than needing to remem-
ber every step for the whole installation. This process allowed
the team to succeed in the hardware removal of all vehicles in
only 2 days, and all vehicles were returned shortly after.
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Optimized vehicle deployment and online monitoring system

by Matt Bunting
The hardware solutions for installing custom controllers

involved considerations of scale at all stages, from design to
deployment. From the perspective of system design, hardware
had to be low cost and easy to install. Low cost hardware that
is rapidly installed can cause concerns about functional yield.
Therefore from the perspective of deployment, verification
systems need to check that all hardware is functional before
sending a vehicle into an experiment cycle. Such systems also
need to radio their status to the headquarters for clear, or-
ganized checking. Lastly, given the agile development nature
of a research experiment, automatic software updates were
implemented for bug fixes or changing control parameters in
subsequent experiment days.

Each vehicle was outfitted with off-the-shelf components
including items like mobile internet MiFi hotspots, Raspberry
Pis, Raspberry Pi Battery Backup UPSs, and power adapters
and cables. Custom components included a wire harness that
connects to the vehicle’s infrastructure, and a custom circuit
board for reading sensors and sending control messages. If any
of these individual devices failed or disconnected in a vehicle,
then that vehicle would be unusable for the experiment. This
includes trivial problems like a cigarette lighter power adapter
not being fully inserted; while trivial, it is a time consuming
task to check on all 100 vehicles before each experiment.

FIGURE S5 The Field Headquarters (FHQ) could anticipate
drivers returning by tracking the vehicles. Dr. Jonathan Lee
(left), a designer of the monitoring system of the AVs from
the FHQ, is showing the system to the U.S. Department of
Energy (DOE) representatives, Heather Croteau (center) and
Prasad Gupta (right) from the Vehicle Technologies Office (VTO).

The hardware team devised a plan to validate that all of
these components during the full experiment lifecycle. Each
Raspberry Pi had a script installed named piStatus which
compiled a set of status information and pushed the full status
to a server. piStatus was built to monitor states provided by
libpanda and a middleware support software suite named
can_to_ros to provide live vehicle states [42], [43]. A basic web
client then sorted this information for the ability to rapidly
identify issues. Color coding was also used to identify if a
system had a problem (red), was busy powering up (yellow),
recently becoming offline (orange), was all clear (green), or
offline (grey). In summary, piStatus provided the following
live information:

» Network Status - Connection status and Datarate
» System Power
» Software Version
» Hardware Status
» Hardware Live Checking
» Raspberry Pi MAC to Vehicle Number Mapping

FIGURE S6 During each experiment, headquarters personnel
(Matt Bunting shown here) closely monitored vehicles from
vehicle start through vehicle shutdown to note which vehicles
were ready for deployment or required later maintenance.

The information provided by piStatus was invaluable for
the success of experiment deployment. Figure S6 shows an
operator monitoring piStatus and clearing vehicles for de-
ployment by ensuring all states were green. piStatus would
be continuously monitored throughout the experiment and
vehicle issues would be noted for performing maintenance
before the next experiment. In the total of four experiments
performed, a vehicle operation yield of 100% was achieved.
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Daily workflow and autonomous vehicle release schedule

by Sean T. McQuade

FIGURE S7 From left: Sharon Hornstein, Maria Laura Delle
Monache, Jonathan Sprinkle guiding morning preparations.

To execute the 100 AVs test smoothly in the appropriate
traffic conditions, all CIRCLES personnel arrived at the ex-
periment headquarters on Hickory Hollow PKWY by 5:00am.
Drivers were instructed to arrive onsite by 5:30am. Upon
arrival, drivers were greeted at the door, passed through a
Driver’s License check, then received their name badge with
their name, driver ID, and designated route (orange or yellow).
Next, they received a vest correlated to their route color with
a vest ID sewn into the fabric. The driver ID and vest ID were
recorded in the attendance database. Drivers then headed to a
daily safety briefing before they were released to the waiting
area. Their names would populate a screen showing a queue

so that they would prepare to go to the lobby area so that
they could quickly exit the building and come to the Field
Headquarters (FHQ) parking lot. At the lobby, they would wait
to be released by an attendant to the FHQ parking lot area.
The first drivers headed out to the AVs at 6:00am so that most
vehicles could be on the routes by 7:30am.

Upon arrival in the parking lot, a key corresponding to
the driver’s assigned route would be checked out and given
to the driver. The driver walked through the pedestrian area
to their vehicle. With assistance from the parking lot crew, the
drivers prepared their route to be displayed on the screen in
the center console of the vehicle. A crew member would talk
through the steps to engage the cruise control and remind the
driver of their driving route. The crew member would also
point out emergency contact phone numbers located in the
vehicle.

The controllers had been installed on a Raspberry Pi that
was connected to the CAN bus. To ensure the installed con-
troller would run correctly, parking lot staff had to verify the
Raspberry Pi was turned on after the driver started the vehicle.
If it remained off, we would power cycle the pi to confirm it
was on.

When the driver was prepared to go, they would receive a
final briefing from Professor Dan Work or Professor Jonathan
Sprinkle. This was to remind drivers of their instructions
and safety protocol. They ended by asking the driver if they
felt comfortable and if they had any questions. The drivers
were then told to follow the “flow marshall’s” instructions.
Flow marshalls were a parking lot crew of eight members
responsible for guiding the vehicle out of the parking lot safely
with lighted batons.

the cycle time of signals. LOS data provide us with data regarding the level of flow for the targeted speed considering
the characteristics of the road, for example, road type, standard road width, and number of lanes [48]. In addition, the
speed data is provided by INRIX. Both data sets represent the morning peak hour (6:30am - 8:30am). The heterogeneity
in data aggregation and temporal resolution presents a significant challenge in this study. Specifically, TDOT data,
sourced from loop detectors, furnishes average hourly flow metrics for an entire year and corresponds to each edge
of the network graph. On the other hand, INRIX data, collected from Probe vehicles, provides average speed readings
on a minute-by-minute basis for individual days and is associated with road segments, each typically half a mile in
length. Consequently, each network edge can be seen as a composite of multiple road segments. For further information
regarding the Probe vehicle, collecting traffic data, and traffic monitoring, please refer to [49], [50], [51], [45].

To reconcile these divergent spatiotemporal characteristics and decision variables across the two data sets, we employ
bi-level programming to formulate the calibration problem, wherein each level targets a specific variable for calibration.
In this article, we initially discuss the construction of the network and the development of the simulation framework.
Subsequently, we review the state-of-the-art on DTA calibration and introduce the proposed methodology for calibrating
these disparate data sets to create a simulation-based framework that allows us to rigorously test various scenarios for
the real-world experiment.
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Microscopic traffic models

by Mostafa Ameli and Benedetto Piccoli
Microscopic traffic models aim to represent the movement

of individual vehicles. These models use multiple coupled
Ordinary Differential Equations (ODEs) (one per vehicle) to
determine each vehicle’s position, speed, and acceleration.
These ODEs compare the position or speed of a given vehicle
with the one just in front, its Leader, to get the acceleration
of the first vehicle [52]. For instance, the difference in position
is often referred to as a space gap. Multi-class models include
different types of vehicles (for example cars and trucks), while
multi-lane requires modeling of lane-changing maneuvers (see
[53]).

If we have N vehicles on a single lane, which we order from
first to last (vehicles cannot overtake each other in this model
so they always have the same rank). The idea is to determine
the speed of every vehicle i based on the leading vehicle i− 1’s
speed characteristics. Therefore, each vehicle tries to match its
speed with the leading vehicle’s speed:

ẋi = vi

v̇i = βi
vi−1 − vi

(xi−1 − xi)2 ,
(S1)

where xi is the position and ẋi the speed of vehicle i. The
leader vehicle of the platoon is indexed 1 and usually follows
the dynamics:

ẋ1 = Vmax

v̇1 = 0.
(S2)

In the Bando model [54], each vehicle tries to match an optimal
speed determined by its distance to the vehicle immediately

in front:

ẋi = vi

v̇i = αi(vi − V(xi − xi−1)) ,
(S3)

where V(∆x) is the optimal velocity (which is positive) asso-
ciated with the space gap ∆x, for instance V(∆x) = tanh(∆x).
We can combine these two models to get the Bando-Follow-
The-Leader [55], [56]:

ẋi = vi

v̇i = αi(vi − V(xi − xi−1)) + βi
vi−1 − vi

(xi−1 − xi)2 .
(S4)

Here the parameters αi and βi are positive numbers that may
depend on the type of vehicle i (truck, car, ...). Finally, the
Intelligent Driver Model [57], [58] is given by:

ẋi = vi

v̇i = a × (1 − (
vi

vm
)δ − (

s∗(vi , vi − vi−1)

xi−1−xi−li

2

) ,
(S5)

where li is the length of vehicle i, s∗(v, ∆v) = sm + v×T+ vδv√
2ab

while a, b, T, sm, vm, δ are parameters of the model. Each driver
modulates their speed according to the space gap, and the
difference in speeds with the vehicle in front.

Furthermore, to take into account the presence of control
vehicles such as in the MegaVanderTest (MVT) experiment,
one could divide the vehicles into two categories (1) vehicles
subject to the previous system, and (2) control vehicles whose
speed would be prescribed by an algorithm and depend on the
state of traffic (position, time, and the state of other vehicles)
[12].

3.2. Network creation

Based on the purpose of this study, within the traffic simulation options, only dynamic microsimulations can help
understand the impact of adding AVs on road traffic at the scale of the I-24 network. Within the available traffic
microsimulator, we use SUMO as an open-source simulator motivated by previous projects [59]. In SUMO simulation,
each driver (agent) has multiple decisions to make, for example, route, lane, and departure time choice.

The road network can be represented as a graph consisting of constituent road sections (links or edges) connected
through signalized or unsignalized intersections (nodes). To create the I-24 network in SUMO, the mapping data was
imported from the OpenStreetMap [60]. The road network consists of 154 nodes and 452 links. The network’s topology
and physical characteristics are verified with multiple mapping data, including Google Maps, Bing Maps, and Apple
Maps. The verification carried out on the I-24 SUMO network presented in Figure 2(b) results in various modifications,
such as modifying edge lengths and the number of lanes. Figure 2(c) presents four intersections of the I-24 network
after the verification using mapping data. In controlled junctions, 16 traffic signals were also modeled based on TDOT
data that determined the cycle time of signals.

3.3. Supply and HDV driving model calibration

Determining each vehicle’s departure time and the route is equivalent to assigning the OD demand to dynamic routes,
which results from DTA models [61]. Once the departure time and route of each vehicle are known, the simulator
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FIGURE 6 Bi-level DTA calibration framework: Step 1 focuses on calibrating flow by minimizing the Mean Squared Error (MSE)
between actual and reference link flows, resulting in the Origin-Destination (OD) matrix and the count of agents traversing specific
OD pairs. Transitioning to Step 2, the emphasis is on determining optimal agent departure times for speed calibration, employing
a modified algorithm with a preliminary assumption of a uniform distribution for these times. Step 3 initiates a simulation, with a
20-minute warm-up to integrate agents smoothly, during which the average speeds of road segments are measured and compared to
Probe vehicle data. Step 4 then adjusts the objective function for speed based on these simulation results. Step 5 evaluates algorithmic
convergence using set criteria; if not met, the process revisits Step 2. Step 6 assesses overall solution quality, and if any link surpasses
a 10% absolute error, it proceeds to Step 7. This final step addresses temporal data mismatches by adjusting values with reference
to the network’s Level of Service (LOS). If resultant errors are deemed minor and speed calibration meets the threshold, the model is
considered converged; otherwise, the cycle returns to Step 1 for further refinement.

computes the dynamic road section traffic loads in the network [62]. One of the crucial steps to achieving realistic results
from simulation tools is calibration. It aims to determine the DTA model’s input such that the output represents traffic
scenarios with a reliable level of accuracy [63], [64]. The inputs can be divided into two groups: demand and supply.
The supply parameters define the environment of the simulation and the field constraints, for example, traffic network
topology and capacity, traffic signals, and speed limitation. In contrast, the demand inputs represent the travelers and
their behavior in the system, for example, time-dependent origin-destination matrix, routing, and lane changing. Based
on the available data on link flow and road segment speed, we formulate a new bi-level optimization framework to
iterate between two levels to calibrate the simulation scenario with respect to both data sets while considering the
correlation between speed and flow results from the agents’ route and departure time. Regarding the driving model,
we deploy the Intelligent Driver Model (IDM) in this study [57]. The calibration of IDM parameters is carried out based on
the characteristics of the test case, for example, driving laws and culture in the location of the test case. We address this
issue by conducting multiple sensitivity analyses on the parameters of the simulator driving model, including (i) speed
limit of each edge, (ii) speed factor that lets vehicles exceed the speed limit, (iii) the eagerness to perform strategic lane
changing, (iv) the eagerness to perform lane changing to gain speed, (v) the willingness to perform cooperative lane
changing, (vi) the eagerness for following the obligation to keep right, (vii) the probability for violating rules against
overtaking on the right, (viii) “lookahead” time in seconds for anticipating slow down, and (ix) Factor for cooperative
speed adjustments. In 2021, a preliminary experiment with 10 vehicles was conducted by the CIRCLES Consortium to
evaluate the testbed of the MVT, and multiple trajectories were collected, which led us to conduct a sensitivity analysis
on the mentioned parameters and calibrate the HDVs in simulation.
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4. METHODOLOGICAL FRAMEWORK TO GENERATE THE
BACKGROUND TRAFFIC

The existing literature on traffic model calibration often focuses on a singular data type such as flow, speed, or travel
time, with many studies employing a weighted sum objective function to handle multiple variables (see for example
[45], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79]). Some have utilized the Pareto front
method to explore potential solutions, although identifying the optimal solution remains a challenge [80], [81], [82].
Other research has attempted simultaneous calibration for flow and speed, but these are sequential and lack iterative
feedback, making optimizations on these systems susceptible to getting stuck in local optima [83], [84], [85], [86]. These
studies commonly use data from a single source and pre-process it to obtain identical spatiotemporal characteristics,
thereby not fully capturing the complexity of real-world traffic networks.

This study aims to advance the existing methodology for traffic calibration by proposing a bi-level mathematical
model for agent-based DTA simulation to calibrate both speed and flow based on collected data with different
spatiotemporal characteristics. This holistic approach addresses the inherent disparities between data sets and allows
for a more nuanced calibration. The methodology employs a feedback loop that facilitates iterative refinement of the
calibration process, thereby enhancing the model’s accuracy and comprehensiveness.

Figure 6 presents the bi-level calibration framework proposed to calibrate the simulation of background traffic. The
process starts by importing the link flow data and building the network graph. The reference link flow distribution in
iteration m of the optimization is denoted by X̂m, representing the number of vehicles passing through each link. For
m = 0 it is the set of time-dependent link flows collected by the TDOT loop detectors. x̂k

i represents the reference flow
of link i (i ∈ E, set of all links) at time interval k, x̂k

i ∈ X̂m. K is the set of time intervals for the flow data, k ∈ K. Note
that for the speed data, we consider the same time horizon to address the morning peak. However, the set of time
intervals for speed data is different and denoted by R and indexed by r, (r ∈ R). The reason is that the duration of time
intervals in R and K is given by the data set and is not equal for both sets. In this study, the flow data is collected every
hour, and speed data is collected every minute. Thus, the duration of r is less than k. In the first (upper) level, the flow
calibration problem is formulated as a Mixed Integer Quadratic Programming (MIQP) model and solved to determine the
path flow distribution, Π. Π determines the number of agents who start their trip on each path at each time interval.
The flow of link i at time k resulting from Π is denoted by xk

i .
The objective function of the upper level (Step 1 in Figure 6) is to minimize the Mean Squared Error (MSE) between

xk
i and x̂k

i . The output of this step is the OD matrix and the number of agents traveling on paths between each OD
pair, πOD, f orallπOD ∈ Π. We fixed the path flow distribution for the second (lower) level, wherein we determined the
departure time distribution of agents to calibrate the speed variable. To find the optimal departure time, we propose
a modified version of the simultaneous perturbation stochastic approximation (SPSA) algorithm inspired from [87]. For the
initial solution in Step 2, we consider the uniform distribution for the departure times. In every iteration of the SPSA
algorithm, we run a simulation (Step 3) with the demand profile from the previous step. Note that 20-minute simulation
warm-up is considered at the beginning of the simulation to insert the agents with their optimal departure times. In
Step 3, We also measure sr

l , the average speed of road segment l (l ∈ L, set of all road segments in INRIX data) at time
intervals r and compare it to the corresponding value ŝr

l from data set Ŝ collected by the Probe vehicles. Then, in step
4, the objective function (MSE of speed variable) of the lower level is updated based on the simulation results.

The next step is checking the convergence conditions of the SPSA algorithm based on the maximum number of
iterations for the lower level and comparing the solution quality (MSE of the speed values) with a threshold. If the
convergence is not achieved, we go to Step 2. Otherwise, we perform the second level solution quality check in Step 6
by considering the flow and speed error distribution and the maximum number of iterations for the bi-level framework.
If there is any link with more than 10% absolute error, we go to the next step; otherwise, we finish the process. In Step
7, we aim to address the temporal correlations between two data sets. We modify the values in X̂ with respect to the
level of service (LOS) of the targeted network. LOS gives us a level of flow for the targeted speed considering the
characteristics of the road [48]. For example, if the speed measured by simulation is greater than the data, we increase
the value of the target flow with a step size function g(·). As a result, the density will increase at time k, and then we
can expect the speed to reduce at r. This modification results in additional errors for the upper level as the targeted flow
value is modified (X̂). Therefore, in Step 7, we check the relative error of flow and speed in addition to the convergence
of the model by the maximum number of upper-level iterations. In other words, if the modification of the flow is minor
and the speed error is acceptable, we converge; otherwise, we go to Step 1 to update the path flow distribution.

To clarify the optimization model behind this framework, the bi-level mathematical model used in Figure 6 is as
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follows:

min
πj

f (xk
i , x̂i

k) =
1
|E|∑∀k

∑
∀i
(xk

i − x̂i
k)2 (6)

s.t.

xk
i = ∑

∀j
λijπ

k
j , ∀i, k, j; (7)

xk
i ≥ 0, x̂k

i ∈ X̂m, πk
j ≥ 0, πk

j ∈ Πm; ∀i, k, j. (8)

min
Ik
j

f (Sk
l , Ŝl

k
) =

1
|L| ∑

∀k
∑
∀r

∑
∀l

(Sk
l − Ŝl

k
)2 (9)

s.t.

Sk
l = h(Πm, [Ik

j , ∀j]), ∀l, k; (10)

∑
∀k

∑
∀r

Ik
j = 1, ∀j; (11)

Ik
j ∈ [0, 1], ∀j, k. (12)

Step 7:

X̂m =

{
TDOT data, First iteration;

Q(LOS, g(·)), otherwise.
(13)

In equation (6), x̂k
i serves as an indicator for the benchmark flow on link i during time slice k. This calibration

problem can be cast into an MIQP, which is amenable to solutions by standard optimization solvers. For agent-based
simulation calibration, the path flow distribution needs to be specified. The relationship between individual edge flow
and overall path flow is captured by constraint (7), which introduces a binary variable λij to indicate if link i is a part
of path j. Recall that the first stage of this approach yields an OD matrix along with the count of agents traversing each
path between every OD pair. The lower level of the problem then focuses on time-dependent inflow rates to determine
the departure times for these agents.

The lower-level calibration, formalized through (9), targets the minimization of discrepancies between observed and
simulated speed data to determine the inflow share of each path, Ir

j for time interval r respect to constraint (11). Note that
this decision variable is defined over the whole period of interest to optimize the departure time distribution of all agents
and address the correlation between time intervals k ∈ K. Equation (10) utilizes the function h(·) to extract simulated
speed measures, taking both path flow distribution and inflow rates as inputs. This function can essentially be treated as
a black box, allowing for the use of any trip-based simulation. Note that equations (8) and (12) are feasibility constraints
for decision variables in the first and second levels, respectively. Moreover, the feedback mechanism described by (13)
uses initial average flow data from TDOT for its first iteration, subsequently updating these values (X̂m) through the
Q(·) function based on the LOS tables in the second level. The first iteration of the second level (m = 1) uses the
exact value in the LOS table. Afterward, for the next iterations, if the same edge is selected, Q revises the flow using a
gradient method with adaptive step size [88]. A technical note is introduced to prevent stagnation in specific edge flow
modifications, limiting each edge to be modified for a maximum of 5 consecutive times. Once this threshold is reached,
the one before the last edge with the highest error is selected as the objective edge for subsequent modifications. This
provides a dynamic way to adapt the target flow values, enhancing the calibration process. Note that after launching
the upper level, the iteration for SPSA in the lower level is reset to m = 0. The result of the proposed methodology is
the path flow distribution to represent the background traffic. In other words, A set of agents is determined, including
their departure time and path, which a traffic simulator can use. Therefore, with this solution, we can add the control
vehicles with predefined paths and measure their impact on the traffic congestion of the I-24 road network. This enables
us to evaluate multiple driving routes for AVs calibrated to the INRIX data.

4.1. Validation of the proposed model: Numerical results

This section outlines the findings from flow and speed calibration efforts. We used the Scipy optimization solver [89]
to solve the MIQP model at the initial level. Figure 6 displays a histogram of the objective function errors for flow
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calibration (6) based on five runs of the optimizer. The data indicates consistent performance by the optimization
solver, which aligns with expectations for an MIQP-formulated problem.

FIGURE 6 Error histogram of flow calibration: The distribution of links based on their squared error values for link flow, captured
through multiple curves. Each curve represents a distinct execution of the initial optimization level, varying by target value and initial
solution. The consistency and the small value of error for large number of links across executions underscores the effectiveness of the
MIQP solution method employed in our proposed framework.

We offer an in-depth analysis of the outcomes after running the bi-level code on a single scenario. Figure 7 presents
average speed patterns across time and space on the road network. The y-axis labels INRIX segments by exit names on
the I-24 highway, and the x-axis covers the time range from 6:30 a.m. to 8:30 a.m. The colors indicate speeds (shown
on the color bar in MPH). The heat maps show the changes in traffic speeds on various segments of the I-24 highway
over time.

Figure 7(a) depicts INRIX data, featuring a congestion beginning at Exit 59 around 7:00 a.m. Figure 7(b), on the
other hand, presents simulation outcomes obtained only through flow calibration without using the bi-level method.
The simulation indicates an absence of peak-hour congestion, validating the choice to implement the bi-level approach
to adjust the speed targets and vehicle throughput.

Figure 7(c) shows the outcome when using the bi-level approach without feedback. While the scenario attempts to
simulate congestion, it does not exactly match the INRIX data patterns. Despite this, the flow is insufficient to induce
congestion at Exit 59. Figure 7(d) presents the effects of incorporating the feedback function with the bi-level method,
which resembles the real-world data, including the emergence of stop-and-go traffic patterns.

To verify the approach, it was tested on two other INRIX data scenarios. Figure 8 illustrates the speed patterns
resulting from these tests. The figures show that the simulated outcomes are similar to the real-world stop-and-go
patterns, although the simulation shows smoother speed changes compared to the real data. In both mentioned scenarios,
we measured the Root Mean Square Error (RMSN) following the bi-level calibration with and without feedback function.
For the first scenario (Figure 7), the RSMN for the sequential framework is 0.298, While for the proposed model, RMSN
= 0.134. We also observe a noticeable improvement in using the feedback function for Scenario 2: 0.532 and 0.191 for
the sequential and the proposed framework, respectively.

For evaluating the SPSA algorithms at the lower level, we assessed the solution quality across the stop-and-go waves
scenario. Figure 9 presents error histograms for speed. The x-axis displays the total speed deviation in miles per hour
(mph), aggregated from all INRIX segments and across all time intervals. The y-axis shows the frequency of instances
corresponding to each level of deviation, essentially representing the error distribution.

Figure 9(a) illustrates the outcomes prior to applying the feedback mechanism, whereas Figure 9(b) presents the
results post-feedback integration. Importantly, the red dash line marks the point where fewer errors occur in 70% of
instances, and the blue dash line indicates where 90% of instances have reduced errors. One notable finding is the
noticeable shift in the location of these dash lines, especially the one marking the 90% threshold when the feedback
function is activated during calibration. This emphasizes the critical role of the feedback mechanism in enhancing
calibration accuracy, particularly in complex and highly congested scenarios.

The importance of these results lies in their application to the background traffic simulation for the MVT field
experiment. By carefully analyzing the observed congestion patterns, we have aimed to mitigate the addition of new
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(a) INRIX data. (b) Simulation results with flow calibrator.

(c) Simulation results with speed calibrator. (d) Simulation results with flow and speed bi-level calibrator.

FIGURE 7 Spatiotemporal average speed patterns on I-24: Each heatmap displays the speed patterns over various INRIX segments,
identified by exit names along I-24, during morning peak-hours (6:30 - 8:30 AM). The y-axis position along the road while the x-axis
is marked with time intervals, offering a detailed view of the temporal evolution of traffic speeds. The colored cells indicate average
speed values which compare real versus simulated traffic conditions.

congestion sources in this study, thereby maintaining a realistic and representative experimental setup. For example,
across all scenarios, we consistently observed congestion occurring around Exit 59, which could be due to multiple
factors such as lane changes, exits, and potentially other disruptions like accidents. Despite the limitations, these findings
guided us in calibrating various scenarios to capture the background traffic, aiding in the design and pre-assessment
of the MVT experiment.

This simulation tool is used to evaluate the impact of adding AVs. We test various routes and departure time
distribution for AVs and investigate the potential overflow in different parts of the road network. Figure 10 presents
a snapshot of the microsimulation after adding AVs. The gray vehicles represent the background traffic, and AVs are
colored based on their route. AVs are assigned to their planned lane and do not change except to use the off-ramps
determined by their route. Note that we do not apply any restriction on the driving model and lane-changing behavior
of background traffic. We calculate multiple macroscopic network measures (for example, network mean speed, density,
and average travel time) and microscopic performance indicators (for example, average of space gaps, variance of space
gaps, minimum of space gaps, and maximum of space gaps.) to compare scenarios with and without AVs in order to
ensure that the final plan for adding all 100 AVs (even if they drive as HDVs) does not impact the traffic condition
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(a) INRIX data. (b) Simulation results.

FIGURE 8 I-24 real and simulated Speed patterns: Example of stop-and-go waves.

(a) Sequential calibration. (b) Bi-level calibration.

FIGURE 9 Speed error histogram for the example of Stop-and-Go Waves scenario: The distribution of road segments based on their
squared error values for speed, illustrating the precision of the optimal solution provided by our framework. Each bar in the histogram
corresponds to the total count of segments (y-axis) with specific error values (x-axis), offering insights into the accuracy and reliability
of the proposed model in complex traffic conditions.

significantly. The final plan provides us with an estimation of the AV penetration rate during the MVT experiment.
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FIGURE 10 Snapshot of the I-24 simulation with AVs (colored based on their route) and the background traffic (gray vehicles).

5. PENETRATION RATE ESTIMATIONS

Two routes (orange and yellow presented in the MVT testbed location") are determined based on the evaluation of the
background traffic. To find the proportion of AVs to bulk traffic that results from driving the chosen routes during AM
peak traffic (heading westbound), we calculated how many times a control vehicle was expected to travel its entire
route in one hour based on the simulation results. If this was 42 minutes, as we initially estimated for the orange route,
then we derive that a control vehicle to make 1.43 westbound drives per hour. We estimate that a control vehicle doing
a 42 minute loop of consecutive drives would contribute 1.43 vehicles westbound per hour. We termed this hourly
contribution, “effective vehicles per hour.” The background traffic was scaled by 3

4 since we were only driving in lanes
2, 3, and 4 (not the far left HOV lane). Lanes are numbered according to TDOT; they are shown in Figure S2 in the
sidebar “MegaVanderTest testbed location.”

Using a theoretical release schedule (Figure 11) allowed us to consider how many reserve drivers we would need for
each route. This schedule assumes the AVs exit the Field Headquarters (FHQ) at regular intervals, alternating between
the orange route and the yellow route. The optimized simulation allowed us to compute expected times for a complete
loop and leading to this ideal schedule. All drivers keep perfect ordering from when they leave to when they return.
This was used to estimate the number of extra drivers needed to keep all vehicles on the road during breaks. Note that
after a break, the drivers who return from the break get into an AV with the same color route, but not the same AV,
and not necessarily the same lane assignment. For this reason, we indicated the lane inside each AV. Drivers going on
their break sufficiently late in the order would not necessarily get back into an AV but would remain in the FHQ in
case an AV of their color route returned.

FIGURE 11 An planned schedule of the first 100 drivers and their breaks. The lane assignments on the right show the lanes of the
first AVs driven by the driver. The orange/yellow segments indicate orange/yellow route AVs driving Westbound, the gray segments
indicate them driving eastbound back to start another loop, and the blue segments indicate drivers returning to the lot for a break.
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Macroscopic traffic models

by Dan Timsit, Mostafa Ameli, and Benedetto Piccoli
The first macroscopic traffic model was proposed in the 1950s

and known as the Lighthill-Whitham-Richards (LWR) model
[90], [91]:

ρt + (ρv)x = 0,

with v = V(ρ),
(S14)

where ρ is the car density, v the average speed, and the flux
function Q = Q(ρ) = ρV(ρ) gives the number of vehicles
passing by second and by meter. The equation models the
conservation of the number of cars and was inspired by fluid
dynamics [92].
Data show that in low-density traffic there is a one-to-one
correspondence between density and flux, which is lost in
the congested regime. This leads to other models where the
flux function depends on an additional variable w, such as
Aw–Rascle–Zhang model [93], [94], [95], [96], [97], Phase-
Transition models [98], [99], and General Second Order Models
[100], [101], [102]. These models take the form of a system of
two Partial Differential Equations (PDEs):

ρt + (ρv)x = 0,

wt + vwx = 0,

with v = V(ρ, w).

(S15)

One can write the system (S15) in conservative form using the
variable y = ρ · w:

ρt + (ρv)x = 0,

yt + (vy)x = 0,

with v = V(ρ,
y
ρ
).

(S16)

The main modeling ingredient is the velocity function V,
which for the ARZ model was chosen as:

V(ρ, w) = Veq(ρ) +
(
w − Veq(0)

)
, for ρ ∈ [0, ρmax]. (S17)

The GSOM model uses a general V with the assumptions that
w → Q(ρ, w) is injective, thus the relation between the density
and the flux determines uniquely w. The model proposed
in [100], called collapsed Generalized ARZ, discards this last
hypothesis and assumes that in free-flow regime (ρ < ρc, for
some ρc > 0) the fundamental diagram does not depend on
w. Thus the fundamental diagram takes the form:

ρt + (ρv)x = 0,
yt + (yv)x = 0,

v = V(ρ, y/ρ) =

{
Vf(ρ), if 0 ≤ ρ ≤ ρf,

Vc(ρ, y/ρ), if ρf < ρ ≤ ρmax.
(S18)

In each case, one assumes the families of fluxes to satisfy
Q(0, w) = Q(ρmax, w) = 0. This corresponds to either no

vehicles or vehicles not moving at maximal density.
Solutions to conservation laws may exhibit traveling discon-
tinuities in finite time (even for smooth initial data), called
shocks. The latter correspond to queues in real traffic, due to
traffic lights or network features. Solutions to general Cauchy
problems are constructed based on solutions to the so-called
Riemann problems, which for the LWR model read:

ρt + (ρv)x = 0, (S19)

with v = V(ρ, w), (S20)

ρ(x, 0) =

ρl for x < 0,

ρr for x > 0.
(S21)

This can be solved explicitly with rarefaction waves if ρl < ρr

and with shock waves if ρl > ρr . The case of systems is
move involved and we refer the reader to [103] and references
therein.
To deal with the case of road networks, the theory of conser-
vation laws has been extended to graphs, see [104]. For a well-
defined theory, one usually supplies a system of conservation
laws with dynamics rules at junctions:
(A) The traffic flow is distributed from incoming roads to the
outgoing roads linearly according to a matrix A.
(B) The flow is maximized while respecting rule (A).
Rules (A) and (B) define a linear programming problem at
each junction, thus allowing for efficient solutions and simu-
lations on road networks. Other researchers proposed more
complicated rules. The main idea is to identify physically-
motivated rules that allow to solve uniquely Riemann prob-
lems at junctions, which are defined by initial data constant
on each road. Then solutions can be defined on the whole
network by combining solutions to Riemann problems at
junctions and along the roads. We refer the reader to [105]
for a comprehensive discussion.
While macroscopic models have been used to establish large-
scale traffic features, such as average speed and density, they
cannot be used to investigate micro-scale features, such as the
number of vehicles in a queue. There are multiple studies in
the literature to discretize the macroscopic models based on
statistical methods (see, for example, [106], [107], [108]). How-
ever, most of the microscopic features, such as the interaction
of vehicles and detailed intersection representation, cannot be
captured with such methodologies. On the other side, macro-
scopic models are particularly useful for data fitting [109],
representing waves [110], and solving optimization problems
[111], [112].
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Driver safety procedures and training

by Sean McQuade and Riley Wagner

FIGURE S8 A training session with orange route drivers. The
session is presented by Professor Dan Work.

The AV drivers were trained to activate the Adaptive Cruise
Control (ACC) system in their vehicles after they safely
entered their assigned lane. They were taught their routes,
between which exits they should repeatedly loop, and which
exit to use to return to Field Headquarters (FHQ). Professor
Work came up with the simple acronym SNAP, which stands
for Safety (a successful test is one where no one gets injured),
Navigation (drivers should drive on their assigned routes),
ACC (drivers should activate cruise control when safe to do so
on the Westbound direction), Position (drivers should remain
in the assigned lane). The order of SNAP indicates the priority
of the four instructions.

Driver breaks were necessary so that drivers would only
drive during part of the experiment and then rest while
another driver substituted for them. This procedure ensured
that drivers were alert and safe during the entire experiment.
A specific safe traffic flow through the FHQ parking lot was
designed to account for vehicles returning to the lot and
pedestrians walking to/from AVs.

FIGURE S9 The key distribution table preparing to hand out
keys and record which drivers received them. Mostafa Ameli

(left) Sharon Hornstein (center) and George Gunter (right) are
prepared to manage hundreds of key distributions as vehicles
were rotating in and out of the parking lot to switch drivers.

The drivers were trained to follow the instructions of
designated persons guiding vehicles through the parking lot.
This was necessary to maximize the safety of drivers walking
to vehicles and parking lot crew.

FIGURE S10 Flow of AVs through the FHQ parking lot. Top:
the planned positions of vehicles and crew designed to allow
drivers of the orange route and yellow route to return safely
and substitute for each other. Bottom: a photo of the lot with
orange route vehicles on the left and yellow on the right.

Once a driver returned from the parking lot and exited
their vehicle, they turned in their vehicle key to a desk set up
in the lot, then headed to the break area inside the FHQ to rest.
Another available driver would be invited to the downstairs
lobby in anticipation of the returning vehicles. They would
be instructed to come to the lot in anticipation of a vehicle
returning. Communication between the parking lot team, the
lobby attendant, and upstairs driver attendants using ham
radios helped to minimize the amount of time a vehicle was
waiting for a replacement driver.

Driver training culminated in a test drive lap of the partic-
ular route that the driver trained for to familiarize themselves
with the vehicles, routes, and exits. If a driver had any
problems during training or the test, they were instructed to
exit the highway to a safe location and call a phone number
if they could not return safely to FHQ. We set up this number
to receive several calls simultaneously should the need arise.
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FIGURE 12 In preparation for the experiment, estimations were made on sections of the highway with camera coverage to make sure
there are a sufficient number of control vehicles compared to the background traffic conditions. We calculate the proportion during
the two peak hours 6:30am - 8:30am. The left (right) number shows the estimation for the first (second) hour.

The penetration rates described “temporal” estimates as opposed to penetration based on a given road segment.
When a spatial estimate through various simulation scenarios for penetration rate was more suitable, we estimated the
number of other vehicles that would be between two AVs assuming uniformly spaced AVs.

6. CONCLUSION

This article is a tutorial encompassing the intricacies of planning, designing, and executing large-scale field experiments
in live traffic control, focusing on the MegaVanderTest conducted by the CIRCLES Consortium. Stemming from
preliminary research highlighting the potential of AVs to mitigate recursive waves in simpler settings, MVT presents
a complex achievement by applying these insights to real-world, high-density traffic networks. The MVT experiment,
as the largest live traffic control experiment at the time, was conducted southeast of Nashville, TN, USA, and involved
100 vehicles executing various control algorithms to alleviate stop-and-go traffic waves.

The article delves into the comprehensive three-year planning process leading up to MVT. This rigorous preparation
included choosing optimal dates and times for the experiment, meticulous route planning, hardware installations, as
well as the development and simulation of control algorithms. These elements were planned to ensure the effective
deployment and assessment of AVs within a bustling traffic environment. A cornerstone of this work is the innovative
bi-level calibration framework with an integrated feedback function. This method sets a new benchmark by effectively
handling disparate data sets with varied spatiotemporal characteristics, thereby allowing for a more accurate simulation
of real-world traffic conditions to evaluate the impact of control vehicles. We validated this calibration approach using
data from a six-mile stretch of Nashville’s I-24 highway, underscoring its efficacy in bridging the gap between simulated
and real-world traffic data. Such precision in calibration proved crucial for the successful design and execution of the
MVT experiment.

Although these findings are promising, the article acknowledges existing limitations, particularly in the realm of input
data quality. The uncertainties around the underlying reasons for specific congestion patterns remain a challenge. Future
work aims to enhance the calibration model by incorporating higher-quality, lane-specific data from I-24 MOTION [25],
[24]. Such data will offer a more comprehensive understanding of traffic conditions, thus paving the way for even more
accurate and realistic simulations.
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