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We suggest new modification (we call it a noise reduction procedure) for Steinhardt parameters which are often used
for detecting crystalline structures in computer simulation of solids and soft matter systems. We have also developed
a new methodology how to reconstruct "ideal" lattice structure in the whole simulation box that would be most close
to a real noisy crystalline symmetry, when it is defined locally and then averaged over the whole box. For this second
procedure, which we call lattice reconstruction procedure, we have developed an algorithm for finding the lattice vectors
from the values of Steinhardt parameters obtained after the noise reduction procedure. We apply noise to the classical
crystalline structures (sc, bcc, fcc, hcp), and use both procedures to detect the crystalline structures in these classical
but noisy systems. We demonstrate advantages of our procedures in comparison with existing methods and discuss their
applicability limits.
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I. Introduction

The model of hard spheres (HS) is widely used in theory and
simulations of colloidal systems and it describes rather well
experimental results on crystallization in colloidal systems1.
The model of tangent hard spheres (THS) is very popular for
polymer systems. It describes flexible polymers if tangent hard
spheres are freely jointed and semiflexible polymers if some
bending potential on the angles between rigid bonds adjacent
along the chain is applied. Phase transitions in such systems,
in particular crystallization and liquid crystalline transition, are
entropy driven. The Monte Carlo method is very convenient
for computer simulation of such models and has been widely
used for more than three decades2–10.

A very important (if not the most important) question in the
studies of crystallization phenomena in soft matter systems is
how to distinguish structural motifs, in particular ordered sym-
metries/morphologies, e.g., crystalline and liquid crystalline
ones, on local and global scales in conformations which are
usually quite noisy and often inhomogeneous, i.e., the local
particle density and values of order parameters can fluctuate
strongly, especially in the vicinity of phase transitions.

Usually, the radial distribution function (RDF) and static
structure factor are calculated first. For example, for freely
jointed hard-sphere chains one can see more pronounced max-
ima in the solid phase in comparison to the liquid one11, but
one cannot reliably distinguish different crystalline symme-
tries by data on RDF. Another parameters and methods of anal-
ysis for crystals are Voronoi tesselation12,13, common neighbor
analysis14–17, nematic order parameter, chain segments local
alignment parameter18,19.

Bond orientational order parameters or Steinhardt
parameters20 have been suggested long ago to distin-
guish crystals with different symmetries. However, these
parameters work well only for ideal crystals or for crystals
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with very weak fluctuations in the particle positions, but
they need modifications for typical cases in real soft matter
systems, and such modifications have been suggested21–24.

The characteristic crystallographic element (CCE) norm as
a powerful descriptor of local structure in atomistic and par-
ticulate systems was introduced in Ref. 25. The CCE-norm is
sensitive both to radial and orientational deviations from per-
fect local order. Recently, the CCE-norm has been revised and
extended for reliable identification of local structure in 2d and
3d atomic systems26. The local and global order in dense pack-
ings of semi-flexible chains consisting of tangent hard spheres
has been studied in Ref. 27. It was analyzed how the pack-
ing density and chain stiffness influence the self-organization
of chains at the local and global levels. The local order corre-
sponds to crystallinity, and it was quantified by the CCE-norm
descriptor28, while the global order was computed through the
scalar orientational order parameter27.

Recently, we have started investigation of surface phenom-
ena in crystallization of semiflexible tangent hard spheres’
chains by means of flat histogram Monte Carlo simulations29.
We use the same model for which crystallization in the bulk
has been studied before30, but consider melts at different sub-
strates modelled by either purely repulsive walls or by attract-
ing walls with various depth of well potential. In our simu-
lations we use all above mentioned parameters, except CCE-
norm. However, we have found that all these parameters, in-
cluding modifications of Steinhardt parameters, are still not
entirely accurate for the systems which we get in our simula-
tions. Therefore, we have suggested another new modification
for Steinhardt parameters and called it a noise reduction pro-
cedure. We have also developed a novel methodology how
to reconstruct "ideal" lattice structure in the whole simulation
box that would be most close to a real local noisy crystalline
symmetry when averaged over the whole box. For this sec-
ond procedure, which we call lattice reconstruction procedure,
we have developed an algorithm for finding the lattice vec-
tors from the values of Steinhardt parameters obtained after
the noise reduction procedure. We apply noise to the classi-
cal crystalline structures (sc, bcc, fcc, hcp), and afterwards use

ar
X

iv
:2

40
4.

15
53

9v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
3 

A
pr

 2
02

4

mailto:evgeniia.filimonova@physik.uni-halle.de


Distinguishing noisy crystal symmetries in coarse-grained computer simulations 2

both procedures to determine the crystalline structures in clas-
sical but noisy systems.

Our paper is organized as follows. In Section II we describe
our model which we have used in our simulations of semi-
flexible chains of tangent hard spheres and present some ex-
amples of conformations which motivated us to developed the
new modifications for structural analysis. We present here also
our estimates of the noise amplitude in those systems, which
we will use to apply noise to classical crystalline symmetries,
It should be emphasized here, that our results on phase transi-
tions in semiflexible THS systems will be published in a sep-
arate paper, and here we concentrate only on the methodolog-
ical developments, which are (in our opinion) quite important
for the field of computer simulations of soft matter systems, in
particular for polymers, colloids and liquid crystals. In Sec-
tion III we present our results on structure analysis in noisy
sc, bcc, fcc, hcp lattices by previously suggested methods and
demonstrate the problems with correct detecting of the sym-
metries, Then, in Section III E we present our new noise re-
duction procedure and discuss the results of structure analysis
by this method. A Section on our new lattice reconstruction
procedure will be added soon. Section IV contains our conclu-
sions.

II. Model

Flexible tangent hard-sphere chain model used in this work
is well established in works devoted to the study of crystalliza-
tion in short chain melts30,31. The hard-sphere-type interac-
tions of non-bonded beads:

Unb(r) =

{
∞, r ≤ σ ,

0, r > σ ,
(1)

where r is the distance between the centers of the two beads.
This interaction does not give a numerical contribution to the
energy, but imposes constraints on the available configuration
space. As a result, possible angles between the bonds of neigh-
boring spheres θ in the chain cannot exceed 120o. The lengths
of chains in all studied systems are N = 10 beads.

FIG. 1. illustration of stiffness potential

Stiffness potential of the chains:

Uθ (θ) =


−ε, θ ≤ θs,

0, θs < θ < 120o,

∞, 120o ≤ θ ,

(2)

The ground-state stiffness energy for systems of Nc chains
of length N is defined as Es

min =−Nc(N −2)ε , while the max-
imum energy equal to Es

max = 0. We consider several boxes
with constant volume fraction φ ≈ 0.496. The fixed value of
cos(θs)= 0.9 used in this study corresponds to θs ≈ 26o, which
at a volume fraction φ ≈ 0.496 makes it possible to observe an
ordered structure. During the simulation, the size of the box
(Lx, Ly, and Lz) does not change. Energies and temperatures
are measured in units of well depth ε = 1, while all lengths are
measured in units of solid sphere diameter σ = 1.

System in the absence of walls

We simulate the system that we will use as a reference sys-
tem of the polymer in the unconstrained bulk. Since in small
size systems, the finite size effects of the system have a great
impact, we use 2 simulating boxes: with sizes Lx = Ly = 20
and Lz = 19 (Nc = 720) and Lx = Ly = 20 and Lz = 39 (Nc =
1440). This ratio of the number of particles and the size of the
box provides the desired volume fraction:

φ =
NNc

LxLyLz

πσ3

6
≈ 0.496 (3)

Since there are no constraints and there are periodic bound-
ary conditions in all directions, the total energy E is composed
only of the stiffness energy Es of the chains:

E = Es = ∑Uθ . (4)

System with two purely repulsive walls

In the case of uniformly repulsive walls, a potential Urep is
applied between the bead and the wall :

Urep(z) =

{
∞, |z| ≥ (Lz −σ)/2,
0, |z| < (Lz −σ)/2,

(5)

where z represents a coordinate of a bead along z axis. In fact,
this potential hinders chain units from passing through the wall
and does not contribute numerically to the total energy value.
That is, the contribution to the energy is determined by the
same summand (Eq. 4) as in the case of the unconstrained
system. As the centres of the beads cannot come closer to the
surface than their own radius of σ/2, we increase the size of
the box along the z axis to the value of σ in order to ensure
that we preserve the bulk volume fraction of the polymer, as
in the system without walls (φ ≈ 0.496). Therefore, in the
presence of walls, the dimensions are Lx = Ly = Lz = 20 (Nc =
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720) and Lx = Ly = 20 and Lz = 40 (Nc = 1440). Thus, two
parallel walls are positioned on the planes at z =±10 and z =
±20 respectively. Along the x and y axes, periodic boundary
conditions are implemented.

System with purely repulsive and attractive walls

We also examine two scenarios involving a small system (
Lx = Ly = Lz = 20, Nc = 720 ) where one wall exhibits repul-
sion and is conserved at (z =−10), while the second wall has
an attracting potential at (z = 10):

Uat1(z) =


−ε, Lz/2−σ ≤ z < (Lz −σ)/2,
0, −(Lz −σ)/2 < z < Lz/2−σ ,

∞, |z| ≥ (Lz −σ)/2
(6)

Uat2(z) =


−4ε, Lz/2−σ ≤ z < (Lz −σ)/2,
0, −(Lz −σ)/2 < z < Lz/2−σ ,

∞, |z| ≥ (Lz −σ)/2
(7)

III. Structure analysis

In general, a crystal means a solid body having a three-
dimensional long-range translational order. The arrangement
of atoms in a crystal is characterized by its unit cell contain-
ing one or more atoms in a certain spatial arrangement. The
crystal structure of the substance is reproduced by periodic
translation of the unit cell. In this study, we do not pretend
to determine the exact class of the crystal, since this would
represent a separate in-depth research in the field of crystal-
lography. In addition, in polymer systems, we can only talk
about local translational ordering and the formation of a set of
crystallites. However, we claim to be able to detect the co-
existence of various crystal symmetries.Despite the fact that
a significant number of methods for analyzing crystal struc-
tures have been developed, this task is still the cornerstone of
computer simulation research. In this chapter, we will look at
the most common methods of analysis applied to frequently
considered systems such as simple cubic (sc), body-centered
cubic (bcc), face-centered cubic (fcc), hexagonal close-packed
(hcp), as well as to our system and propose another method of
analysis that we consider the most successful in this study.

A. Noise estimation

Before starting to analyze the crystal structure, it is neces-
sary to pay attention to the fact that one cannot expect to obtain
an ideal crystal within the framework of the model used. In the
studied systems, noise will be observed due to the breadth of
the potential. Since the condition for adding the value −1 is an
angle ranging from 0 to 26 degrees, then the lowest energy of
E =−5760 in a small system will be given by both, as well as
fully elongated chains with all angles between the chains equal

to 0, and elongated chains with all angles close to 26 from be-
low. Thus, the width of the potential is the cause of noise in
the resulting crystal structures. This paragraph will describe
the procedure for evaluating noise in our system.

Let’s choose a system with a sufficiently low energy. For
example, consider a system with energy E = −5727 (Fig.2),
for other energies and systems, estimates give a similar result.

(a) (b)

(c) (d)

FIG. 2. a snapshot of the system at energy E=-5727: (a) 3d view. The
colors correspond to different chains; (b), (c), (d) the dots denote the
centers of mass of each sphere in the projection on the plane XY , Y Z,
XZ respectively. Purple points on (d) denote centers of groups.

While in the XY and Y Z planes one can notice a variety
of patterned structures of particles, in the XZ plane one can
observe uniting into groups. In the above case, the organiza-
tion of projections into groups in this plane is explained by
the elongation of the chains along the y axis (Fig.2 a). Thus,
the center of the groups has the meaning of the atom of the
crystal lattice, and the size of the group characterizes the noise
in the crystal. At this stage, clustering was carried out using
the k-means method32 (with an input number of 360 groups)
and a method similar to k-means, however, not the number of
groups was set as an input parameter, but the initial roughened
size of the groups (R = 0.8). Both methods give the same re-
sult for groups positions. As can be seen from the inserts in
Fig. 3, the distribution of deviations of points from the centers
of groups resembles the Gaussian distribution. One can use
quantile-quantile plot (QQ plot) to check normality visually.
QQ plot draw a correlation between the sample and the nor-
mal distribution. In a QQ plot, each observation is displayed
as a single point. If the data correspond to the norm, then the
dots should form a straight line. Thus, in our case one can talk
about the normality of the distribution. In addition to the abil-
ity to visually assess whether the distribution belongs to the
normal distribution, this method allows estimating the median
value of the distribution and the standard deviation. The value
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on the y axis at x = 0 corresponds to the median. We see that
it is equal to zero; this correctly reflects our construction: we
translated the center of each group to the origin before count-
ing the deviation of the position of the particle of each group
from its center. The tangent of the slope of the approximating
lines corresponds to the standard deviation of the distribution.
From the resulting plots we can extract

√
σ2 ≈ 0.112. This

value characterizes the noise in our system.

(a) (b)

FIG. 3. main: quantile-quantile plot for deviation from the centers
of the groups in x direction (a) and z direction (b); inserts: deviation
from the centers of the groups in z direction (a) and z direction (b).

Another way to estimate the parameter
√

σ2, assuming that
the distribution of deviations of particles from the centers of
groups D(x) is normal, is to construct a lnD(x) :

D(x)∼ exp
{
− (x− x0)

2

2σ2

}

lnD(x) = const1 −
(x− x0)

2

2σ2

Since we assume that the centers of all groups have already
been translated to the origin, then x0 = 0.

∂ lnD(x)
∂x

=− x
σ2

As can be calculated from the coefficients obtained in the lin-
ear model

√
σ2 is in both cases:

√
σ2 ≈ 0.112, (σ2 ≈ 0.0125). (8)

Taking into consideration that this is an estimate for one
group along one direction, for a pair of noisy groups in three-
dimensional space we get 6σ2 ≈ 0.075. We will use this esti-
mation in the following parts of the work.

B. Test structures preparation

In order to make sure that methods used are reliable, we
will perform tests on well-known structures: sc, bcc, f cc, hcp.
For these structures primitive vectors are known, by which it
is possible to reproduce the crystal lattice. In order that the re-
sults obtained for the test lattices could be compared with the

(a) (b)

FIG. 4. noise estimation in x direction (a) and z direction (b).

structures studied in this work, two conditions were taken into
account: (a) the minimum distance between the lattice atoms
of the perfect test structures should be equal to the length of the
rigid bond in the polymer model under study, i.e. d = 1; (b)
the atomic packing factor (APF) of the test structures should
coincide with the volume fraction of the polymer in the sys-
tem under study (APF = φ = 0.496), since this parameter is
the same for all the systems under study and does not change
during simulating process.

Since the dependence of various parameters on noise
√

σ2

is investigated and special attention is paid to the value esti-
mated in the section III A (

√
σ2 = 0.11), here we will also

describe the procedure for introducing noise
√

σ2 into the test
structures taking into account the excluded volume.

Example
As an example, let us consider the construction of bcc struc-

ture on the basis of which comparisons of the investigated pa-
rameters will be made. The construction of other test structures
is carried out in full analogy.

Primitive lattice vectors for bcc:

a =−a
2

e1 +
a
2

e2 +
a
2

e3,

b =
a
2

e1 −
a
2

e2 +
a
2

e3, (9)

c =
a
2

e1 +
a
2

e2 −
a
2

e3,

where a is the lattice parameter, or the side of the cube, re-
lated to the distance between the nearest lattice atoms d by the
relation

a =
2√
3

d. (10)

Usually, to calculate the APF one assume that d = 2r, where
r is the radius of the particle. However, to adjust the APF , we
fix d = 1, according to assumption (a) and change the particle
radius r. APFbcc is expressed in terms of the volume of a single
particle V1, the number of particles in a unit cell Nbcc and the
volume of a unit cell V0:

APFbcc =
V1 ·Nbcc

V0
=

4
3 πr3 ·2

a3 . (11)

After using the condition Eq. 10, and the requirements (a)
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and (b) that APFbcc = φ = 0.496 from Eq. 3, one obtains:

r =
(

φ

π
√

3

) 1
3 ≈ 0.45. (12)

This value is particularly important in the procedure for the
noise introducing to the hard sphere system.

Procedure for introducing noise
We assume that the noise along any direction in our system

has a Gaussian distribution.
Therefore, we choose orthogonal vectors e1,e2,e3, and we

will drive noise along each of these directions.
Step 1
At the first step in the constructed ideal lattice, each particle

acquires a normally distributed Gaussian displacement

∆x1 = N (0,σ2) (13)

Since at the initial stage we did not control the overlap of par-
ticles, now we need to eliminate it.

Step 2
We are looking for a pair of points i0, j0 that form the mini-

mum pair distance dmin in the resulting noisy system.
Step 3
Randomly select one particle i 0 from i0 and j0. With a prob-

ability of 0.1%, the particle i 0 is randomly selected from all
the particles of the system. For the particle i 0, the displace-
ment introduced earlier is replaced by:

∆x2 −→ α∆x2 +N (0,σ2
1 ) (14)

where α ∈ [0;1]. According to the properties of the normal
distribution, the distribution ∆x2 will be distributed normally
with a width of

√
σ2 if one sets:

σ
2
1 = (1−α

2)σ2. (15)

An attempt to change the offset (Eq. 14) is accepted if the
paired distances to the particle i 0 taking into account this step
are not less than dmin, otherwise i 0 retains its previous offset
∆x1.

Step 4
If a new displacement ∆x2 is accepted, a new dmin and par-

ticles i0, j0 are searched.
Step 5
Repeat Step 2 - Step 5 until dmin < 2r, where r was evaluated

in Eq. 12.
Remark
After completing the procedure, the resulting structures

were checked for the normality of the distribution of the po-
sition of the particles relative to the noiseless positions, sim-
ilar to how it was done in the section III A. The test showed
that this method works well in our task for small values of
(
√

σ2 < 0.07). When
√

σ2 > 0.07, the dependence of the ob-
served noise on the

√
σ2 value we introduce during the proce-

dure is no longer linear. For example, for hcp, the observed

noise becomes comparable to that observed in our system (Eq.
8) at induced

√
σ2 = 0.16. Later in the text, speaking about

noise and using the notation σ , we will use the actually ob-
served values obtained during this check.

C. Radial distribution function

Let’s start the study of structures by calculating the radial
distribution function (RDF). Let G(r) be the probability den-
sity of the presence of a particle at a distance r from a given
particle. Then the probability of the presence of a particle at
a distance r from this particle is defined as G(r)dr. Then the
radial distribution function g2(r) is calculated as:

g2(r) =
G(r)dr
4πr2dr

V, (16)

where V is the volume under study.

(a) (b)

(c) (d)

FIG. 5. radial distribution function for different noises for sc (a), bcc
(b), f cc (c), hcp (d).

As it was established in the section III A, the formation of
a perfect crystal cannot be expected in the structure under the
study. Noise can contribute to the displacement and blurring
of the radial distribution function. To study the behavior of the
g2(r) depending on noise, sc, bcc, f cc, hcp structures were
selected as test structures. Gaussian noise

√
σ2 is introduced

into the initially perfect crystal lattice in each of the three di-
rections, as it was described in the section III B. The red curves
(Fig.5) correspond to noise similar to the system under study,
since noise

√
σ2 ≈ 0.11 is introduced in this case. It can be

seen from the data obtained that the number of peaks on the
RDF decreases and the determination of the symmetry of the
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structure becomes impossible. The position of the first max-
ima shifts to the left on all structures with increasing noise.
For small

√
σ2 values, the maxima of all structures are lo-

cated at the point r = 1.0, which corresponds to the method of
constructing lattices described in section III B. This value cor-
responds to the minimum distance between the lattice nodes.
With a sufficiently large

√
σ2, the peak corresponds to the min-

imum possible distance that the lattice atoms can approach,
that is, the diameter of solid spheres.

On the graphs of g2(r) (Fig.6) for the system under study
(at energies E = −2040 and E = −5727, which corresponds
to a melt and an ordered structure respectively), peaks at r =
1 and r = 2 can be observed. These maxima correspond to
neighboring particles along the chain in our model.

The calculation of the RDF is a necessary step for calculat-
ing the Steinhardt parameters. In general, Steinhardt and co-
authors20 recommend using particles that fall into the sphere
of the cutoff radius Rc = 1.2r0 as the nearest neighbors, where
r0 is the position of the first peak of the g2(r). Such a choice
should ensure that all particles in the first coordination sphere
are taken into account. However, since the noise estimation in
our system is 6σ2 = 0.27, it was decided to use the Rc = 1.3r0.
Since r0 = 1 coincides with the diameter of the hard spheres
in further text we will immediately write Rc = 1.3. Our expe-
rience has shown that this value is optimal for calculating pa-
rameters. If we consider the distributions for the model under
study (Fig.6), one can see that the selected value of the Rc is
to the left of both minima. As this value is close to the minima
of both our structure and the test ones, this choice is the most
optimal, since it is most likely to capture all particles from the
first coordination sphere (Rc = 1.3 magenta in the Fig. 5).

FIG. 6. radial distribution function for studied structures. The ma-
genta line corresponds to the chosen cutoff radius Rc = 1.3 when fur-
ther calculating the order parameters.

D. Local bond order parameters

1. P. J. Steinhardt, R. Nelson and M. Ronchetti parameters

One of the most discussed problems of simulation of the
crystallization process is how to attribute a particle to a liq-
uid or crystal and also determine the type of crystal. Re-

cently, a widely used method of distinguishing the type of
particles is local bond order parameters, also known as Stein-
hardt parameters20. To calculate these parameters, it is not
necessary to have a reference structure for comparison with
the studied one, as is required in, for example, common neigh-
bor analysis14. Another convenience of using this method is
the absence of reference to the coordinate system, since the
calculation of these parameters is based on spherical harmon-
ics.

Local bond order parameter of particle i is defined as:

ql(i) =

√√√√ 4π

2l +1

l

∑
m=−l

|qlm(i)|2, (17)

where l is the order of parameter, qlm - complex vector which
is defined as

qlm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(ri j). (18)

Here, Nb(i) is the number of nearest neighbors of the particle
i. There is no strict rule for determining the particles that are
considered to be the nearest neighbors. Most studies use the
concept of the cutoff radius Rc (however, different studies use
different values), and some use the Voronoi cell. We prefer
to use the concept of the cutoff radius with Rc = 1.3, as dis-
cussed in section III C. The functions Ylm(ri j) are the spherical
harmonics, ri j is the vector connecting the particles i and j;
m is an integer that runs from m = −l to m = l. Along with
ql , wl parameters are also often used, which can be computed
according to formulas:

wl(i) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

qlm1(i)qlm2(i)qlm3(i)(
l
∑

m=−l
|qlm(i)|2

)3/2 ,

(19)
where the summation is carried out by the integers m1, m2, m3
from −l to l, which satisfy the condition m1 +m2 +m3 = 0.
The expression in parentheses is the Wigner 3-j symbol. Since
no significant conclusions can be drawn from the calculation
of the parameters wi, the results for these parameters are pre-
sented in supplementary material (subsection IV). To analyze
the structure, q4, q6, q8 are most often used. In this section,
we will present the results for the parameters of test structures
with noise, and also apply this method to analyze the structures
obtained during our simulation.

The study of Steinhardt parameters for test structures with
the value

√
σ2 = 0.11 showed that the structures hcp, f cc, bcc

become absolutely indistinguishable (Fig. 7). This fact does
not allow us to apply parameters for our system.

The study of the dependence of the average parameters on√
σ2 showed that the mean values with increasing noise devi-
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(a) (b)

FIG. 7. local bond order parameters q4−q6, q4−q8 for test structures
(a), (b) respectively

ate greatly from the values for ideal crystal lattices (horizon-
tal lines in Fig. 8). Starting from

√
σ2 ≈ 0.08, the average

number of nearest neighbors also becomes indistinguishable
for bcc and hcp, f cc and for none of these values corresponds
to the true number of neighbors.

(a) (b)

(c) (d)

FIG. 8. mean values of local bond order parameters q4 (a), q6 (b),
q8 (c), number of nearest neighbors (d) for bcc (blue), hcp (red), f cc
(green), sc (black) test structures.

Thus, for this model, the application of classical Steinhardt
bond order parameters turns out to be impossible. In all non-
ideal systems, where there is a deviation of the positions of
particles (for example, due to thermal fluctuations) from per-
fect crystal lattices, difficulties arise with determining the crys-
tal structure in simulation. Nevertheless, the potential of the
Steinhardt approach is great. Spherical invariants are reason-
able functions for describing the symmetry of particle clusters.
A number of works have been devoted to modifications of the

local bond order parameters to improve the accuracy of deter-
mining the type of structures in the presence of thermal fluc-
tuations. In this chapter, we will look at several well-known
modifications of this method.

2. W. Lechner and C. Dellago parameters

In 2008, W. Lechner and C. Dellago21 proposed a procedure
for averaging Steinhardt parameters. The authors tested their
results on two different systems of soft spheres. In this study ,
they propose to average local bond parameters as follows:

q̄l(i) =

√√√√ 4π

2l +1

l

∑
m=−l

|q̄lm(i)|2, (20)

where

q̄lm(i) =
1

Ñb(i)

Ñb(i)

∑
k=0

qlm(k). (21)

The equation involves a sum over all neighbors of particle i,
encompassing the particle itself, ranging from k = 0 to Ñb(i).
To determine the local orientational order vectors for particle i,
one takes the average of qlm across both the particle i itself and
its nearby environment Ñb(i). While ql(i) reveals the struc-
tural intricacies of the first shell around particle i, its averaged
counterpart q̄l(i) accounts for the influence of the second shell.
The effective considering of the second particle shell is critical
in this context.

In the supplementary material (subsection IV) you can also
find the results for the updated parameters w̄l calculated using
q̄lm:

w̄l(i) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

 q̄lm1(i)q̄lm2(i)q̄lm3(i)(
l
∑

m=−l
|q̄lm(i)|2

)3/2 ,

(22)
Authors21 conducted their tests on 2 types of soft spheres:

with the Lennard-Jones potential and the Gaussian core model.
We have calculated these parameters for our test structures
consisting of solid spheres.

From the results obtained (Fig. 9) it can be seen that the
average values still vary greatly with the growth of

√
σ2, how-

ever, averaging definitely reduces the spread in values. On
the Fig. 9 (d) it can be seen that the average values of the
parameter q4 are able to distinguish bcc, f cc, hcp, although
it is still unreliable. The average value for the bcc structure
has stabilized and slightly deviates from the undisturbed state,
which was not observed with the original method of calculat-
ing the Steinhardt parameters Fig. 8 (a). The parameters q6,
q8 still do not allow us to distinguish structures with noise val-
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(a) (b) (c)

(d) (e) (f)

FIG. 9. average local bond order parameters q̄4 − q̄6 (a), q̄4 − q̄8 (b),
q̄6 − q̄8 (c); mean values of average local bond order parameters q̄4
(d), q̄6 (e), q̄8 (f) for bcc (blue), hcp (red), f cc (green), sc (black) test
structures.

ues comparable to those observed in the system under study
(
√

σ
2 ≈ 0.11).

3. H. Eslami, P. Sedaghat and F. Müller-Plathe parameters

A more advanced method was proposed by H. Eslami et
al.23. In this paper, using the example of the Lennard-Jones
system (12-6), a comparison was made with the parameters of
previous authors21. These order parameters examine the ra-
tio of the orientational orders of the second-shell to the first-
shell neighbors of a central particle, so the parameters change
from 0 (disordered structure) to 1 (in crystal). The authors note
that despite the fact that the parameters in crystal structures are
close to 1, thermal fluctuations reduce the parameters. More-
over, it is stronger in bcc than, for example, in f cc, due to
the large amount of free space and lower density. At the same
time, no studies have been conducted on the dependence of
parameter changes on temperature fluctuations.

These parameters can be calculated using the following for-
mulas:

q̃l(i) = ql(i) ·ql( j) =
1

Nb(i)
∑

j∈Nb(i)

l

∑
m=−l

q̂lm(i)q̂∗lm( j), (23)

where

q̂lm(i) =
qlm(i)( l

∑
m=−l

|qlm(i)|2
)1/2

. (24)

After the averaging q̃l(i) over the first coordination shell neigh-
bors of particle i one get the following:

¯̃ql(i) =
1

Ñb(i)
∑

j∈Ñb(i)

q̃l( j). (25)

Despite the fact that these parameters are not intended to
distinguish ideal (noiseless) crystal structures, since they are
equal to 1, it is interesting to investigate the dependence of
these parameters on noise for systems of solid spheres. There
is a possibility that using a combination of parameters q4, q6,
q8 will allow distinguishing different types of structures by the
degree of deviation of the parameters from 1.

(a) (b) (c)

(d) (e) (f)

FIG. 10. local bond order parameters ¯̃q4 − ¯̃q6 (a), ¯̃q4 − ¯̃q8 (b), ¯̃q6 − ¯̃q8
(c); mean values of local bond order parameters ¯̃q4 (d), ¯̃q6 (e), ¯̃q8 (f)
for bcc (blue), hcp (red), fcc (green), sc (black) test structures.

From the obtained data (Fig. 10), it can be seen that the pa-
rameter ¯̃q4 still seems to be the most sensitive for separating
structures. Depending on the type of structure, noise has a dif-
ferent effect on the deviation of parameters from undisturbed
values. Such a wide range of values, unfortunately, does not al-
low using combinations of parameters q4, q6, q8 to distinguish
between different types of structures.

Thus, since the parameters discussed in the section III D
do not allow us to reliably distinguish test structures with a
noise value comparable to that estimated in the system under
study, we cannot rely on them when analyzing the system un-
der study. In the next section, another way of using Steinhardt
parameters (Eq. 17) will be proposed, the efficiency of the
method on test structures will be checked, and the use of the
method on the example of the system under study will also be
demonstrated.

E. Noise reduction procedure

As we have established in the previous sections, the meth-
ods used for analyzing structures do not allow us to distinguish
satisfactorily different symmetries in the presence of noise.
Therefore, at this stage of the work, an attempt was made to
reduce the influence of noise by averaging the position of co-
ordinates in space.
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(a) (b)

(c) (d)

FIG. 11. two-dimensional coordinate averaging scheme. (a) Ana-
lyzed red particle i with its neighbors in black sphere; (b) triangle
particle j from the original sphere and its blue neighbors; (c) blue
sphere is completely translated into the original black one; (d) steps
(b)-(c) are done for all neighbors from the black sphere.

We propose the following procedure (Fig. 11). Let’s choose
the particle i for which one will compute Steinhardt order pa-
rameters. We draw a sphere of radius Rs = 2 around the par-
ticle (Fig. 11 a). Let it have Ni neighbors of particle i. Next,
select particle j (green triangle on Fig. 11 b) from the list
of neighbors {Ni}. We also draw a sphere of radius Rs = 2
around it, into which N j particles fall (blue particles on Fig.
11b). Then we translate particle j together with all its neigh-
bors into particle i (Fig. 11 c). We perform the same operation
with all the particles from the list {Ni} (Fig. 11 d).

The next step after moving the points inside the sphere is av-
eraging their positions. To do this, we set the positions of the
neighbors of the initial particle as the starting position of the
groups r′gr (black dots inside the black sphere on the Fig.11
a)). Then we iteratively refine the present position of the cen-
ters of the groups rgr. To do this, add the position of each of
the above points (blue on the Fig. 11 d)) to each of the existing
groups as an gaussian term. To get the updated coordinates of
the groups, it is necessary to weigh the amounts received.

rgr =
1

Zgr
∑
k

rk exp

{
−
(rk − r′gr)

2

2 ·2σ2

}
(26)

Zgr = ∑
k

exp

{
−
(rk − r′gr)

2

2 ·2σ2

}
, (27)

where rk is the position of the particle relative to the particle
under consideration i, r′gr are group positions at previous iter-
ation step, rgr are updated group positions, 2σ2 = 0.0242, as

defined in the section III A. We repeat this procedure a number
of times, achieving convergence of the position of the groups.
Thus, we obtained the averaged positions of the neighbors of
the initial point i, which we use to calculate the Steinhardt pa-
rameters (Eq. 17).

It should be noted that for averaging coordinates, the radius
of the sphere (Rs = 2) is set obviously larger than the cutoff
radius for calculating the Steinhardt parameters, which is still
equal to rc = 1.3. During iterations, the coordinates of the cen-
ters of the groups rgr, which will be used as the coordinates of
neighbors at the end, may shift. Thus, if the original point i had
an insufficient or excessive number of points inside the sphere
Rc = 1.3, in the process of iterations, this amount changes and
becomes less sensitive to noise around the original particle.
Thus, the choice of Rs =2 provides a more reliable averaging.

(a) (b) (c)

(d) (e) (f)

FIG. 12. local bond order parameters after averaging procedure
q4 − q6 (a), q4 − q8 (b), q6 − q8 (c); mean values of local bond or-
der parameters q4 (d), q6 (e), q8 (f) for bcc (blue), hcp (red), f cc
(green), sc (black) test structures.

As we can see from the results obtained (Fig. 12), the pro-
cedure of averaging coordinates in space makes it possible to
make the mean values of all parameters more stable with in-
creasing noise. At the same time, the spread of order param-
eters naturally decreases. On the planes q4-q6, q4-q8, q6-q8
(Fig. 12 a - c) it is also clearly seen that when introducing dis-
placements in the lattice coordinates of the order

√
σ2 = 0.11

the structures are clearly distinguishable. The same pictures
show the division of sc into 3 groups. It is established that
the reason for this is the different number of neighbors. Thus,
one can conclude that the combination of three parameters q4,
q6, q8 allows to distinguish different symmetries after the av-
eraging procedure, even if there is a sufficiently large noise
comparable to that observed in the system under study.

Another modification of this method was also tested. In-
stead of combining the particles of the black sphere during av-
eraging procedure by translations (Fig.12 a), the coordinates
of the centers of mass for each of the spheres (black and all
blue ones) were superimposed. Thus, one can say that the dis-
placement of the central red particle is also taken into account.
However, our experience has shown that this modification does
not provide significant improvements. Initially, the described
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method can be considered optimal, and it will be used in fur-
ther analysis. The results for the superposition of the centers
of mass can be found in supplementary materials (IV).

Since the proposed approach has proven itself well in rela-
tion to test structures, we have every reason to apply it to the
system under study. To begin with, let’s take a system with-
out walls with low energy E = −5727 (Fig. 2). The obtained
parameters after the averaging procedure are shown in Fig. 13.

(a) (b)

(c) (d)

FIG. 13. local bond order parameters for the bulk system E =−5727
after averaging coordinates: q4-q6 (a),q4-q8 (b),q6-q8 (c), neighbors
histogram (d)

From the data obtained, it can be seen that the parameters q4,
q6, q8 are clearly divided into several groups. Two dense clus-
ters are allocated on the plane q6-q8. On the other two planes,
smaller clumps are also noticeable. However, since their size
is small and they are located close to larger ones, we will con-
sider them part of larger clusters. It was also found that most
of the particles in two biggest the most dense clusters have 12
neighbors, while scattered points have a predominantly differ-
ent number of neighbors than 12. Since the predominance of
the correct number of neighbors can be observed on the test
structures after the averaging procedure, then at this stage we
can assert that there is a coexistence of 2 types of symmetries
with 12 neighbors in this structure, while a different number
of neighbors is formed due to the noise of the structure. Here
we make the assumption that these 2 crystal structures origi-
nate at higher energies, where they coexist with the disordered
phase, which we also will call Melt. We present an algorithm
for isolating co-existing structures at different energies.

Procedure for structure separation
Step 1
At the first stage, we calculated the parameters for the aver-

aged coordinates of a low-energy system (E =−5727) and di-
vided the particles into 2 clusters using the k-means method32

built into the R environment. q4, q6, q8 were used as input data

for clustering to increase accuracy. At the same time, our expe-
rience has shown that additional consideration of neighbors as
input data does not significantly affect the result. The number
of clusters (2) and the number of launches (nstart = 500,1000)
are used as external parameters for the method. The main dis-
advantage of this method is a strong dependence on the start-
ing points chosen randomly. To get around this problem, one
should do several launches, and it is also better to visually ob-
serve the results of the cluster separation on the graphs. De-
spite the aforementioned drawback, within the framework of
our task, the results are well reproducible and do not change
when restarted. One can also use other clustering methods (for
example, various variations of the k-means method33, the c-
means method, EM-clustering). Each of these methods has its
own advantages and disadvantages, however, in our work we
will not describe and compare clustering algorithms in detail.
We prefer to use k-means method because of its simplicity, but
testing other methods has yielded similar results. After the ini-
tial separation of the parameters of the low-energy structure
into 2 clusters, it is necessary to clarify the positions of the
clusters centers in the space q4,q6,q8. To take into account the
asymmetry of the clusters, we calculate the covariance matrix:

Ĉk =


cov (qk

4, qk
4) cov (qk

4, qk
6) cov (qk

4, qk
8)

cov (qk
6, qk

4) cov (qk
6, qk

6) cov (qk
6, qk

8)

cov (qk
4, qk

8) cov (qk
6, qk

8) cov (qk
8, qk

8)

 , (28)

here k = {1,2} is the number of cluster; qk
j - the parameter of

the particle related to the cluster k; j = {4,6,8} is the order
of the parameter. Initially, the mean value of the parameter
in the initial cluster is taken as the center of the cluster, then
this value will be refined during the iterative process. In the
iterative process the weight with which each particle i of the
structure enters each cluster k is calculated:

Ω
k
i =

√
det Ĉ−1

k exp

−1
2
(qi,4 − q̄k

4, qi,6 − q̄k
6, qi,8 − q̄k

8) Ĉ−1
k


qi,4 − q̄k

4

qi,6 − q̄k
6

qi,8 − q̄k
8


,

(29)
where Ĉ−1

k is the inverse matrix of Ĉk; q̄k
j - the center of cluster

k. Then the particles are reassigned to clusters: each particle i
belongs to the cluster k for which the weight turned out to be
greater. After that, the positions of cluster centers are updated
as:

q̄k
j =

∑
i

qk
i, j Ωk

i

∑
i

Ωk
i

, (30)

where j = {4,6,8}; i - the number of particle form the cluster
k. The iterative process ends at the moment when q̄k

j stops to
change.

Note: The Ĉk and Ĉ−1
k do not change during the iterative

process. In the case of matrix recalculation, we will get nested
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clusters with close centers.
Thus, at the Step 1, the centers of 2 crystal structures (q̄k

j,
k = {1,2}, j = {4,6,8} ) and covariance matrices (Ĉk, k =
{1,2}) for them were obtained. These values are fixed and do
not change in further steps.

Step 2.
After 2 types of particles with different symmetries have

been determined for this structure, we propose that these types
are formed at higher energies and coexist with the polymer
melt. For the 2 found crystal states we fix the found values of
cluster centers, as well as covariance matrices. At this step,
our task is to find the values (q̄3

4, q̄3
6, q̄3

8, Ĉ3) corresponding to
the polymer melt. To do this, we choose a high-energy struc-
ture, such that only a melt is observed. For example, let’s take
the energy E =−2040. For simplicity, assuming that there are
no crystalline particles in the sample, we find q̄3

4, q̄3
6, q̄3

8 in the
sample as the mean parameters for the entire system:

q̄3
j =

1
N ·Nc

∑
i

qi, j, (31)

where N ·Nc is the number of particles in the system (N ·Nc =
7200 in small and N · Nc = 14400 in large systems, respec-
tively).

And based on these data, we build a covariance matrix (Eq.
28).

Thus, at the Step 2, the center of disordered structure (q̄3
j ,

j = {4,6,8} ) and covariance matrix (Ĉ3) for it was obtained.
These values are fixed and do not change in further step. One
can find results for q̄k

j (k = {1,2,3}) in the Tab. I.

FIG. 14. 3d view of Steinhardt bond order parameters for the system
without walls at E =−5727, Lx = Ly = 20,Lz = 19

Step 3.
Since we know the coordinates in the {q4, q6, q8} space

for the three phases and their covariance matrices, it is now
possible to distribute the particles in the system under study
of any energy into 3 types. First of all, we can return to the
low-energy structure and redistribute using weights (Eq. 29)
the particles over the 3 sets of {q̄4, q̄6, q̄8} found. Since the
system we have chosen does not have the lowest of all possible
energies (E =−5760), the presence of several isotropic phase
particles is possible.

Remark
To make sure that the sets obtained in the Tab. I for these

3 clusters do not depend significantly on the choice of specific

structures, additional tests were conducted. The procedure of
searching q̄k

j and Ĉk ( j = {4,6,8}, k = {1,2,3}) was repeated
for several sets of low and high energy conformations. The set
of conformations obtained during SAMC can be considered in-
dependent, since they were taken with a large time difference
(on the order of several months of computer calculations). The
results (Step 1, Step 2) of several tests for the system described
here can be found in the supplementary material IV. The val-
ues q̄k

j and Ĉk do not depend significantly on the choice of con-
formations. The assignment of a part to different clusters (Step
3) also does not change significantly.

(a) (b) (c)

FIG. 15. local bond order parameters distribution for the bulk system
E =−5727 , Lx = Ly = 20, Lz = 20 after averaging coordinates

In the Fig. 15, the distributions of the parameters q4, q6, q8
for the system under study are shown in blue. Black, red and
green represent the distributions of parameters weighted by the
fraction of particles of the corresponding cluster. The dotted
line of the cyan color represents the sum of these individual
contributions. It is obvious that the distribution of parameters
for all particles is actually a set of distributions of particles
belonging to individual clusters, since the blue curve exactly
coincides with the cyane line. The shoulder in the black curve
at q8 distribution for Crystal 1 (Fig. 15 c) corresponds to the
number of neighbors other than 12 (detailed distributions can
be seen in the additional materials IV).

color q̄4 q̄6 q̄8

Crystal 1 black 0.149±0.030 0.491±0.017 0.288±0.028

Crystal 2 red 0.201±0.021 0.556±0.011 0.376±0.020

Melt green 0.223±0.066 0.401±0.082 0.333±0.053

TABLE I. parameters q̄4, q̄6, q̄8 of the structures found in the system
without walls, Lx = Ly = 20, Lz = 19

color q̄4 q̄6 q̄8

Crystal 1 black 0.151±0.036 0.504±0.018 0.300±0.038

Crystal 2 red 0.211±0.047 0.552±0.019 0.360±0.031

Melt green 0.225±0.073 0.385±0.071 0.330±0.058

TABLE II. parameters q̄4, q̄6, q̄8 of the structures found in the system
with repulsive walls, Lx = Ly = 20, Lz = 20

The method was also tested on a system with repulsive walls
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( Tab. II). In these two studied systems, structures with iden-
tical sets of q̄k

j are formed. If we compare the spatial arrange-
ment of the structures of Tab. IV and Tab. V (see Supple-
mentary materials below), the dominant crystalline phase in
both systems is the Crystal 2 (red). In a system with repulsive
walls, the alternation of crystal phases is observed parallel to
the walls, while in a system without walls, alternation occurs
in the planes located at an angle to the planes of the simula-
tion box. The conformations are dominated by layered crystal
phases, with the Crystal 2 dominating in the vicinity of the
walls.

The received data Tab. I it is said that the structures found do
not exactly define any of the test structures (sc, bcc, f cc, hcp).
However, taking into account the estimated spread of the val-
ues obtained, it can be seen that the parameters of the Crystal 2
(red structure) are closest to f cc, while the Crystal 1 (black
structure) is close in parameters to hcp. The only significant
difference is observed for the parameter q4 of the Crystal 1
and hcp. The deviation of this parameter from the reference
value indicates the deformation of the structure. Indeed, when
considering the projections of the centers of the particles of the
system on different planes, irregular, deformed hexagons were
observed. The reason for the deformation is the connectivity in
the chain and the dimensions of the box. So, for example, if in
low energy chains are stretched along the y axis one after the
other, then in the perpendicular plane XZ we see sections of
only 360 chains. By no such transformations, it is impossible
to stretch particles stacked in a regular polygon on the plane to
fit it into a rectangle of size Lx ·Lz = 20 ·19. Note that although
in reality the y direction is not highlighted, the final, small size
of the system has a strong influence on the laying in our case.
Nevertheless, the organization of short chains into layers was
tested on a similar system in the work of T. Shakirov30.

Thus, it can be argued that the approaches developed in this
work are valid within the framework of this model.

IV. Conclusions

We have suggested two new procedures of analysis of noisy
crystalline structures which appear in computer simulations of
soft matter systems.

The first of these two procedures – a noise reduction – is a
special averaging over neighbors of a chosen particle before
calculation of bond local order parameters (Steinhardt param-
eters). This procedure leads to an essential reduction of noise
in particles’ positions and allows to determine the local crys-
talline symmetry more reliably.

Another procedure – lattice reconstruction – allows to re-
construct the “ideal” lattice structure in the whole simulation
box that would be most close to a real noisy crystalline sym-
metry when it is first detected locally and then averaged over
the whole box.

We plan to apply both these procedures to analysis of crys-
tallization transitions in the melts and in thin films of short
semiflexible chains of tangent hard spheres.
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Supplementary

Local bond order parameters

sc bcc f cc hcp

Neighbors 6 14 12 12

q2 0.0 0.0 0.0 0.0

q3 0.0 0.0 0.0 0.076073

q4 0.763763 0.036370 0.190941 0.097222

q5 0.0 0.0 0.0 0.251586

q6 0.353553 0.510688 0.574524 0.484762

q7 0.0 0.0 0.0 0.310815

q8 0.718070 0.429322 0.403915 0.316992

q9 0.0 0.0 0.0 0.137851

q10 0.411425 0.195191 0.012857 0.010169

w2 0.0 0.0 0.0 0.0

w3 0.0 0.0 0.0 0.0

w4 0.159317 0.159317 -0.159317 0.134097

w5 0.0 0.0 0.0 0.0

w6 0.013161 0.013161 -0.013161 -0.012442

w7 0.0 0.0 0.0 0.0

w8 0.058455 0.058455 0.058455 0.051259

w9 0.0 0.0 0.0 0.0

w10 0.090130 -0.090130 -0.090130 -0.079851

TABLE III. local bond order parameters q2 - q10, w2 - w10 for perfect sc, bcc, f cc, hcp structures.
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E
Crystal 1
(black)

Crystal 2
(red) Melt (green) View

-5727 2803 (39%) 4070 (56%) 327 (5%)

-5104 2449 (34%) 3329 (46%) 1422 (20%)

-4715 1601 (22%) 3194 (44%) 2405 (34%)

-3408 1034 (14%) 1266 (18%) 4900 (68%)

-2040 394 (5%) 113 (2%) 6693 (93%)

TABLE IV. The number of particles (and percentage) related to a clusters for different energies in the system without walls, Lx = Ly = 20,
Lz = 19
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E
Crystal 1
(black)

Crystal 2
(red) Melt (green) View

-5754 2316 (32%) 4587 (64%) 297 (4%)

-5205 1262 (17%) 4289 (60%) 1649 (23%)

-4740 1626 (23%) 2548 (35%) 3026 (42%)

-3600 282 (4%) 1728 (24%) 5190 (72%)

-2050 237 (3%) 475 (7%) 6488 (90%)

TABLE V. The number of particles (and percentage) related to a clusters for different energies in the system with repulsive walls, Lx = Ly = 20,
Lz = 20
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P. J. Steinhardt, R. Nelson and M. Ronchetti parameters

(a) (b)

(c) (d)

(e) (f)

FIG. 16. Local bond order parameters w4 −w6, w4 −w8, w6 −w8 planes (a-c) and mean values of w4, w6, w8 (d-f) for test structures.
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W. Lechner and C. Dellago parameters

(a) (b)

(c) (d)

(e) (f)

FIG. 17. Average local bond order parameters w̄4 − w̄6, w̄4 − w̄8, w̄6 − w̄8 planes (a-c) and mean values of w̄4, w̄6, w̄8 (d-f) for test structures.



Distinguishing noisy crystal symmetries in coarse-grained computer simulations 19

Noise reduction procedure

(a) (b)

(c) (d)

(e) (f)

FIG. 18. Local bond order parameters after averaging procedure q4 − q6, q4 − q8, q6 − q8 match particles (a, c, e) and cm (b, d, f) for test
structures.
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(a) (b)

(d) (e)

FIG. 19. Neighbors after averaging procedure q4, q6, q8 match particles (a, b) and cm (c, d) for test structures.
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(a) (b)

(c) (d)

(e) (f)

FIG. 20. Mean local bond order parameters after averaging procedure q4, q6, q8 match particles (a, b, c) and cm (b, d, f) for test structures.
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Melt High E q̄4 q̄6 q̄8

1 -1000 0.2232338 0.3992973 0.3341042

2 -2040 0.2229070 0.4007197 0.3331288

3 -2400 0.2240491 0.4015599 0.3348154

4 -3000 0.2261278 0.4034265 0.3354119

TABLE VI. Melt; q̄4, q̄6, q̄8 of the structures found in the system without walls, Lx = Ly = 20, Lz = 19.

Crystal 1 Low E q̄4 q̄6 q̄8

1 -5727 0.1491924 0.4910839 0.2875898

2 -5717 0.1507784 0.4928109 0.2845559

3 -5605 0.1515706 0.4928678 0.2852961

TABLE VII. Crystal 1; q̄4, q̄6, q̄8 of the structures found in the system without walls, Lx = Ly = 20, Lz = 19.

Crystal 2 Low E q̄4 q̄6 q̄8

1 -5727 0.2013380 0.5557263 0.3757146

2 -5717 0.1999767 0.5561825 0.3760433

3 -5605 0.2012632 0.5559024 0.3763463

TABLE VIII. Crystal 2; q̄4, q̄6, q̄8 of the structures found in the system without walls, Lx = Ly = 20, Lz = 19.

(a) (b) (c)

FIG. 21. Local bond order parameters distribution for the bulk system E =−5727 , Lx = Ly = 20, Lz = 20 after averaging coordinates
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