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Abstract. Spherical t-designs are Chebyshev-type averaging sets on the d-sphere §¢ < R7*!
which are exact for polynomials of degree at most z. This concept was introduced in 1977 by
Delsarte, Goethals, and Seidel, who also found the minimum possible size of such designs,
in particular, that the number of points in a 3-design on S must be at least n > 2d + 2. In
this paper we give explicit constructions for spherical 3-designs on S¢ consisting of n points
ford=1andn>4;d=2andn=26,8, >10;d=3andn =28, >10;d =4 and n = 10, 12,
>14;d>5and n > 5(d+1)/2 odd or n > 2d + 2 even. We also provide some evidence
that 3-designs of other sizes do not exist. We will introduce and apply a concept from additive
number theory generalizing the classical Sidon-sequences. Namely, we study sets of integers
S for which the congruence ¢;x; + &x; + - - - + &x;, = 0 mod n, where ¢, =0, +1 and x; € S
(i=1,2,...,1), only holds in the trivial cases. We call such sets Sidon-type sets of strength
t, and denote their maximum cardinality by s(n, £). We find a lower bound for s(n, 3), and
show how Sidon-type sets of strength 3 can be used to construct spherical 3-designs. We
also conjecture that our lower bound gives the true value of s(n, 3) (this has been verified for
n < 125).

1. Introduction

We are interested in finding finite “well balanced” point sets on the surface of the
unit d-sphere S¢ = R?*!. While it may be clear that vertices of regular polygons
form such sets on the circle S, there is no natural way to generalize this for d > 2.
Of the numerous possible criteria for measuring how “well balanced” our point set
is (see e.g. [10]), one of the most useful and interesting one is that of the spherical
design, as introduced in a monumental paper by Delsarte, Goethals, and Seidel in
1977 [11].

A spherical t-design on S? is a finite set of points X = §¢ for which the
Chebyshev-type quadrature formula

1 1
—_— xX)dog(x) = — X
57 |y, 10 = g 3 1
is exact for all polynomials f(x)= f(xo,x1,...,Xs) of degree at most ¢ (g,

denotes the surface measure on S“). In other words, X is a spherical ¢-design of
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S if for every polynomial f(x) of degree ¢ or less, the average value of f(x) over
the whole sphere is equal to the arithmetic average of its values on the finite set X
General references on spherical designs include [11], [6], [5], and [22].

The existence of spherical designs for every ¢, d, and large enough n = | X| was
first proved by Seymour and Zaslavsky in 1984 [25], and general constructions
were first given by the author in 1990 [3].

In [11], Delsarte, Goethals, and Seidel also proved that a spherical z-design on
S must have cardinality

0> Na(t) = <Lz/2£l+d> N <L(f— l)d/zj +d).

A spherical t-design on S¢ with cardinality Ny(¢) is called tight. In 1980 Bannai
and Damerell [7], [8] proved that tight spherical designs for d > 2 exist only for
t=1,2,3,4,57or 11. All tight ¢-designs are known, except for t = 4,5, and 7. In
particular, there is a unique tight spherical 11-design (d = 23 and n = 196, 560).

Let My(t) denote the minimum size of a spherical ¢-design on S¢, and let
M/(¢) denote the smallest integer such that for every n > M/(1), t-designs on S¢
exist on 7 nodes. We have Ny() < My(t) < M)(t). Values of M;(¢) and M) (¢) are
generally unknown when d > 2 and ¢ > 3. For an upper bound on M,(¢) and
M (1) see [5].

The case d = 1 is completely settled; it is easy to see that vertices of a regular
n-gon with n > ¢+ 1 give a spherical z-design on the circle, hence N, () = M;(1)+
M| (t) = t+ 1. (Hong [19] proved in 1982 that these are the unique ¢-designs on S!
whent+1<n<2t+1.)

Much work has been done for d = 2. It is well known that N,(¢) = M,(¢) if
and only if t = 1 (2 antipodal points), ¢t = 2 (4 vertices of a regular tetrahedron),
t =3 (the regular octahedron), or r =5 (the icosahedron). For 1t =4 we have
N>(4) =9, and there are designs of sizes n = 12,14, and n > 16 [17]. Hardin and
Sloane [17] also exhibit numerical evidence that a 4-design on S? does not exist for
n=10,11,13, and 15; hence the conjectures M>(4) = 12 and M}(4) = 16. Recent
papers of Reznick [23] and Hardin and Sloane [18] give constructions for = 5 (in
which case N>(5) = M»(5) = 12) for n = 12,16, 18,20, and n > 22, and conjecture
that this list is complete, hence that M}(5) = 22. In [18] Hardin and Sloane also
provide numeric evidence for what they believe is a complete set of possible sizes
for 1t =6,7,8,9,10,11, and 12. Their work indicates that for these values of ¢,
M} (1) — My(t) varies greatly between 2 (£ = 12) and 12 (r = 7).

Keeping ¢ constant and letting the dimension vary, we first note that N,;(1) =
M,(1) = M) (1) =2 for every d > 1. Mimura [21] settled the case ¢ =2 in 1990:
He proved that M;(2) = Ny(2) = d + 2, and that M/(2) =d + 2 when d is odd
and M)(2) = d +4 when d is even. Much less has been known when ¢ > 3. For
t = 3 the author conjectured that 3-designs on S? do not exist on n = 7 or 9 points
(N2(3) = 6), and this was recently supported by a powerful computer search done
by Hardin and Sloane [18]. In [17] Hardin and Sloane also present numerical evi-
dence for values of M;(4) and M(4) for d < 7. If their conjectures are valid, then
My(4) = M)(4) ford = 3,4,6, and 7, but M,(4) — M(4) =12 ford = 5.



Constructions of Spherical 3-Designs 99

The goal of this paper is to provide constructions for 3-designs on S¢ for all
values of n for which such designs exist of size n. Our results are summarized in the
table below.

d NNd<3) = Md(3) n

1 4 >4

2 6 6,8, >10
3 8 8, >10

4 10 10, 12, > 14
5 12 12, > 14

6 14 14, 16, >18
7 16 16, 18, >20
8 18 18, 20, >22
9 20 20,22, >24
>5 2d+2 >2d +2 & even, >5(d +1)/2 & odd

We believe that our list above is complete. In particular, we conjecture that
M)(3) = |5d/2+3],, where d # 2 or 4 and |x], is the largest even integer not
greater than x.

We will employ methods similar to those used in [1], [21], and [23]. We will
also introduce and apply a concept from additive number theory generalizing the
famous but not yet completely understood Sidon-sequences. A Sidon-sequence, as
first studied by Sidon in 1993 [24], is a sequence of distinct integers {xj,x2,...}
with the property that the sums x; + x; are all distinct or, equivalently, that the
equation x; + x; — x; — x; = 0 is satisfied only in the trivial case of {7, j} = {k,/}.

It follows from a 1941 paper of Erdés and Turan [14] (and was independently
proved by Lindstrom in 1969 [20]) that in the interval [1, n], a Sidon-sequence can
have at most n'/2 +n'/* + 1 elements. In 1944 Erdés [12] and Chowla [9] inde-
pendently proved that a Sidon-sequence in [1,7] with at least n' — n%/1¢ elements
can indeed be found. It is a $1,000 Erd6s problem to prove or disprove that the
correct maximal cardinality differs from /n by a constant. These and other results
on Sidon-sets and related questions can be found in Erdés’s and Freud’s excellent
survey [13], as well as in [15] and [16].

In this paper we are interested in the following generalization. Let S be a set of
integers, and suppose that the congruence &;x; + &x +---+¢&x, =0 mod n,
whereg; =0, + 1 and x; e Sfori=1,2,... ¢ only holds in the trivial case, that is
when ¢; =0 for all i =1,2,...,¢ or when the same x; appears with both a coef-
ficient of 1 and of —1. We here call such sets Sidon-type sets of strength t, and
denote their maximum cardinality (they clearly must be finite) by s(n, 7). It is
obvious that s(n,1) =n — 1, and it is also easy to see that s(n,2) = |(n—1)/2].
Here we find the following lower bound for s(n,3): (i)s(n,3) > |n/4] is n is even;
(i) s(n,3) = |(n+ 1)/6] if n is odd and has no divisors congruent to 5 mod 6; and
(iii) s(n,3) > @gpwn if n is odd and p is its smallest divisor which is congruent to 5
mod 6. We show how Sidon-type sets of strength 3 can be used to construct
spherical 3-designs. We also conjecture that our lower bound gives the true value
of s(n, 3) (this has been verified for n < 125), which in part supports our conjecture
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for M (3) above. Note also that a Sidon-type set of strength 4 forms a Sidon-
sequence in [1,7], hence s(n,4) < n'/? +n'/* 4 1.

2. Harmonic Polynomials

To construct spherical designs, we will use the following equivalent definition, cf.

[11]:
A finite subset X of S¢ is a spherical t-design, if and only if

> S(x)=0

xeX
Sfor all homogeneous harmonic polynomials f(xo,x1,...,x4) with 1 < deg f < ¢
A polynomial f(xg,x1,...,x4) is called harmonic if it satisfies Laplace’s equa-

tion Af = 0. The set of homogeneous harmonic polynomials of degree s forms a
vector space Harmg.(s), with

-2
dimHarde(s):(S_;d)—(S_'—j )

In particular, for s < 3, we see that @, forms a basis for Harm,(s) where
D) ={x]0<i<d},
@, ={xx;0<i<j<d}U{x]—x},|0<i<d—1}, and
@3 = {xixx]0 < i <j <k <d}U{x] —3x:x7|0 < i #j < d}.

We associate matrices with spherical designs in the following way. For a

set X = {ux = (Uok, Uik, - - -, ua) € RYTY1 < k <n} we consider the (d+1) xn
matrix U with column vectors uy,up, ..., u,.
For a polynomial f(xo,xi,...,xs) we define

£ =3 flw).
k=1

With these notations, X is a spherical t-design, if and only if

d
Zuszl forl <k <n, and
() =

t

f(U) =0 forevery polynomial f € U D,.
s=1

3. Antipodal Designs

It is well known and most obvious that vertices of the generalized regular octa-
hedra form (tight) 3-designs on S¢:
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Construction 3.1. The matrix (I-I) provides a spherical 3-design on S of size
2d 4+ 2. Here lis the d + 1 by d + 1 identity matrix.

More generally, antipodal point sets on S (sets where x € S¢ implies —x € S¢)
can be used to construct spherical 3-designs. Equations (*) show that if ¢ is even
and A is the matrix of a t-design on S, then (the set of column vectors of) the
matrix (4—A) provides a (¢ + 1)-design on S“. Since 2-designs on S¢ exist for
sizes n > d + 2 when d is odd and forn = d + 2,n > d + 4 when d is even [21], we
immediately have

Proposition 3.2. Let n be an even integer such that n > 2d +4, except for
n = 2d + 6 when d is even. Then a spherical 3-design on S¢ of size n exists.

Primarily with the cases of even d in mind, we provide the following

Construction 3.3. Suppose that A is the matrix of a 2-design on S~ of size ny, J is
the 1 by m matrix of all U’s, o =+/d/(d+1), and 6 =+/1/(d+1). Then

M=% :fﬁ) is a 3-design of size 2ny on S,

Proof. For A = (uix)g<i<q 11<k<n WE have

d—1
Zuszl forl <k <n;, and
i=0
n

2 _ 2 ~

Uy — Uiy, =0 for0<i<d-2.
k=0

Therefore, M satisfies (*) for = 3 if and only if the equations

2
o> +6>=1and 12%—52~2n1 =0

hold. These two equations are equivalent to

d 1
2 2
OC_alJrlandé S d+17 O

As a corollary, we get

Proposition 3.4. Let n be an even integer such that n > 2d + 2, except for
n > 2d + 4 when d is odd. Then a spherical 3-design on S? of size n exists.

4. Sidon-Type Sets

For other constructions of spherical 3-designs, we will use what we call Sidon-type
sets of strength 3.

Let R be a ring with identity, S a subset of R, and ¢ a positive integer. We
say that S is a Sidon-type set of strength t in R if no non-trivial-trivial sum of the
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form
E1X1 + X2+ -+ &rxyy

where ¢&1,&,...,& =0, +1 and xj,x3,...,x; are (not necessarily distinct) ele-
ments of S, equals 0. We call such a sum non-trivial if no x; appears in it with both
a coefficient of 1 and —1, and if at least one ¢; is non-zero (i = 1,2,...,1).

Here we are only interested in Sidon-type sets in Z,, and we think of these
sets as integer subsets of the interval [1,n]. The cardinality of a largest Sidon-type
set of strength 7 in Z, will be denoted by s(n, 7). It is obvious that s(n,1) =n — 1
(take all integers from 1 to n — 1), and it is easy to see that s(n,2) = [(n —1)/2]
(S cannot contain both x and n — x, but it can consist of all integers up to
[(n—1)/2]). For t = 3 we give a constructive proof for the following.

Theorem 4.1.

(1) s(n,3) = |n/4] if n is even;
(i) s(n,3) > [(n+1)/6] if nis odd and has no divisors congruent to 5 mod 6; and

(iii) s(m,3) > (”Jg—;)" if nis odd and p is its smallest divisor which is congruent to 5
mod 6.

Proof. We can always take all the odd integers up to (but not including) n/3,
proving (ii). When n is even, we can take all the odd integers up to (but not
including) n/2, which proves (i).

Now suppose that n is odd and that there is a non-negative integer ¢ such that
p = 6q + 5 divides n. We define

S={ap+2b+1] a=0,1,....,n/p—1, b=0,1,...,q}.
We see that S has cardinality (p + 1)n/(6p). To verify that S is a Sidon-type set of
strength 3, suppose that n divides
X = &1X] + &Xy + &3X3
= (e1a1 + &2a2 + &3x3)p + 2(e1b1 + &202 + €3b3) + &1 + &2 + ¢3.
This implies that
y=2(e1h) + &by + &3x3) + &1 + & + &

is divisible by p, but since |y| < 6¢ + 3 and p = 6g + 5, this can only happen if
y = 0. Since 0 is an even number, either all ¢'s are equal to 0 (a trivial sum), or
exactly one ¢, say ¢, is 0. In the latter case, since b,,b3 > 0, we must have
& = —e&3, which implies that b, = b3. In this case we also get

n
| X| = |(e1a1 + &2a2 + &3a3)p| = |ax — as|p < (;— 1>p <n,

so n can only divide x if x = 0. But then a; = a3, hence x, = x3, and we again
have the trivial sum. O
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We performed a computer search for values of s(n,3) for n < 125, and found
that in all cases the true value agreed with the lower bound found in Theorem 4.1.
Therefore we state

Conjecture 4.2. Theorem 4.1 gives the exact value of s(n,3). In particular,

(i) s(n,3) < n/4, with equality if and only if n is divisible by 4; and
(ii) if nis odd, then s(n,3) < n/5, with equality if and only if n is divisible by 5.

5. Regular 3-Designs

It is well known and is easy to check that the vertices of a regular n-gon where
n>t+ 1 form a t-design on S'. In this section we investigate a generalization of
this for dimensions d > 1, where d is odd.

For positive integers m and n we define the vectors s(m) and ¢(m) in R" to be

s(m) = (sin (2’1—” m) ,sin (2771 2m> ,...,sin <27n nm)) and
c(m) = <cos (Znn m),cos <2nn Zm) ,...,CO8 <2nn nm))

Now let e > 0 and m;,my,...,m, be integers, and set S = {my,my,...,m,}.
We define the matrix A(S) to be the 2(e) x n matrix with row vectors s(m;), ¢(my),
s(my), c(my), ..., s(m,), c(m,).

Lemma 5.1. Let e be a positive integer, s =1, 2, or 3, and suppose that S =
{my,my,...,m,} is a Sidon-type set of strength s. We define the matrix A = A(S)
as above. If f: R* — R is a polynomial such that f € @y, then f(A) = 0.
Proof. The statement is well known for s = 1: setting z; = cos(Zm;) + isin(Zm;),
we see that, since z; # 1 when m; is not divisible by n, we have Y, _, z}‘ =0 for
everyj=1,2,...,e.

Our claims for the cases of s = 2 when f is square-free and of s = 3 (and f any
homogeneous cubic polynomial) follow from the s = 1 case after repeated use of
the trigonometric identities

sinxsin y = Hcos(x — y) — cos(x + y)],
sinxcosy = J[sin(x + y) + sin(x — »)], and
cosxcosy = 1[cos(x + ) + cos(x — y)].

Finally, when f =x? —x7,,,i=0,1,...,d — 1, we get

1 n 1 n
A) == — = =0.
f(4) 2;0080 2/‘Z:;coso 0 O

We have the following corollary.
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Construction 5.2. Suppose that d is an odd positive integer, e = (d +1)/2, s =1, 2,
or 3, and that S = {my,my, ... ,m.} is a Sidon-type set of strength s. Then the n
column vectors of the matrix M(S) = \/2/(d + 1) - A(S) form a spherical s-design
on S9.

The s-designs constructed with Construction 5.2 will be called regular s-designs.
We note that Lemma 5.1 and Construction 5.2 are false for strengths s > 4 (see [1]).
As Construction 5.2 provides spherical 3-designs on S¢ with s(n,3) > (d +1)/2,
we have

Proposition 5.3. Suppose that d is an odd positive integer. Regular 3-designs of size n
on S? exist when

(1) niseven and n > 2d + 2;

(i1) nis odd and n > 3d + 2; and

(ii1) }; is (zidcg’ and n > #(36] + 3), where p is a divisor of n which is congruent to
mod 6.

In particular, there are regular 3-designs of size n on S¢ when n is an odd integer
which is divisible by 5 and n > 5(d + 1) /2.

Conjecture 4.2 implies that Proposition 5.3 characterizes all values of n for
which regular 3-designs exist on S¢. In particular, we believe that no regular 3-
design exists for odd values of n with n < 5(d + 1)/2 (this has been verified for
d <49).

6. Other Spherical 3-Designs

We have just seen constructions for 3-designs on S for all odd values of n when
n>5(d+1)/2,dis odd, and n is divisible by 5. In this section we will construct 3-
designs on S? of size n for every odd value of n with n > max{5(d + 1)/2,2d + 7}.

Construction 6.1. Let dy and d, be positive even integers with d = dy + dy — 1, let ny
and ny be positive integers with n = ny + ny, and suppose that diyn; > dyn,. Suppose
further that A is (the matrix of, see section 2) a reqular 3-design of size ny on S?, and
that C is a regular 3-design of size ny on S“~'. Then the n column vectors of the
matrix M = (4 g), where A = (j;) and o and f are defined below, form a 3-

A
design on S°. ’

Proof. M satisfies (*) if and only if the equations

) di )

=1and
ad1+dz+ﬂ d +d, an

ny np ni
+ o’ 2

2 _ —0
dl d1+d2 ﬂd1+d2
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hold (see proof of Construction 3.3). The two equations are equivalent to

don n

2 212 2 2

o-=1——"and - =1+—.

din; h ny

We see that o is real iff diny > dhn,, as was assumed. O

A corollary is the following.

Proposition 6.2. Let d and n be odd integers such that n > max{5(d + 1)/2,2d + 7}.
Then there are 3-designs of size n on S°.

Proof. The construction is given in 6.1 when takingd), =2, d, =d — 1, ny =n— 35,
and ny = 5. The necessary inequalities all hold: d\n; > dony, ny > 2d +2 (n; is
even, see Proposition 5.3 (i)), and n; > 4 (C is a 3-design on the circle, see Propo-
sition 5.3 (ii)). U

We now turn to the case when d is even.

Construction 6.3. Let di and dy be positive even integers with d = d\ + d», let n

and ny be positive integers with n = 2ny + ny, and suppose that 2dyn; > (d> + 1)n,.

Suppose further that A is a reqular 2-design of size ny on S*~', and that C is a reg-

ular 3-design of size ny on S“~1. Then the n column vectors of the matrix M =
A, —ady  C

(7)’,4]2 —;’A; 0 |, where A = (j;), J is the 1 by ny matrix of all I's, and o, 3, and
) 0

o5 =07
0 are defined below, form a 3-design on S¢.

Proof. M satisfies (*) if and only if the equations
d, d

azdl +db +ﬂ2d1 +d> +o=1,
Z'_? ” dlz-rll-ldz - d12-|n-ld2 =0
F dlzzldz o =0

hold (see again the proof of Construction 3.3). The four equations are equivalent
to the following three:

) dy + d» <1_(d2+1)n2)

* Tditd 1 2din
dy +d n
2 1 +dy 2
T ("
B +d1+d2+1< +2n1>’and

1 n
2 2
0 S di+dyr+ 1 <1+2n1)'

We see that o is real iff 2din; > (d> + 1)ny, as was assumed. O
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This gives us the following corollary.

Proposition 6.4. Let d be even and n odd, such that n > max{5(d +1)/2,2d + 7}.
Then there are 3-designs of size n on S°.

Proof. The construction is given in 6.3 when taking d; =2, &, =d —2, nj =
(n—15)/2, and n, = 5. The necessary inequalities all hold: 2d\n; > (d> + 1)na,
ny >d+ 1 (Construction 5.2 provides regular 2-designs on S9~! when d — 1 is
odd and s(n;,2) = [(n; — 1)/2] = d/2), and finall n, > 4 (see Proposition 5.3(ii)).

Ul

7. Summary of Results
We summarize our results in the following theorem.

Theorem 7.1. No spherical 3-design exists on S¢ of size n < 2d + 2. Spherical 3-
designs on S9 exist when

(i) nisevenandn > 2(d+1);
(i) nis odd and n > 5(d 4+ 1)/2, except ford =2 andn=9,d =4 and n = 13.

Proof. The first statement is a reiteration of n > N;(3) = 2d + 2 (see [11] for
more). The cases when 7 is even are either from Proposition 3.2 or Proposition 3.4.
The cases of d = 1 and d = 3 of (ii) are stated in Proposition 5.3 (ii), and the case
of d =5 and n = 15 is a special case of Proposition 5.3 (iii). All other cases in (ii)
follow from Propositions 6.2 and 6.4. O

According to Theorem 7.1, the number of different values of n for which the
problem is open is |(d +2)/4] when d # 2 or 4. Only one case is unsettled for
d =3 and d = 5, and at most two cases are open when d < 9. We state our

Conjecture 7.2. Theorem 7.1 gives a complete list of all possible sizes n for which
spherical 3-design on S? exist. In particular, M}(3) = |5d/2 + 3],, where d # 2
or 4 and |x|, is the largest even integer not greater than x, M}(3) =10, and
M;(3) =14

Conjecture 7.2 is supported by our previously stated belief that no regular
3-designs exist with n < 5(d +1)/2 when n is odd (which has been verified for
d < 49); and was also numerically demonstrated for d = 2 by Hardin and Sloane
[18].

Acknowledgments. I would like to thank Charles A. Ross for his computer justification of
Conjecture 4.2, and Roébert Freud and Bruce Reznick for helpful comments.
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Note added in proof. An upcoming paper of Boyvalenkov, Danev, and Nikova contains new
nonexistence results, such as the nonexistence of a 7 point 3-design on S2.



