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Abstract. Spherical t-designs are Chebyshev-type averaging sets on the d-sphere Sd HRd�1
which are exact for polynomials of degree at most t. This concept was introduced in 1977 by
Delsarte, Goethals, and Seidel, who also found the minimum possible size of such designs,
in particular, that the number of points in a 3-design on Sd must be at least nV 2d � 2. In
this paper we give explicit constructions for spherical 3-designs on Sd consisting of n points
for d � 1 and nV 4; d � 2 and n � 6; 8;V10; d � 3 and n � 8;V10; d � 4 and n � 10; 12;
V14; d V 5 and nV 5�d � 1�=2 odd or nV 2d � 2 even. We also provide some evidence
that 3-designs of other sizes do not exist. We will introduce and apply a concept from additive
number theory generalizing the classical Sidon-sequences. Namely, we study sets of integers
S for which the congruence e1x1 � e2x2 � � � � � etxt 1 0 mod n, where ei � 0;G1 and xi A S
�i � 1; 2; . . . ; t�, only holds in the trivial cases. We call such sets Sidon-type sets of strength
t, and denote their maximum cardinality by s�n; t�. We ®nd a lower bound for s�n; 3�, and
show how Sidon-type sets of strength 3 can be used to construct spherical 3-designs. We
also conjecture that our lower bound gives the true value of s�n; 3� (this has been veri®ed for
nU 125).

1. Introduction

We are interested in ®nding ®nite ``well balanced'' point sets on the surface of the
unit d-sphere Sd HRd�1. While it may be clear that vertices of regular polygons
form such sets on the circle S1, there is no natural way to generalize this for d V 2.
Of the numerous possible criteria for measuring how ``well balanced'' our point set
is (see e.g. [10]), one of the most useful and interesting one is that of the spherical
design, as introduced in a monumental paper by Delsarte, Goethals, and Seidel in
1977 [11].

A spherical t-design on Sd is a ®nite set of points X HSd for which the
Chebyshev-type quadrature formula
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is exact for all polynomials f �x� � f �x0; x1; . . . ; xd� of degree at most t �sd

denotes the surface measure on Sd�. In other words, X is a spherical t-design of
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Sd , if for every polynomial f �x� of degree t or less, the average value of f �x� over
the whole sphere is equal to the arithmetic average of its values on the ®nite set X .
General references on spherical designs include [11], [6], [5], and [22].

The existence of spherical designs for every t; d, and large enough n � jX j was
®rst proved by Seymour and Zaslavsky in 1984 [25], and general constructions
were ®rst given by the author in 1990 [3].

In [11], Delsarte, Goethals, and Seidel also proved that a spherical t-design on
Sd must have cardinality

nVNd�t� � bt=2c � d

d

� �
� b�tÿ 1�=2c � d

d

� �
:

A spherical t-design on Sd with cardinality Nd�t� is called tight. In 1980 Bannai
and Damerell [7], [8] proved that tight spherical designs for d V 2 exist only for
t � 1; 2; 3; 4; 5; 7 or 11. All tight t-designs are known, except for t � 4; 5, and 7. In
particular, there is a unique tight spherical 11-design (d � 23 and n � 196; 560).

Let Md�t� denote the minimum size of a spherical t-design on Sd , and let
M 0

d�t� denote the smallest integer such that for every nVM 0
d�t�, t-designs on Sd

exist on n nodes. We have Nd�t�UMd�t�UM 0
d�t�. Values of Md�t� and M 0

d�t� are
generally unknown when d V 2 and tV 3. For an upper bound on Md�t� and
M 0

d�t� see [5].
The case d � 1 is completely settled; it is easy to see that vertices of a regular

n-gon with nV t� 1 give a spherical t-design on the circle, hence N1�t� �M1�t��
M 0

1�t� � t� 1. (Hong [19] proved in 1982 that these are the unique t-designs on S1

when t� 1U nU 2t� 1.)
Much work has been done for d � 2. It is well known that N2�t� �M2�t� if

and only if t � 1 (2 antipodal points), t � 2 (4 vertices of a regular tetrahedron),
t � 3 (the regular octahedron), or t � 5 (the icosahedron). For t � 4 we have
N2�4� � 9, and there are designs of sizes n � 12; 14, and nV 16 [17]. Hardin and
Sloane [17] also exhibit numerical evidence that a 4-design on S2 does not exist for
n � 10; 11; 13, and 15; hence the conjectures M2�4� � 12 and M 0

2�4� � 16. Recent
papers of Reznick [23] and Hardin and Sloane [18] give constructions for t � 5 (in
which case N2�5� �M2�5� � 12) for n � 12; 16; 18; 20, and nV 22, and conjecture
that this list is complete, hence that M 0

2�5� � 22. In [18] Hardin and Sloane also
provide numeric evidence for what they believe is a complete set of possible sizes
for t � 6; 7; 8; 9; 10; 11, and 12. Their work indicates that for these values of t;
M 0

2�t� ÿM2�t� varies greatly between 2 �t � 12� and 12 �t � 7�.
Keeping t constant and letting the dimension vary, we ®rst note that Nd�1� �

Md�1� �M 0
d�1� � 2 for every d V 1. Mimura [21] settled the case t � 2 in 1990:

He proved that Md�2� � Nd�2� � d � 2, and that M 0
d�2� � d � 2 when d is odd

and M 0
d�2� � d � 4 when d is even. Much less has been known when tV 3. For

t � 3 the author conjectured that 3-designs on S2 do not exist on n � 7 or 9 points
�N2�3� � 6�, and this was recently supported by a powerful computer search done
by Hardin and Sloane [18]. In [17] Hardin and Sloane also present numerical evi-
dence for values of Md�4� and M 0

d�4� for d U 7. If their conjectures are valid, then
Md�4� �M 0

d�4� for d � 3; 4; 6, and 7, but M 0
d�4� ÿM 0

d�4� � 12 for d � 5.
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The goal of this paper is to provide constructions for 3-designs on Sd for all
values of n for which such designs exist of size n. Our results are summarized in the
table below.

d NNd (3) �Md (3) n

1 4 V 4
2 6 6, 8, V10
3 8 8, V10
4 10 10, 12, V14
5 12 12, V14
6 14 14, 16, V18
7 16 16, 18, V20
8 18 18, 20, V22
9 20 20, 22, V24
V5 2d � 2 V2d � 2 & even, V5(d � 1)/2 & odd

We believe that our list above is complete. In particular, we conjecture that
M 0

d�3� � b5d=2� 3c2, where d 0 2 or 4 and bxc2 is the largest even integer not
greater than x.

We will employ methods similar to those used in [1], [21], and [23]. We will
also introduce and apply a concept from additive number theory generalizing the
famous but not yet completely understood Sidon-sequences. A Sidon-sequence, as
®rst studied by Sidon in 1993 [24], is a sequence of distinct integers fx1; x2; . . .g
with the property that the sums xi � xj are all distinct or, equivalently, that the
equation xi � xj ÿ xk ÿ xl � 0 is satis®ed only in the trivial case of fi; jg � fk; lg.

It follows from a 1941 paper of ErdoÈs and TuraÂn [14] (and was independently
proved by LindstroÈm in 1969 [20]) that in the interval �1; n�, a Sidon-sequence can
have at most n1=2 � n1=4 � 1 elements. In 1944 ErdoÈs [12] and Chowla [9] inde-
pendently proved that a Sidon-sequence in �1; n� with at least n1 ÿ n5=16 elements
can indeed be found. It is a $1,000 ErdoÈs problem to prove or disprove that the
correct maximal cardinality di¨ers from

���
n
p

by a constant. These and other results
on Sidon-sets and related questions can be found in ErdoÈs's and Freud's excellent
survey [13], as well as in [15] and [16].

In this paper we are interested in the following generalization. Let S be a set of
integers, and suppose that the congruence e1x1 � e2x2 � � � � � etxt 1 0 mod n,
where ei � 0; G 1 and xi A S for i � 1; 2; . . . ; t, only holds in the trivial case, that is
when ei � 0 for all i � 1; 2; . . . ; t or when the same xi appears with both a coef-
®cient of 1 and of ÿ1. We here call such sets Sidon-type sets of strength t, and
denote their maximum cardinality (they clearly must be ®nite) by s�n; t�. It is
obvious that s�n; 1� � nÿ 1, and it is also easy to see that s�n; 2� � b�nÿ 1�=2c.
Here we ®nd the following lower bound for s�n; 3�: �i�s�n; 3�V bn=4c is n is even;
(ii) s�n; 3�V b�n� 1�=6c if n is odd and has no divisors congruent to 5 mod 6; and

(iii) s�n; 3�V �p�1�n
6p

if n is odd and p is its smallest divisor which is congruent to 5
mod 6. We show how Sidon-type sets of strength 3 can be used to construct
spherical 3-designs. We also conjecture that our lower bound gives the true value
of s�n; 3� (this has been veri®ed for nU 125), which in part supports our conjecture
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for M 0
d�3� above. Note also that a Sidon-type set of strength 4 forms a Sidon-

sequence in �1; n�, hence s�n; 4�U n1=2 � n1=4 � 1.

2. Harmonic Polynomials

To construct spherical designs, we will use the following equivalent de®nition, cf.
[11]:

A ®nite subset X of Sd is a spherical t-design, if and only ifX
x AX

f �x� � 0

for all homogeneous harmonic polynomials f �x0; x1; . . . ; xd� with 1U deg f U t.

A polynomial f �x0; x1; . . . ; xd� is called harmonic if it satis®es Laplace's equa-
tion Df � 0. The set of homogeneous harmonic polynomials of degree s forms a
vector space Harmd�1�s�, with

dim Harmd�1�s� � s� d

d

� �
ÿ s� d ÿ 2

d

� �
:

In particular, for sU 3, we see that Fs forms a basis for Harmd�1�s� where
F1 � fxij0U i U dg;
F2 � fxixjj0U i < j U dgU fx2

i ÿ x2
i�1j0U iU d ÿ 1g; and

F3 � fxixjxkj0U i < j < k U dgU fx3
i ÿ 3xix

2
j j0U i 0 j U dg:

We associate matrices with spherical designs in the following way. For a
set X � fuk � �uok; u1k; . . . ; udk� A Rd�1j1U k U ng we consider the �d � 1� � n

matrix U with column vectors u1; u2; . . . ; un.
For a polynomial f �x0; x1; . . . ; xd� we de®ne

f �U� �
Xn

k�1
f �uk�:

With these notations, X is a spherical t-design, if and only if

Xd

i�0
u2

ik � 1 for 1U k U n; and

f �U� � 0 for every polynomial f A 6
t

s�1
Fs:

���

3. Antipodal Designs

It is well known and most obvious that vertices of the generalized regular octa-
hedra form (tight) 3-designs on Sd :
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Construction 3.1. The matrix �IÿI� provides a spherical 3-design on Sd of size

2d � 2. Here I is the d � 1 by d � 1 identity matrix.

More generally, antipodal point sets on Sd (sets where x A Sd implies ÿx A Sd )
can be used to construct spherical 3-designs. Equations (*) show that if t is even
and A is the matrix of a t-design on Sd , then (the set of column vectors of) the
matrix �AÿA� provides a �t� 1�-design on Sd . Since 2-designs on Sd exist for
sizes nV d � 2 when d is odd and for n � d � 2; nV d � 4 when d is even [21], we
immediately have

Proposition 3.2. Let n be an even integer such that nV 2d � 4, except for

n � 2d � 6 when d is even. Then a spherical 3-design on Sd of size n exists.

Primarily with the cases of even d in mind, we provide the following

Construction 3.3. Suppose that A is the matrix of a 2-design on Sdÿ1 of size n1, J is

the 1 by n1 matrix of all 1's, a � ��������������������
d=�d � 1�p

, and d � ��������������������
1=�d � 1�p

. Then

M � �aA
dJ

ÿaA
ÿdJ
� is a 3-design of size 2n1 on Sd.

Proof. For A � �uik�0UiUdÿ1;1UkUn1
we have

Xdÿ1
i�0

u2
ik � 1 for 1U k U n1; and

Xn1

k�0
u2

ik ÿ u2
i�1;k � 0 for 0U i U d ÿ 2:

Therefore, M satis®es (*) for t � 3 if and only if the equations

a2 � d2 � 1 and a2 2n1

d
ÿ d2 � 2n1 � 0

hold. These two equations are equivalent to

a2 � d

d � 1
and d2 � 1

d � 1
: r

As a corollary, we get

Proposition 3.4. Let n be an even integer such that nV 2d � 2, except for

nV 2d � 4 when d is odd. Then a spherical 3-design on Sd of size n exists.

4. Sidon-Type Sets

For other constructions of spherical 3-designs, we will use what we call Sidon-type
sets of strength 3.

Let R be a ring with identity, S a subset of R, and t a positive integer. We
say that S is a Sidon-type set of strength t in R if no non-trivial-trivial sum of the
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form

e1x1 � e2x2 � � � � � etxt;

where e1; e2; . . . ; et � 0; G1 and x1; x2; . . . ; xt are (not necessarily distinct) ele-
ments of S, equals 0. We call such a sum non-trivial if no xi appears in it with both
a coe½cient of 1 and ÿ1, and if at least one ei is non-zero �i � 1; 2; . . . ; t�.

Here we are only interested in Sidon-type sets in Zn, and we think of these
sets as integer subsets of the interval �1; n�. The cardinality of a largest Sidon-type
set of strength t in Zn will be denoted by s�n; t�. It is obvious that s�n; 1� � nÿ 1
(take all integers from 1 to nÿ 1), and it is easy to see that s�n; 2� � b�nÿ 1�=2c
(S cannot contain both x and nÿ x, but it can consist of all integers up to
b�nÿ 1�=2c). For t � 3 we give a constructive proof for the following.

Theorem 4.1.

(i) s�n; 3�V bn=4c if n is even;
(ii) s�n; 3�V b�n� 1�=6c if n is odd and has no divisors congruent to 5 mod 6; and

(iii) s�n; 3�V �p�1�n
6p

if n is odd and p is its smallest divisor which is congruent to 5
mod 6.

Proof. We can always take all the odd integers up to (but not including) n=3,
proving (ii). When n is even, we can take all the odd integers up to (but not
including) n=2, which proves (i).

Now suppose that n is odd and that there is a non-negative integer q such that
p � 6q� 5 divides n. We de®ne

S � fap� 2b� 1j a � 0; 1; . . . ; n=pÿ 1; b � 0; 1; . . . ; qg:

We see that S has cardinality �p� 1�n=�6p�. To verify that S is a Sidon-type set of
strength 3, suppose that n divides

x � e1x1 � e2x2 � e3x3

� �e1a1 � e2a2 � e3x3�p� 2�e1b1 � e2b2 � e3b3� � e1 � e2 � e3:

This implies that

y � 2�e1b1 � e2b2 � e3x3� � e1 � e2 � e3

is divisible by p, but since jyjU 6q� 3 and p � 6q� 5, this can only happen if
y � 0. Since 0 is an even number, either all e0s are equal to 0 (a trivial sum), or
exactly one e, say e1, is 0. In the latter case, since b2; b3 V 0, we must have
e2 � ÿe3, which implies that b2 � b3. In this case we also get

jX j � j�e1a1 � e2a2 � e3a3�pj � ja2 ÿ a3jpU n

p
ÿ 1

� �
p < n;

so n can only divide x if x � 0. But then a2 � a3, hence x2 � x3, and we again
have the trivial sum. r
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We performed a computer search for values of s�n; 3� for nU 125, and found
that in all cases the true value agreed with the lower bound found in Theorem 4.1.
Therefore we state

Conjecture 4.2. Theorem 4:1 gives the exact value of s�n; 3�. In particular,

(i) s�n; 3�U n=4, with equality if and only if n is divisible by 4; and

(ii) if n is odd, then s�n; 3�U n=5, with equality if and only if n is divisible by 5.

5. Regular 3-Designs

It is well known and is easy to check that the vertices of a regular n-gon where
nV t� 1 form a t-design on S1. In this section we investigate a generalization of
this for dimensions d V 1, where d is odd.

For positive integers m and n we de®ne the vectors s�m� and c�m� in Rn to be

s�m� � sin
2p

n
m

� �
; sin

2p

n
2m

� �
; . . . ; sin

2p

n
nm

� �� �
and

c�m� � cos
2p

n
m

� �
; cos

2p

n
2m

� �
; . . . ; cos

2p

n
nm

� �� �
:

Now let e > 0 and m1;m2; . . . ;me be integers, and set S � fm1;m2; . . . ;meg.
We de®ne the matrix A�S� to be the 2�e� � n matrix with row vectors s�m1�; c�m1�;
s�m2�; c�m2�; . . . ; s�me�; c�me�.

Lemma 5.1. Let e be a positive integer, s � 1, 2, or 3, and suppose that S �
fm1;m2; . . . ;meg is a Sidon-type set of strength s. We de®ne the matrix A � A�S�
as above. If f : R2e ! R is a polynomial such that f A Fs, then f �A� � 0.

Proof. The statement is well known for s � 1: setting zj � cos�2p
n

mj� � i sin�2p
n

mj�,
we see that, since zj 0 1 when mj is not divisible by n, we have

Pn
k�1 zk

j � 0 for
every j � 1; 2; . . . ; e.

Our claims for the cases of s � 2 when f is square-free and of s � 3 (and f any
homogeneous cubic polynomial) follow from the s � 1 case after repeated use of
the trigonometric identities

sin x sin y � 1
2
�cos�xÿ y� ÿ cos�x� y��;

sin x cos y � 1
2
�sin�x� y� � sin�xÿ y��; and

cos x cos y � 1
2
�cos�x� y� � cos�xÿ y��:

Finally, when f � x2
i ÿ x2

i�1; i � 0; 1; . . . ; d ÿ 1, we get

f �A� � 1

2

Xn

k�1
cos 0ÿ 1

2

Xn

k�1
cos 0 � 0: r

We have the following corollary.
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Construction 5.2. Suppose that d is an odd positive integer, e � �d � 1�=2, s � 1, 2,
or 3, and that S � fm1;m2; . . . ;meg is a Sidon-type set of strength s. Then the n

column vectors of the matrix M�S� � ��������������������
2=�d � 1�p � A�S� form a spherical s-design

on Sd.

The s-designs constructed with Construction 5.2 will be called regular s-designs.
We note that Lemma 5.1 and Construction 5.2 are false for strengths sV 4 (see [1]).
As Construction 5.2 provides spherical 3-designs on Sd with s�n; 3�V �d � 1�=2,
we have

Proposition 5.3. Suppose that d is an odd positive integer. Regular 3-designs of size n

on Sd exist when

(i) n is even and nV 2d � 2;
(ii) n is odd and nV 3d � 2; and

(iii) n is odd and nV p
p�1 �3d � 3�, where p is a divisor of n which is congruent to

5 mod 6.

In particular, there are regular 3-designs of size n on Sd when n is an odd integer

which is divisible by 5 and nV 5�d � 1�=2.

Conjecture 4.2 implies that Proposition 5.3 characterizes all values of n for
which regular 3-designs exist on Sd . In particular, we believe that no regular 3-
design exists for odd values of n with n < 5�d � 1�=2 (this has been veri®ed for
d U 49).

6. Other Spherical 3-Designs

We have just seen constructions for 3-designs on Sd for all odd values of n when
nV 5�d � 1�=2, d is odd, and n is divisible by 5. In this section we will construct 3-
designs on Sd of size n for every odd value of n with nVmaxf5�d � 1�=2; 2d � 7g.

Construction 6.1. Let d1 and d2 be positive even integers with d � d1 � d2 ÿ 1, let n1

and n2 be positive integers with n � n1 � n2, and suppose that d1n1 V d2n2. Suppose

further that A is (the matrix of, see section 2) a regular 3-design of size n1 on Sd , and

that C is a regular 3-design of size n2 on Sd1ÿ1. Then the n column vectors of the

matrix M � �aA1

bA2

C
0 �, where A � �A1

A2
� and a and b are de®ned below, form a 3-

design on Sd.

Proof. M satis®es (*) if and only if the equations

a2 d1

d1 � d2
� b2 d2

d1 � d2
� 1 and

n2

d1
� a2 n1

d1 � d2
ÿ b2 n1

d1 � d2
� 0
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hold (see proof of Construction 3.3). The two equations are equivalent to

a2 � 1ÿ d2n2

d1n1
and b2 � 1� n2

n1
:

We see that a is real i¨ d1n1 V d2n2, as was assumed. r

A corollary is the following.

Proposition 6.2. Let d and n be odd integers such that nVmaxf5�d � 1�=2; 2d � 7g.
Then there are 3-designs of size n on Sd.

Proof. The construction is given in 6.1 when taking d1 � 2, d2 � d ÿ 1, n1 � nÿ 5,
and n2 � 5. The necessary inequalities all hold: d1n1 V d2n2, n1 V 2d � 2 (n1 is
even, see Proposition 5.3 (i)), and n2 V 4 (C is a 3-design on the circle, see Propo-
sition 5.3 (ii)). r

We now turn to the case when d is even.

Construction 6.3. Let d1 and d2 be positive even integers with d � d1 � d2, let n1

and n2 be positive integers with n � 2n1 � n2, and suppose that 2d1n1 V �d2 � 1�n2.

Suppose further that A is a regular 2-design of size n1 on Sdÿ1, and that C is a reg-

ular 3-design of size n2 on Sd1ÿ1. Then the n column vectors of the matrix M ��
aA1 ÿaA1 C
bA2 ÿbA2 0
dJ ÿdJ 0

�
, where A � �A1

A2
�, J is the 1 by n1 matrix of all 1's, and a; b, and

d are de®ned below, form a 3-design on Sd .

Proof. M satis®es (*) if and only if the equations

a2 d1

d1 � d2
� b2 d2

d1 � d2
� d2 � 1;

n2

d1
� a2 2n1

d1 � d2
ÿ b2 2n1

d1 � d2
� 0;

n2

d1
� a2 2n1

d1 � d2
ÿ d22n1 � 0; and

b2 2n1

d1 � d2
ÿ d22n1 � 0

hold (see again the proof of Construction 3.3). The four equations are equivalent
to the following three:

a2 � d1 � d2

d1 � d2 � 1
1ÿ �d2 � 1�n2

2d1n1

� �
;

b2 � d1 � d2

d1 � d2 � 1
1� n2

2n1

� �
; and

d2 � 1

d1 � d2 � 1
1� n2

2n1

� �
:

We see that a is real i¨ 2d1n1 V �d2 � 1�n2, as was assumed. r
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This gives us the following corollary.

Proposition 6.4. Let d be even and n odd, such that nVmaxf5�d � 1�=2; 2d � 7g.
Then there are 3-designs of size n on Sd.

Proof. The construction is given in 6.3 when taking d1 � 2, d2 � d ÿ 2, n1 �
�nÿ 5�=2, and n2 � 5. The necessary inequalities all hold: 2d1n1 V �d2 � 1�n2,
n1 V d � 1 (Construction 5.2 provides regular 2-designs on Sdÿ1 when d ÿ 1 is
odd and s�n1; 2� � b�n1 ÿ 1�=2cV d=2�, and ®nall n2 V 4 (see Proposition 5.3(ii)).

r

7. Summary of Results

We summarize our results in the following theorem.

Theorem 7.1. No spherical 3-design exists on Sd of size n < 2d � 2. Spherical 3-

designs on Sd exist when

(i) n is even and nV 2�d � 1�;
(ii) n is odd and nV 5�d � 1�=2, except for d � 2 and n � 9, d � 4 and n � 13.

Proof. The ®rst statement is a reiteration of nVNd�3� � 2d � 2 (see [11] for
more). The cases when n is even are either from Proposition 3.2 or Proposition 3.4.
The cases of d � 1 and d � 3 of (ii) are stated in Proposition 5.3 (ii), and the case
of d � 5 and n � 15 is a special case of Proposition 5.3 (iii). All other cases in (ii)
follow from Propositions 6.2 and 6.4. r

According to Theorem 7.1, the number of di¨erent values of n for which the
problem is open is b�d � 2�=4c when d 0 2 or 4. Only one case is unsettled for
d � 3 and d � 5, and at most two cases are open when d U 9. We state our

Conjecture 7.2. Theorem 7:1 gives a complete list of all possible sizes n for which

spherical 3-design on Sd exist. In particular, M 0
d�3� � b5d=2� 3c2, where d 0 2

or 4 and bxc2 is the largest even integer not greater than x, M 0
2�3� � 10, and

M 0
4�3� � 14.

Conjecture 7.2 is supported by our previously stated belief that no regular
3-designs exist with n < 5�d � 1�=2 when n is odd (which has been veri®ed for
d U 49); and was also numerically demonstrated for d � 2 by Hardin and Sloane
[18].
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Note added in proof. An upcoming paper of Boyvalenkov, Danev, and Nikova contains new
nonexistence results, such as the nonexistence of a 7 point 3-design on S2.

Constructions of Spherical 3-Designs 107


