arXiv:2404.15547v1 [cond-mat.str-el] 23 Apr 2024

Fractional quantum Hall effect of partons and the nature of the 8/17 state in the
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We consider the fractional quantum Hall effect (FQHE) at the filling factor 8/17, where signatures
of incompressibility have been observed in the zeroth Landau level of bilayer graphene. We propose
an Abelian state described by the “(8/3)213” parton wave function, where a parton itself forms an
FQHE state. This state is topologically distinct from the 8/17 Levin-Halperin state, a daughter state
of the Moore-Read state. We carry out extensive numerical exact diagonalization of the Coulomb
interaction at 8/17 in the zeroth Landau level of bilayer graphene but find that our results cannot
conclusively determine the topological order of the underlying ground state. We work out the low-
energy effective theory of the (8/3)21° edge and make predictions for experimentally measurable
properties of the state which can tell it apart from the 8/17 Levin-Halperin state.

The fractional quantum Hall effect (FQHE) [1, 2] has
underpinned major developments in the field of strongly
interacting topological phases of matter. The FQHE is
observed in cryogenic two-dimensional systems placed in
a perpendicular magnetic field and manifests itself as pre-
cisely quantized plateaux in the Hall resistance at cer-
tain special fractions. The FQHE phenomena arise from
complex many-particle correlations that are character-
ized by topological order and long-range quantum en-
tanglement [3]. Starting with the work of Laughlin [2],
numerous schemes have been proposed to build these
many-body correlations to capture the myriad of frac-
tions observed. These include the Haldane-Halperin hi-
erarchical construction [4, 5], Jain’s composite fermion
(CF) [6] and parton [7] theories, deploying techniques of
conformal field theory (CFT) [8], and many more.

The Haldane-Halperin hierarchy postulates that the
quasiholes or quasiparticle excitations of a parent FQHE
state condense into a daughter FQHE state and this
scheme can produce candidate states for any odd-
denominator fraction [4, 5]. Jain’s CF theory builds
many-particle correlations by the process of vortex at-
tachment wherein electrons bind zeros of the many-body
wave function to turn into CFs which to the zeroth-order
approximation are taken to be non-interacting [6]. A
vast majority of the FQHE phenomenology, especially
that observed in the lowest Landau level (LLL), is well-
described by the CF theory. In particular, the CF theory
explains why the strongest fractions observed in the LLL
take the form v=n/(2pn+1), with n,p positive integers,
as these corresponds to the v*=n integer quantum Hall
(IQHE) states of CFs. The theory of free CFs also pro-
duces states only at odd-denominator fractions.

The experimental observation of a plateau at filling fac-
tor ¥=5/2 in the second Landau level (SLL) [9] showed
that FQHE could also arise at even-denominator frac-

tions. Moore and Read [10], using the methods of CFT,
postulated a non-Abelian Pfaffian (Pf) wave function to
describe this even-denominator state which was subse-
quently shown to give a good representation of the exact
SLL Coulomb ground state at half-filling [11, 12]. Read
and Rezayi [13] then generalized the Moore-Read con-
struction to produce a family of states, some of which
can capture other experimentally observed plateaux in
the SLL [14, 15]. Some experimentally observed frac-
tions in the SLL still lie beyond the purview of the afore-
mentioned theories [16, 17]. In particular, signatures of
FQHE have been observed in the zeroth LL (ZLL) of
bilayer graphene (BLG), which is believed to stabilize
states analogous to those in the SLL, at fractions 6/13
and 8/17 and their hole-conjugates 7/13 and 9/17 [18-
21] (Throughout this work, states related by particle-hole
symmetry would be considered on an equal footing and
thus it suffices to just consider ¥<1/2.).

Levin and Halperin (LH) [22] carried out a hierarchical
construction in which the quasiholes (ghs) or quasipar-
ticles (gps) of the Pf state or its hole-conjugate called
the anti-Pfaffian (aPf) [23, 24], condense into a daughter
Laughlin state. At the first level of the hierarchy, con-
densing the qps and ghs of the Pf and aPf states produces
four states that precisely occur at the above-mentioned
fillings of 7/13 (qps of Pf), 8/17 (qhs of Pf), 6/13 (qps
of aPf), and 9/17 (ghs of aPf). In this work, we focus
on the 8/17 state and test if the LH construction gives
a viable candidate to describe the Coulomb ground state
in the ZLL of BLG. We note that FQHE at 3/8 in the
SLL has been observed [16, 17] and this fraction still lies
beyond the realm of all the theories mentioned above.

Very recently, it has been observed that in wide quan-
tum wells (WQWSs) with increasing density, the LLL
states at ¥=7/13 and v=8/17 become stronger in con-
junction with the strengthening of the 1/2 state [25].
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Theoretical calculations [26, 27] and the experimental
observations suggest that the 1/2 state lies in the topo-
logical phase of the Pf state. Therefore, the 7/13 and
8/17 states seen in the LLL in WQWs are expected to
be described by the LH daughter states of the Pf.

In recent work, a parton [7] based sequence has been
proposed to capture all of the experimentally observed
fractions in the SLL in the vicinity of half-filling [28-31]
(The only other states observed in the SLL lie in the
n/(4n£1) Jain sequence and these are expected to be
analogous to their LLL counterparts [30].). Interestingly,
8/17 is the only fraction where signatures of incompress-
ibility have been seen that does not fit the proposed par-
ton sequence. Other than the 8/17 Jain state, which
is not expected to be relevant for SLL, no parton se-
quence is known that has 8/17 as its member. In the
parton theory [7], FQHE states are obtained from prod-
ucts of IQHE states that the non-interacting partons fill.
We generalize this construction to postulate that in cer-
tain scenarios, the partons themselves can be strongly
interacting and can undergo FQHE. Using this idea, we
produce a new candidate state at 8/17 that is closely re-
lated to the SLL parton sequence. We shall only consider
single-component physics since the experiments are done
in the ZLL of BLG with a fixed spin and valley index.

Parton theory.—Jain generalized his CF construc-
tion to the parton theory in which FQHE states of elec-
trons are constructed from IQHE states of sub-particles
called partons [7]. The electron is partitioned into odd-
l species of partons, labeled by a=1,2,---,1, and the «
parton species is placed in an IQHE state at filling n,.
This parton state, denoted by “nins---n;”, is described
by the wave function [7]

l
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where ®,, is the Slater determinant state of n filled LLs
of electrons with ®_,,=®;=[®,]*, and Prr1, implements
projection to the LLL as is required in the infinite field
limit. Using the fact that the partons are exposed to
the same external magnetic field as the electrons and
have the density as the electrons, one can show that
the charge of the o parton species q,=—ev/ns, where
v=[>"! _, n3"71 [7]. The Wen-Zee shift [32] of the par-
ton state of Eq. (1) is S= Zlazl nq and is thus always an
integer. However, an FQHE state can also have a frac-
tional shift [22, 33-35], and such states (in particular,
a family of LH states that include 8/17 have fractional
shifts) are not captured by the wave function of Eq. (1).
Many well-known FQHE states can be obtained as
parton states. The 1/3 Laughlin state [2] is a 111 par-

ton state described by the wave function \IJ]f;‘élgh“n:@%.

The n/(2pn+l) Jain states [6] are £nll--- parton
states and these are described by the wave function
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that lie beyond those captured by free CFs, have been
constructed to describe the ground state and also the
excitations of many FQHE states [31, 36-45].

Many states observed in the SLL can be described by
the 7212 states that are described by the wave function
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where \Ilijlén_l) is the n/(2n—1) Jain state [6]. The ~
sign in Eq. (3) indicates that the states on the two sides
of the sign differ in the details of how the LLL projection
is carried out. Although such details do affect the micro-
scopic form of the wave function, we anticipate that the
universality class of the underlying topological phase re-
mains unchanged [46, 47]. Only the wave function given
in the right-most side of Eq. (3) is readily amenable to
numerics and, thus, it is this form that we shall use in all
our numerical calculations.

The 1213 is topologically equivalent (and nearly iden-
tical) to the 2/3 Jain state [46] and the latter is known
to give a reasonable description of the Coulomb ground
state in the entire ZLL of BLG [42]. The 2213 is a
state that occurs at half-filling and lies in the same uni-
versality class as the aPf [28]. Encouragingly, the 2213
provides a better representation of the Coulomb ground
state in the ZLL of BLG near the SLL Coulomb point
than the Pf state [42]. The n=3 member of the sequence
given in Eq. (2) is a candidate state that occurs at 6/13
where FQHE has been observed both in the SLL [17]
and the ZLL of BLG [18-21]. The 3213 wave function
has been shown to give a good description of the exact
SLL Coulomb ground state [48] and in the Supplemental
Material (SM) [49], we show that it gives a good descrip-
tion of the ground state in the ZLL of BLG too. It turns
out that the 3213 state lies in the same universality class
as the corresponding LH state [48].

Surprisingly, although the fraction 8/17 does not ap-
pear for any integer n in the sequence described in Eq. (2)
it does occur if we set n=8/3. For the 8/17 FQHE state
of our interest, we thus consider the parton state denoted
as “(8/3)213” and described by the wave function
Vspalals
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where \118/13573LLL<I>%(I>8/3 and the wave function ®g/3 is
constructed by filling the lowest two LLs of electrons and
forming the 2/3 Jain state (or equivalently, the particle-
hole conjugate of the 1/3 Laughlin state) in the third
LL. The 8/3 wave function cannot be broken down into
a product of IQHE states as it has a fractional shift of
5/2. The 8/17 state of Eq. (3) occurs at shift —3/2 which
is different from the LH state (shift 5/2) and therefore
the two states are topologically distinct.

To draw parallels with CFs, we mention here that
many FQHE states of electrons can be understood as



arising from FQHE of CFs that stems from the resid-
ual interaction between them [33, 35, 50]. These include
fractions such as 4/11, 5/13 and 4/13, where FQHE has
been observed in the LLL [51-54]. Recently, it has been
proposed that these fractions can be understood as aris-
ing from IQHE of partons [41, 43, 55] but the 8/17 state
of our interest is outside the purview of IQHE of partons.

Numerical results.—All our calculations are car-
ried out on the Haldane sphere [4] in which N elec-
trons reside on a spherical surface that is threaded by
a flux of strength 2Qhc/e emanating from a magnetic
monopole placed at the center of the sphere. The ra-
dius of the sphere R is related to the flux as R=+/Q¥,
where ¢=+/hc/(eB) is the magnetic length at the field
B. A quantum Hall state on the sphere occurs when
2Q=N/v—S8, where S is the Wen-Zee shift [32], a topo-
logical quantum number that is a characteristic feature
of the state. Owing to the rotational symmetry, the total
orbital angular momentum L and its z-component L, are
good quantum numbers. In particular, incompressible
quantum Hall liquid states are uniform i.e., have L=0.

In the disk geometry, the electron-electron interaction
in the ZLL of BLG is simulated by the form factor (the
magnetic length is set to unity)
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where k is the momentum, L,,(z) is the mth ordered
Laguerre polynomial, and 6 is a parameter that depends
on the external magnetic field. For typical BLG sam-
ples, B=93.06[cot(#)]? [in Tesla] [56, 57]. Using the form
factor given in Eq. (4), one can compute the disk pseu-
dopotentials in the ZLL of BLG [57] and an analogous
computation can be carried out to obtain the spherical
pseudopotentials [42]. The contribution of the positively
charged background, which is required to estimate the
charge gap shown below, is accounted for by computing
the charging energy using these pseudopotentials [12].

In Fig. 1 we show overlaps of the (8/3)213 with the ex-
act Coulomb ground state in the ZLL of BLG for N=12.
The 8/3 state is constructed by brute-force projection
to the LLL and we then use this 8/3 state to construct
the 8/17 state given in Eq. (3) following the method out-
lined in Refs. [30, 58] that involves expanding the state
in the space of all L=0 states. The overlaps of the parton
state with the exact state are small for all values of # in
the ZLL of BLG indicating that the parton state does
not give a good microscopic description of the experi-
mentally observed 8/17 state [19-21, 59]. Nevertheless,
the parton state may lie in the same topological phase
as the experimentally realized 8/17 state. For the parton
state, the only system accessible to ED is N=12 since the
next system size of N=20 is currently beyond our reach
(Hilbert space dimension ~1.43x107).

The LH state is not readily amenable to a numeri-
cal construction and we have not been able to obtain

its wave function. However, we can carry out ED to ob-
tain the ground state for N=20 (Hilbert space dimension
~1.38%107) at the shift corresponding to the LH state.
In Fig. 2(b) we show the ground state L as a function of
@ for this system. There is a narrow region of parameter
space of small to intermediate fields where the ground
state at the LH shift in the ZLL of BLG for this system
is uniform (Moore-Read quasiholes give a good descrip-
tion of the exact Coulomb ground state here [49].) while
the exact SLL Coulomb ground state (that occurs at zero
field) at this shift is not uniform. Note that for N=12 at
the LH shift, the ground state has L=0 irrespective of 6.

In Figs. 1 and 2(a), we show the charge and neutral
gaps at the flux corresponding to the (8/3)213 and the
LH state in the ZLL of BLG for N=12 electrons. The
charge gap is the energy to create a pair of fundamental
ap-qh (the smallest charged gh in the (8/3)21% and the
LH state has charge ¢/17). The neutral gap is the en-
ergy difference between the ground state and the lowest-
lying excitation. For both fluxes, the charge gap is not
consistently positive and the neutral gap is low in the
vicinity of the SLL point. Furthermore, the charge gap
is much smaller than the neutral gap while in the ther-
modynamic limit, we expect the charge gap to be greater
than the neutral gap. These results suggest the presence
of strong finite-size effects (as has been routinely seen in
numerics carried out in the SLL) and indicate that there
could be aliasing effects in the spherical geometry [60]
where the same system can correspond to two different
states. Thus, our numerical results are inconclusive in
unambiguously identifying the topological order at 8/17.
Next, we turn to effective field theory to make predic-
tions that are experimentally measurable and can aid in
identifying the underlying order at 8/17.
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FIG. 1. (color online) Overlaps and gaps of the (8/3)21% par-
ton state with the exact Coulomb ground state in the zeroth
Landau level of bilayer graphene at v=8/17 evaluated in the
spherical geometry using the spherical (filled symbols) and
disk (open symbols) pseudopotentials for N=12 electrons and
21=27 flux quanta as a function of the parameter 6, which is
related to the perpendicular magnetic field B=93.06[cot(0)]?
(see text).

Effective field theory.—The topological properties
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FIG. 2. (color online) (a) Same as Fig. 1 but at the LH flux
21=23 at v=8/17. (b) Total orbital angular momentum of the
exact Coulomb ground state in the zeroth Landau level of bi-
layer graphene at v=8/17 at the LH flux for N=20 electrons.

of the (8/3)213 state can be read-off from its K matrix [3,
61-63], charge vector ¢ and the spin-vector 5 [32]. A
straightforward extension of the derivation outlined in
Ref. [64] for the n21° states shows that the K, f and 5
for the (8/3)213 are given by

11 1 1 1 1 —3/2
1 -2-1-10 0 1
K=|1-1-2-3 0|.,t=|0] ands=| -1
1 -1-3-20 0 -1
10 0 0 -2 0 1

(5)

The filling factor and shift are obtained from

the K-matrix as [3] v=t"-K~'1=8/17 and
S=(2/v) (f*K~15)=-3/2. These values are con-
sistent with that determined from the microscopic wave
function of the state given in Eq. (3). The ground-state
degeneracy of the (8/3)213 state on a manifold with
genus g is [3] D=|Det(K)|?=349. Therefore, this state
presents an example of a single-component Abelian state
at v=p/q (with p,q coprime) which has a ground-state
degeneracy on the torus that is greater than g (See
Refs. [12, 40, 55, 64] for other examples of such states.).
The K matrix of Eq. (5) has three negative and two
positive eigenvalues resulting in a chiral central charge of
—1. The presence of five edge states can be understood
as follows: at the mean-field level, the parton theory
results in a total of nine-edge modes four from the factor

4

Py19/3 [two each from v=2 and v=2/3], two from ®,
and one each from each factor of ®;. However, these
edge modes are not all independent since the density
fluctuations of the five partons have to be identified,
which results in exactly four constraints and thereby
leads to precisely five independent edge modes. For
completeness, we point out that the edge structure of
the LH states is worked out in Ref. [22].

Discussion.— In this section, we discuss various
experimentally measurable properties of the (8/3)213
ansatz that can reveal its underlying topological order.
The smallest quasiparticle, generated by creating a hole
in the third LL in the factor of ®g/3, carries a charge of
—e/17. A single quasiparticle of charge —3e/17, —4e/17
and —8e/17 can be produced by creating a hole in the
LLL or the SLL in the factor of ®g/3, a hole in the fac-
tor of ®5 and a particle in the factor of ®; respectively.
All the excitations of the (8/3)21% state carry Abelian
braiding statistics just like those of the LH state.

Due to the presence of the factors of (8/3) and
2, the (8/3)21% state hosts upstream edge modes
that can be detected experimentally [65, 66]. As-
suming a full equilibration of the edge modes, the
thermal Hall conductance kg, of the (8/3)213 state
is Kgy=(—1)[7%k%/(3h)T].  In contrast, the 8/17
LH state and the 8/17 Jain states respectively have
R T =0 [22] and k3T =82k /(31)T].  Re-
cently, the thermal Hall conductance of many quantum
Hall states has been measured in GaAs [67, 68] and
monolayer graphene [69]. The Hall viscosity ng of the
(8/3)213 state is also anticipated to be quantized [70]:
na=nhnapS/4, where naop=(8/17)/(27¢?) is the density
of the electrons and S=—3/2 is the shift of the (8/3)213
ansatz. For comparison, the 8/17 LH state and the
8/17 Jain states respectively have S8/17~LH=5/2 [22] and
S8/17=Jain_10 These results show that the 8/17 LH,
8/17 Jain and our proposed (8/3)213 states are all topo-
logically different from each other.

The (8/3)213 state is the m=1 member of the
[242/(4m—1)]21% sequence which produces states at
v=8m/(16m+1) with shift S=—3/2 and chiral central
charge —1. A LH sequence [22] that is obtained by con-
densing ghs of the Pf also leads to states at the same set
of fillings v=8m/(16m+1) but with shift S=5/2 and chi-
ral central charge 0. Thus, the parton and LH states are
topologically distinct. The (8/3)212 state is also the m=1
member of the [24+(m+1)]/(2m+1)21 sequence which
produces states at 26/55 and 9/19 for m=2,3. No signs
of FQHE have been reported at these fractions.

Potentially, simpler-looking states such as (4/3)21% at
4/7 or (5/3)21% at 10/19, or (7/3)213 at 14/29 could
also be stabilized. Signatures of FQHE at v=4/7 in the
ZLL of BLG have been seen in experiments [19]. How-
ever, numerical calculations show that the ground state
of the largest accessible system of N=20 electrons at the
flux corresponding to (4/3)213 is not uniform at the SLL




Coulomb point. It turns out that the particle-hole con-
jugate of the 3213 state at 3/7 [39] is a better candidate
in that the exact ground state is consistently incompress-
ible at the corresponding shift for all accessible systems.
Moreover, the overlap of the exact Coulomb ground state
in the ZLL of BLG with the trial wave function is rea-
sonably high [30, 42]. No signs of FQHE have been seen
in either the SLL of GaAs or in the ZLL of BLG at either
10/19 or 14/29. We mention here that the (7/3)21° state
at 14/29 is likely to be topologically identical to a LH
state. It is the m=2 member of the [2+1/(2m—1)]213
sequence that produces states at v=(8m—2)/(16m—3)
with shift S=—2 and chiral central charge —2. A LH se-
quence [22] emanating from the aPf also leads to states
at the same set of filling factors, that also carry the
same chiral central charge and shift. Therefore, as a by-
product of our construction, we found a parton sequence
that produces states that likely lie in the same universal-
ity class as the LH states arising from the aPf. We have
not been able to find parton states that lie in the same
topological phase as the LH states built from the Pf. We
leave a more detailed exploration of the relationship be-
tween parton and LH states to future work.

If it turns out that the experimentally observed 8/17
state lies in the universality class of (8/3)213 state, then
it would call into question the idea that looking at the
nearby fractions one can tell if the even-denominator
state seen at half-filling is in the Pf or the aPf univer-
sality class [18-21, 25]. Finally, we mention the possibil-
ity of multi-component states at 8/17 where the different
components could represent valley, spin, or orbital degree
of freedom. The (8/3)213 state readily admits the pos-
sibility of unpolarized states building on the partially-
polarized and singlet-states at v=8/3 and the singlet
states at v=2. It is possible that these states could po-
tentially be relevant for certain interactions. Potentially
all possible FQHE states lend themselves to a parton
description where the partons themselves form simple
IQHE or FQHE states.
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Supplemental Material for “Fractional

quantum Hall effect of partons and the

nature of the 8/17 state in the zeroth
Landau level of bilayer graphene”

In this Supplemental Material, we present (i)
the overlaps and gaps for the 321% parton
state at 6/13 in the zeroth Landau level of bi-
layer graphene and (ii) the overlaps and energy-
variances of the quasiholes of the Moore-Read
state.

321% STATE IN THE ZEROTH LANDAU LEVEL
OF BILAYER GRAPHENE AT v=6/13

In Fig. S1 we show overlaps of the 3213 with the exact
Coulomb ground state in the ZLL of BLG. These over-
laps are sizable for all values of 6 in the ZLL of BLG.
In Fig. S1 we have also shown the charge and neutral
gaps of the 3212 in the ZLL of BLG. The charge gap
is defined as the energy to create a pair of fundamental
quasiparticle-quasihole (the smallest charged quasihole in
the 3213 has a charge e/13 [48]). The neutral gap is de-
fined as the energy difference between the ground state
and the lowest-lying excitation. Both the gaps are posi-
tive only for > /3 which suggests that the 3212 state is
stabilized only in this region. We note that in the ther-
modynamic limit, we expect the charge gap > neutral
gap but due to strong finite-size effects (routinely seen
in the vicinity of the SLL) the ordering is opposite in
Fig. S1.

QUASTHOLES OF THE MOORE-READ STATE

The Levin-Halperin state at 8/17 is obtained when the
Moore-Read quasiholes have strong repulsion between
them and they go on to condense to form a Laughlin
state. Although we can construct the quasiholes of the
Moore-Read state, it is not clear how to obtain the Levin-
Halperin state from it. Indeed, the interactions that we
diagonalize are between the parent electrons. Numeri-
cal construction of the LH state would require an inter-
action that is hard-core for the Moore-Read quasiholes
whose expression in the parent electron language is still
unknown.

Nevertheless, the exact LH state should lie within the
Moore-Read quasihole manifold. Thus, we have com-
puted the overlaps of the Moore-Read quasiholes with the
exact Coulomb ground state in the zeroth LL of bilayer
graphene. Such a calculation can only be performed at
N=12. As mentioned in the main text, the ground state
in the ZLL of BLG has L=0 irrespective of §. There

1

o 43217 overlap ' : '
°”:§ 0.9 [k charge gap :i‘;&ﬁ.&‘ 0.02 ~
S5 o |Aneutral gap A $ . % kv
5 £ [N=12, 21=28 Ay Qg <
s ¢ A8 Lol @ b
R YT YOIV al &
R N - - o o8 0.00<
0(LLL) ©/4(MLG1) 7/2(SLL)
0

FIG. S1. (color online) Overlaps and gaps of the 321% par-
ton state with the exact Coulomb ground state in the zeroth
Landau level of bilayer graphene at v=6/13 evaluated in the
spherical geometry using the spherical (filled symbols) and
disk (open symbols) pseudopotentials for N=12 electrons at
flux 21=28 as a function of the parameter 0, which is related to
the perpendicular magnetic field B=93.06[cot(6)]? (see text).
The charge gaps are positive only for >7/3, which indicates
that the 321° state is likely to be stabilized only in this region
(to the right of the vertical dashed line).

are exactly 3 Moore-Read quasiholes states with L=0 at
N=12 and 2/=23 flux quanta. While the quasihole over-
lap calculation is out of reach for N=20, we have also
computed as a proxy the (H3) and (AH3), where Hj is
the model 3-body interaction which realizes the Moore-
Read Pfaffian state [72], of the exact Coulomb ground
state in the zeroth LL of bilayer graphene for N=20.
For the exact LH state, we would get (Hs3)=(AHj5)=0.
These results are shown in Fig. S2. We find that both
the Hs-mean and its standard deviation for the exact
Coulomb ground state exhibit a minimum in the region
where the ground state is uniform. For completeness, we
point out that such calculations are demanding. To ob-
tain the Coulomb ground state of the bilayer graphene
for a given 6, the average clock running time is 130h on
two nodes with dual AMD EPYC 7542 processors (32
cores per CPU) with 2Tb of RAM each. On the other
hand, an expectation value of Hs requires on the order
250h using one such node.

Our results show that the Moore-Read quasiholes give
a good description of the exact Coulomb ground state in
the same region where the exact Coulomb ground state
of N=20 at the Levin-Halperin flux at 8/17 has a uni-
form ground state, i.e., has (L)=0 [see Fig. 2(b) of the
main text]. However, this is also the region where the
1/2 Moore-Read state gives a good description of the
exact Coulomb ground state in the half-filled zeroth LL
of bilayer graphene [42]. For the Levin-Halperin state
to be realized, the Moore-Read quasiholes need to have
a strong repulsion between them and condense into a
Laughlin state. Unfortunately, we do not have strong
evidence to suggest that happens except for the fact that
the full electronic ground state for N=20 has (L)=0 in
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FIG. S2. (color online) The mean (filled symbols) and stan-
dard deviation (open symbols) of the exact Coulomb ground
state in the zeroth Landau level of bilayer graphene for the
three-body hard-core Hamiltonian Hsz at v=8/17 evaluated
in the spherical geometry using the spherical (red diamonds)
and disk (blue circles) pseudopotentials for N=20 electrons
at flux 2i=40 (Levin-Halperin flux) as a function of the pa-
rameter 6.
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