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FRACTIONAL MAXIMAL OPERATORS ON WEIGHTED VARIABLE

LEBESGUE SPACES OVER THE SPACES OF HOMOGENEOUS

TYPE

XI CEN

Abstract. Let (X, d, µ) is a space of homogeneous type, we establish a new class of
fractional-type variable weights Ap(·),q(·)(X). Then, we get the new weighted strong-
type and weak-type characterizations for fractional maximal operatorsMη on weighted
variable Lebesgue spaces over (X, d, µ). This study generalizes the results by Cruz-
Uribe–Fiorenza–Neugebauer [12] (2012), Bernardis–Dalmasso–Pradolini [4] (2014), Cruz-
Uribe–Shukla [14] (2018), and Cruz-Uribe–Cummings [9] (2022).

Contents

1. Introduction 1

2. Preliminaries 5

2.1. Variable Lebesgue spaces 5

2.2. Properties of weights 7

2.3. Dyadic Analysis 10

3. The proof of Theorem 1.9 and 1.10 13

3.1. Necessity 13

3.2. Sufficiency 16

References 28

1. Introduction

In this paper, we focus on the boundedness of fractional maximal operators Mη on
weighted Lebesgue spaces with variable exponents over the spaces of homogeneous type
Lp(·)(X,ω). This work is based on the theory of boundedness on weighted Lebesgue
Spaces Lp(·)(ω) and some recent work by Cruz-Uribe et al. (see Theorems A-G below).
The theory of maximal operators was first studied by Muckenhoupt et al. [27,28], and a
series of far-reaching results were obtained. Since then, the weighted theory of maximal
operators can be regarded as the generalization of the work of Muckenhoupt et al.
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(Rn, | · |, dx) is a special case of the spaces of the homogeneous type, of which we give
some definitions and properties as follows.

Definition 1.1. For a positive function d : X×X → [0,∞), X is a set, the quasi-metric
space (X, d) satisfies the following conditions:

(1) When x = y, d(x, y) = 0.
(2) d(x, y) = d(y, x) for all x, y ∈ X.
(3) For all x, y, z ∈ X, there is a constant A0 ≥ 1 such that d(x, y) ≤ A0(d(x, z) +

d(z, y)).

Definition 1.2. Let µ be a measure of a space X. For a quasi-metric ball B(x, r) and
any r > 0, if µ satisfies doubling condition, then there exists a doubling constant Cµ ≥ 1,
such that

0 < µ(B(x, 2r)) ≤ Cµµ(B(x, r)) < ∞,

Definition 1.3. For a non-empty set X with a qusi-metric d, a triple (X, d, µ) is said
to be a space of homogeneous type if µ is a regular measure which satisfies doubling
condition on the σ-algebra, generated by open sets and quasi-metric balls.

Considering a measurable function p : E → [1,∞) on a subset E ⊆ X , we define
p−(E) = ess infx∈Ep(x) and p+(E) = ess supx∈Ep(x), with p− and p+ specifically denot-
ing these quantities over the entire space X . Furthermore, we introduce some sets of
measurable functions based on these definitions.

P (E) = {p(·) : E → [1,∞) is measurable: 1 < p−(E) ≤ p+(E) < ∞};

P1 (E) = {p(·) : E → [1,∞) is measurable: 1 ≤ p−(E) ≤ p+(E) < ∞};

P0 (E) = {p(·) : E → [0,∞) is measurable: 0 < p−(E) ≤ p+(E) < ∞}.

Obviously, P (E) ⊆ P1 (E) ⊆ P0 (E). When E = X , we write P(X) by P for
convenience.

Definition 1.4. Let 1 ≤ p− ≤ p+ ≤ ∞, the variable exponent Lebesgue spaces with
Luxemburg norm is defined as

Lp(·)(X) = {f : ‖f‖Lp(·)(X) := inf{λ > 0 : ρp(·)(
f

λ
) ≤ 1} < ∞},

where ρp(·)(f) =
´

X
|f(x)|p(x)dx+‖f‖L∞(X∞). We always abbreviate ‖ ·‖Lp(·)(X) to ‖ ·‖p(·).

For every ball B ⊆ X, if ρp(·)(fχB) < ∞, then f is said to be locally p(·)-integrable.

In fact, the above spaces are Banach spaces (precisely, ball Banach function spaces),
to which readers can refer [11].

Let ω be a weight function on X . The variable exponent weighted Lebesgue spaces
are defined by

Lp(·)(X,ω) = {f : ‖f‖Lp(·)(X,ω) := ‖ωf‖Lp(·)(X) < ∞}.

Definition 1.5. For any x, y ∈ X and d(x, y) < 1
2
, we say p(·) ∈ LH0, if

|p(x)− p(y)| .
1

log(e+ 1/d(x, y))
. (1.1)
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We say p(·) ∈ LH∞ (respect to a point x0 ∈ X), if there exists p∞ ∈ X, for any x ∈ Rn,

|p(x)− p∞| .
1

log(e + d(x, x0))
. (1.2)

We denote the globally log-Hölder continuous functions by LH = LH0 ∩ LH∞.

According to the above definition, it seems to relate to the choice of the point x0.
However, through [1], we can know that such a choice is immaterial.

Lemma 1.6. For any y0 ∈ X, if p(·) ∈ LH∞ with respect to x0 ∈ X, then p(·) ∈ LH∞

with respect to y0.

If x0 is not chosen definitely, we always suppose that X has an arbitrary given point
x0.

The fractional maximal operator Mη on the spaces of homogeneous type is defined as

Mηf(x) = sup
B⊆X

|B|η−1

ˆ

B

|f(y)|dµ · χB(x).

When X = Rn, we take η = α
n
and write Mη by Mα. We now give the definition of

fractional-type weights Ap(·),q(·)(X) and present some foundational results.

Definition 1.7. Let p(·), q(·) ∈ P1 and 1
p(·)

− 1
q(·)

= η ∈ [0, 1). We say a weight

ω ∈ Ap(·),q(·)(X), if

[ω]Ap(·),q(·)(X) := sup
B⊆X

µ(B)η−1 ‖ωχB‖q(·)
∥

∥ω−1χB

∥

∥

p′(·)
< ∞.

Remark 1.8. The above discussion introduce a broader category of weights, implying
that the Ap(·),q(·) set can be deduced as many particular instances under specific conditions.

(1) If η = 0, then Ap(·),q(·)(X) = Ap(·)(X) introduced in [9].
(2) If p(·) ≡ p, then Ap(·),q(·)(X) = Ap,q(X).
(3) If p(·) ≡ p and η = 0, then Ap(·),q(·)(X) = Ap(X).
(4) If X = Rn, then Ap(·),q(·)(X) = Ap(·),q(·)(Rn) introduced in [4].
(5) If X = Rn and η = 0, then Ap(·),q(·)(X) = Ap(·)(Rn) introduced in [12].
(6) If X = Rn and p(·) ≡ p, then Ap(·),q(·)(X) = Ap,q(Rn) introduced in [28].
(7) If X = Rn, p(·) ≡ p, and η = 0, then Ap(·),q(·)(X) = Ap(Rn) introduced in [27].

In this paper, we always abbreviate Ap(·),q(·)(X) to Ap(·),q(·), Ap(·)(X) to Ap(·), and
Ap(X) to Ap. It is easy to observe that

[

ω−1
]

Aq′(·),p′(·)
= [ω]Ap(·),q(·)

.

By Hölder’s inequality, we have

[ω]Aq(·)
≤[ω]Ap(·),q(·)

, (1.3)
[

ω−1
]

Ap′(·)
≤[ω]Ap(·),q(·)

. (1.4)

We introduce some background and motivation regarding the main results of this
paper.
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Ap(Rn)

Ap(X)

Ap,q(Rn)

Ap(·)(X)

Ap,q(X)

Ap(·),q(·)(Rn) Ap(·),q(·)(X)Ap(·)(Rn)

Figure 1. The relationships between weights

Since 1972 and 1974, Muckenhoupt et al. [27,28] studied the characterization ofAp(Rn)
andAp,q(Rn) by maximal operatorsM and fractional maximal operatorsMα respectively.
Many people began to pay attention to the relationship between the characterization of
weights and maximal operators.

In 2012, Cruz-Uribe, Fiorenza, and Neugebauer [12] firstly studied the characterization
of Ap(·)(Rn) by maximal operators M .

Theorem A( [12]). Let p(·) ∈ P ∩ LH and ω is a weight. Then M is bounded on
Lp(·)(ω) if and only if ω ∈ Ap(·)(Rn).

Theorem B( [12]). Let p(·) ∈ P1 ∩ LH and ω is a weight. Then M is bounded from
Lp(·)(ω) to WLp(·)(ω) if and only if ω ∈ Ap(·)(Rn).

In 2014, Bernardis, Dalmasso, and Pradolini [4] proved the characterizations for
Ap(·),q(·)(Rn) by fractional maximal operators Mα as follows.

Theorem C( [14]). Let p(·), q(·) ∈ P ∩ LH, 1
p(·)

− 1
q(·)

= α
n
∈ [0, 1), and ω is a weight.

Then Mα is bounded from Lp(·)(ω) to Lq(·)(ω) if and only if ω ∈ Ap(·),q(·)(Rn).

In 2018, Cruz-Uribe and Shukla [14] obtained the following results, which solve the
problem of boundedness of fractional maximal operators on variable Lebesgue spaces
over the spaces of homogeneous type.

Theorem D( [14]). Let p(·), q(·) ∈ P ∩ LH and 1
p(·)

− 1
q(·)

= η ∈ [0, 1) Then Mη is

bounded from Lp(·)(X) to Lq(·)(X).

Additionally, if µ(X) < +∞, the requirement p(·) ∈ LH can be substituted with
p(·) ∈ LH0.

Theorem E( [14]). Let p(·), q(·) ∈ P1 ∩ LH and 1
p(·)

− 1
q(·)

= η ∈ [0, 1) Then Mη is

bounded from Lp(·)(X) to WLq(·)(X).

Moreover, if µ(X) < +∞, the condition p(·) ∈ LH may be substituted with p(·) ∈
LH0.
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In 2022, Cruz-Uribe and Cummings [9] demonstrated the following characterizations
for Ap(·)(X) by maximal operators M .

Theorem F( [9]). Let p(·) ∈ P ∩ LH and ω is a weight. Then M is bounded on
Lp(·)(X,ω) if and only if ω ∈ Ap(·)(X).

Theorem G( [9]). Let p(·) ∈ P1 ∩ LH and ω is a weight. Then M is bounded from
Lp(·)(X,ω) to WLp(·)(X,ω) if and only if ω ∈ Ap(·)(X).

Inspired by the above, it is natural to consider whether Ap(·),q(·)(X) can be character-
ized by fractional maximal operators Mη? The answer to this question is yes. To be
precise, we can draw the following conclusions.

Theorem 1.9. Let p(·), q(·) ∈ P ∩LH, 1
p(·)

− 1
q(·)

= η ∈ [0, 1), and ω is a weight. Then

Mη is bounded from Lp(·)(X,ω) to Lq(·)(X,ω) if and only if ω ∈ Ap(·),q(·)(X).

Theorem 1.10. Let p(·), q(·) ∈ P1 ∩ LH, 1
p(·)

− 1
q(·)

= η ∈ [0, 1), and ω is a weight.

Then Mη is bounded from Lp(·)(X,ω) to WLq(·)(X,ω) if and only if ω ∈ Ap(·),q(·)(X).

Remark 1.11. It is obvious that Theorems 1.9 and 1.10 generalizes Theorems A-G.

We still need introduce some notations which will be used in this paper.

For some positive constant C independent of appropriate parameters, A . B means
that A ≤ CB and A ≈ B means that A . B and B . A. What’s more A .α,β B
means that A ≤ Cα,βB, where Cα,β is dependent on α, β. Given an open set E ⊆ Rn

and a measurable function p(·) : E → [1,∞), p′(·) is the conjugate exponent defined

by p′(·) = p(·)
p(·)−1

. A weight is defined as a locally integrable function ω : X → [0,∞]

satisfying 0 < ω(x) < ∞ for almost every x ∈ X . For a given weight ω, its associated
measure is established as dω(x) = ω(x)dµ(x).For a subset E ⊆ X , the weighted average
integral of a function f is represented by

−

ˆ

E

f(x)dω =
1

ω(E)

ˆ

E

f(x)ω(x)dµ.

Through out this paper, in Section 2, we give some lemmas for variable Lebesgue
spaces, weights, and Dyadic Analysis respectively, which play a important roles for the
proof of our main theorems. In Section 3, we prove Theorems 1.9 and 1.10.

2. Preliminaries

2.1. Variable Lebesgue spaces.

This subsection includes some foundational lemmas of variable Lebesgue spaces over
the spaces of the homogeneous type. The first lemma is called ”Lower Mass Bound”.

Lemma 2.1 ( [9], Lemma 2.1). For all 0 < r < R and any y ∈ B(x,R), there exists a
positive constant C = CX , such that

µ(B(y, r))

µ(B(x,R))
≥ C

( r

R

)log2 Cµ
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Lemma 2.2 ( [5], Lemma 1.9). µ(X) < ∞ if and only if X is bounded, which means
there exist a ball B ⊆ X, such that X = B.

Lemma 2.3 ( [9], Lemma 2.11). Let p(·) ∈ LH, then sup
B⊆X

µ(B)p−(B)−p+(B) . 1.

The following lemmas are initial parts supporting our main results. Actually, some
lemmas’ proofs are identical to their Euclidean case, and readers can refer to [9, 11, 18]
for more details. Hence, we will omit some of them for the brevity of this paper.

Lemma 2.4 ( [11], Proposition 2.21). Let p(·) ∈ P1, then

ˆ

X

(

|f(x)|

‖f‖p(·)

)p(x)

dµ = 1.

Lemma 2.5 ( [11], Corollary 2.23). Let Ω ⊆ X and p(·) ∈ P1(Ω).

If ‖f‖Lp(·)(Ω) ≤ 1, then

‖f‖
p+(Ω)
p(·) ≤

ˆ

Ω

|f(x)|p(x)dµ ≤ ‖f‖
p−(Ω)
p(·) .

If ‖f‖Lp(·)(Ω) ≥ 1, then

‖f‖
p−(Ω)
p(·) ≤

ˆ

Ω

|f(x)|p(x)dµ ≤ ‖f‖
p+(Ω)
p(·) .

Moverover, we have ‖f‖p(·) ≤ C1 if and only if
´

Ω
|f(x)|p(x)dµ ≤ C2. When either C1 = 1

or C2 = 1, the other constant is also to be 1.

Lemma 2.6 ( [9], Lemma 2.6). Let p(·) ∈ P1, then the bounded functions with bounded
support are dense in Lp(·)(X). Furthermore, any nonnegative function f in Lp(·)(X) can
be approximated as the limit of an increasing sequence.

Lemma 2.7 ( [11], Theorem 2.59). Let p(·) ∈ P1. For a sequence of non-negative
measureable functions, denoted as {fk}

∞
k=1 and increasing pointwise almost everywhere

to a function f ∈ Lp(·), we can deduce that ‖fk‖p(·) → ‖f‖p(·).

Lemma 2.8 ( [9], Lemma 2.10). For any point y ∈ G, G is a subset of X, and two
exponents p1(·) and p2(·), if there exists a constant C0 > 0, such that

|p1(y)− p2(y)| ≤
C0

log (e+ d (x0, y))

Then there exists a constant C = Ct,C0 such that
ˆ

G

|f(y)|p1(y)u(y)dµ ≤ C

ˆ

G

|f(y)|p2(y)u(y)dµ+

ˆ

G

1

(e+ d (x0, y))
ts−(G)

u(y)dµ (2.1)

for all functions f with |f(y)| ≤ 1 and every t ≥ 1.
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2.2. Properties of weights.

This subsection is aimed to exploring the properties of the Ap(·),q(·) condition within
spaces of homogeneous type. The following lemma reflects the properties of A∞, defined
by
⋃

p≥1Ap, whose proof are similar to that of [21, Theorem 7.3.3].

Lemma 2.9. If ω is a weight function, then the following conditions are equivalent:

(1) ω ∈ A∞.
(2) There exist constants ǫ > 0 and C2 > 1 such that

µ(E)

µ(B)
≤ C2

(

ω(E)

ω(B)

)ǫ

,

for any ball B and its measurable subset E.
(3) The measure dν(x) = ω(x)dµ(x) satisfies doubling condition and there exist con-

stants δ > 0 and C1 > 1 such that

ω(E)

ω(B)
≤ C1

(

µ(E)

µ(B)

)δ

,

for any ball B and its measurable subset E.

The following Hölder’s inequality is very useful.

Lemma 2.10 ( [11], Theorem 2.26). Let p(·) ∈ P1, then
ˆ

X

|f(x)g(x)|dµ ≤ 4‖f‖p(·)‖g‖p′(·).

To apply the properties introduced in the above, this study employs the Ap(·),q(·)

condition for the construction of a weight W , see Lemma 2.13, within the A∞ class.
And the following lemmas are necessary for this purpose.

Lemma 2.11. Let p(·), q(·) ∈ P1 and 1
p(·)

− 1
q(·)

= η ∈ [0, 1). For any ball B and its

measurable subset E, if ω ∈ Ap(·),q(·), then
(

µ(E)

µ(B)

)1−η

≤ 16[ω]Ap(·),q(·)

‖ωχE‖q(·)
‖ωχB‖q(·)

Proof. By Hölder’s inequality and the Ap(·),q(·) condition (Definition 1.7),

µ(E) =

ˆ

X

ω(x)χEω(x)
−1χBdµ

≤ 4 ‖ωχE‖q(·)
∥

∥ω−1χB

∥

∥

q′(·)

≤ 16µ(E)η ‖ωχE‖q(·)
∥

∥ω−1χB

∥

∥

p′(·)

Thus,
(

µ(E)

µ(B)

)1−η

≤ 16[ω]Ap(·),q(·)

‖ωχE‖q(·)
‖ωχB‖q(·)

�
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The next lemma plays a important role in our proof, which is dedicated to the proof
of (3.14).

Lemma 2.12 ( [9], Lemma 3.3). Let p(·) ∈ P1 ∩ LH and ω ∈ Ap(·). Then

sup
B⊆X

‖ωχB‖
p−(B)−p+(B)
p(·) . 1.

Lemma 2.13. Let p(·), q(·) ∈ P1 ∩ LH, 1
p(·)

− 1
q(·)

= η ∈ [0, 1), and ω ∈ Ap(·),q(·). Then

W (·) := ω(·)q(·) ∈ A∞.

Proof. Fix a ball B and a measurable set E ⊆ B. According to Lemma 2.9, in order to
proof this lemma, it is sufficient to prove

(

µ(E)

µ(B)

)1−η

.

(

W (E)

W (B)

)1/q+

. (2.2)

We will prove this in three cases.

(i) When ‖ωχB‖q(·) ≤ 1. By Lemma 2.11,

(

µ(E)

µ(B)

)1−η

.
‖ωχE‖q(·)
‖ωχB‖q(·)

=
‖ωχE‖q(·)

‖ωχB‖
q−(B)/q+(B)
q(·) ‖ωχB‖

1−q−(B)/q+(B)
p(·)

.

From Lemma 2.5, we have that ‖ωχE‖q(·) ≤ W (E)1/q+(B) and ‖ωχB‖
q−(B)
q(·) ≥ W (B).

It follows from Lemma 2.12 and (1.3) that

(

µ(E)

µ(B)

)1−η

.

(

W (E)

W (B)

)1/q+(B)

‖ωχB‖
q−(B)/q+(B)−1
q(·) .

(

W (E)

W (B)

)1/q+

.

(ii) When ‖ωχE‖q(·) ≤ 1 ≤ ‖ωχB‖q(·), by Lemmas 2.11 and 2.5 again, we have

(

µ(E)

µ(B)

)1−η

.
‖ωχE‖q(·)
‖ωχB‖q(·)

.
W (E)1/q+

W (B)1/q+(B)
≤

(

W (E)

W (B)

) 1
q+

.

(iii) When 1 < ‖ωχE‖q(·) ≤ ‖ωχB‖q(·), define λ = ‖ωχB‖q(·) ≥ ‖ωχE‖q(·) and substitute
the measure dµ with W (x)dµ. Through Lemma 2.8, there is a constant Ct satisfies

ˆ

B

W (x)

λq∞
dµ ≤ Ct

ˆ

B

W (x)

λq(x)
dµ+

ˆ

B

W (x)

(e + d(x0, x))tq∞
dµ. (2.3)

By Lemma 2.4, we can know that the first term on the right side is less than 1.
Therefore we now need to prove the second term also satisfies this bound, when we
take large enough t, independent of B. For a finite W (X),

ˆ

X

W (x)

(e + d(x0, x))tq∞
dµ ≤ Ce−tq∞W (X).
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If W (X) = ∞, we define Bk = B(x0, 2
k) and it follows from Lemmas 2.5 and 2.7

that lim
k→∞

‖ωχBk
‖p(·) = ∞. Lemma 2.5 provides

ˆ

X

W (x)

(e+ d(x0, x))tq∞
dµ .t e

−tq∞W (B0) +

∞
∑

k=1

ˆ

Bk\Bk−1

W (x)

(e+ d(x0, x))tq∞
dµ

≤ e−tq∞W (B0) +
∞
∑

k=1

2−ktq∞W (Bk)

≤ e−tq∞W (B0) +
∞
∑

k=1

2−ktq∞ max{‖ωχBk
‖q+q(·), ‖ωχBk

‖q−q(·)}

. e−tq∞W (B0) +
∞
∑

k=1

2−ktq∞‖ωχBk
‖q+q(·),

where the last inequality is derived from this fact that since lim
k→∞

‖ωχBk
‖p(·) = ∞,

then there exists N > 0, for any k > N , we have ‖ωχBk
‖p(·) > 1. By Lemma 2.11,

‖ωχBk
‖q(·) ≤ C

(

µ(Bk)

µ(B0)

)1−η

‖ωχB0‖q(·) ≤ C2k(1−η) log2 Cµ .

Hence, we have
ˆ

X

W (x)

(e+ d(x0, x))tq∞
dµ . e−tq∞W (B0) +

∞
∑

k=1

2kq+(1−η) log2 Cµ−ktq∞ . (2.4)

When t > q+(1−η)log2Cµ

q∞
, the sum is convergent. The right-hand side of (2.3) becomes

bounded, which means that

W (B)1/q∞ . ‖ωχB‖q(·). (2.5)

Replacing B by E and q(·) by q∞, we get

1 ≤

ˆ

E

W (x)

λq(x)
dµ ≤ Ct

ˆ

E

W (x)

λq∞
dµ+

ˆ

E

W (x)

(e+ d(x0, x))tq∞
dµ.

It follows from the above that

λq∞ = ‖ωχE‖
q∞
q(·) . W (E). (2.6)

Then by Lemma 2.11,
(

µ(E)

µ(B)

)1−η

.
‖ωχE‖q(·)
‖ωχB‖q(·)

.

(

W (E)

W (B)

)1/q∞

≤

(

W (E)

W (B)

)1/q+

.

�

It follows instantly from the proof of Lemma 2.13 that

Lemma 2.14. Let p(·), q(·) ∈ P1 ∩ LH and 1
p(·)

− 1
q(·)

= η ∈ [0, 1). If ω ∈ Ap(·),q(·)

satisfying ‖ωχB‖q(·) ≥ 1 for some ball B, then ‖ωχB‖q(·) ≈ W (B)1/q∞.
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Lemma 2.15. Let p(·), q(·) ∈ P1 ∩ LH and 1
p(·)

− 1
q(·)

= η ∈ [0, 1), then 1 ∈ Ap(·),q(·).

Proof. If µ(B) ≤ 1, it follows from Lemma 2.5 that ‖χB‖
q+(B)
q(·) ≤ µ(B) and ‖χB‖

(p′)+(B)

p′(·) ≤

µ(B). By Lemma 2.3,

µ(B)η−1‖χB‖q(·)‖χB‖p′(·) ≤ µ(B)
1

q+(B)
+η− 1

p+(B) = µ(B)
p−(B)−p+(B)

p+(B)p−(B) ≤ C.

If µ(B) > 1, it follows from the proof of Lemma 2.14 that

µ(B)η−1‖χB‖q(·)‖χB‖p′(·) ≤ C.

�

Remark 2.16. In the proof of the main theorems, we will always combine the above
lemmas with (1.3) and (1.4) to apply it.

2.3. Dyadic Analysis.

This classical dyadic cubes defined as

Q = 2k([0, 1)n +m), k ∈ Z, m ∈ Zn.

These constructs play an essential role in constructing our main theorem. The following
discussion adopts the framework of dyadic cubes as formulated by Hytönen and Kairema
[20], as explicated in [3].

Lemma 2.17 ( [3], Theorem 2.1). There exist a family D =
⋃

k∈Z Dk, composed of
subsets of X, such that:

(1) For cubes Q1, Q2 ∈ D, either Q1 ∩Q2 = ∅, Q1 ⊆ Q2, or Q2 ⊆ Q1.
(2) The cubes Q ∈ Dk are pairwise disjoint. And for any k ∈ Z, X =

⋃

Q∈Dk
Q. We

call Dk as the kth generation.
(3) For any Q1 ∈ Dk, there always exists at least one child of Q1 in Dk+1, such that

Q2 ⊆ Q1, and there always exists exactly one parent of Q1 in Dk−1, such that
Q1 ⊆ Q3.

(4) If Q2 is a child of Q1, then for a constant 0 < ǫ < 1, depended on the set X,
µ (Q2) ≥ ǫµ (Q1).

(5) For every k ∈ Z and Q ∈ Dk, there exists constants Cd and d0 > 1, such that

B
(

xc(Q), dk0
)

⊆ Q ⊆ B
(

xc(Q), Cdd
k
0

)

,

where xc denotes the centre of cube Q ∈ D.

We call the family D as dyadic grid and the cubes Q ∈ D as dyadic cubes.

Frequently, the sets of cubes and balls are interchangeable, as demonstrated by the
equivalent formulation of the Ap(·),q(·) condition.

Lemma 2.18. Let p(·), q(·) ∈ P0 ∩ LH, 1
p(·)

− 1
q(·)

= η ∈ [0, 1), and D is a dyadic grid.

If ω ∈ Ap(·),q(·), then ω ∈ AD
p(·),q(·), where

[ω]AD

p(·),q(·)
:= sup

Q∈D
µ(Q)η−1‖ωχQ‖q(·)

∥

∥ω−1χQ

∥

∥

p′(·)
< ∞.
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Proof. Using Theorem 2.17 with fixing Q ∈ Dk and Lemma 2.1,

‖ωχQ‖q(·)
∥

∥ω−1χQ

∥

∥

p′(·)
≤
∥

∥

∥
ωχB(xc(Q),Cdd

k
0)

∥

∥

∥

q(·)

∥

∥

∥
ω−1χB(xc(Q),Cdrd

k
0)

∥

∥

∥

p′(·)

. µ
(

B
(

xc(Q), Cdk0
))1−η

. µ
(

B
(

xc(Q), dk0
))1−η

. µ(Q)1−η.

�

In the proof of Lemma 2.18, we initially expand cubes to encompass balls, subsequently
applying the lower mass bound (see Lemma 2.1) to switch back to cube dimensions.
Additionally, this approach allows for the maximal operator to be efficiently reformulated
in dyadic terms.

Definition 2.19. Let η ∈ [0, 1), σ is a weight, and D is a dyadic grid. Define the
weighted dyadic fractional maximal operator MD

η,σ by

MD
η,σf(x) = sup

x∈Q∈D
σ(Q)η−1

ˆ

Q

|f(y)|σdµ.

When η = 0,MD
0,σ = MD

σ , which is a weighted dyadic maximal operator. When σ =

1,MD
η,σ = MD

η , which is a dyadic fractional maximal operator.

The following lemma can guarantee that we always transform a proof involving Mη

into that for MDi
η .

Lemma 2.20 ( [22], Lemma 7.8). Let η ∈ [0, 1), there exists a finite family {Di}
N
i=1 of

dyadic grids such that

Mηf(x) ≈
N
∑

i=1

MDi
η f(x),

where the implicit constants depend only X, µ, and η.

Then the following lemma first appears in [9], which is a key tool used in after proof.

Lemma 2.21 ( [9], Lemma 4.4). Let D is a dyadic grid, σ is a weight, and 1 < p < ∞.
Then the dyadic maximal operator MD

σ is bounded on Lp(X, σ), which is also bounded
from L1(X, σ) to WL1(X, σ).

We now present the fractional-type Calderón-Zygmund decomposition on the spaces
of homogeneous type as follows.

Lemma 2.22. Let η ∈ [0, 1), D is a dyadic grid on X, and σ ∈ A∞. Set µ(X) =

∞. If f ∈ L1
loc
(σ) satisfying lim

j→∞
σ(Qj)

η−1 ´

Qj
|f |σdµ = 0 for any nested sequence

{Qj ∈ Dj}
∞
j=0, where Qj+1 is a child of Qj, then for any λ > 0, there exists a (possi-

bly empty) collection of mutually disjoint dyadic cubes
{

Qj

}

, called Calderón-Zygmund
cubes for f at the height λ, and a constant CCZ > 1, which is independent of λ and
dependent of D, X, σ, such that

XD
η,λ :=

{

x ∈ X : MD
η,σf(x) > λ

}

=
⋃

j

Qj.
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Moreover, for each j,

λ < σ(Qj)
η−1

ˆ

Qj

|f |σdµ ≤ CCZλ. (2.7)

Now, suppose that
{

Qk
j

}

is the Calderón-Zygmund cubes at height ak for each k ∈ Z and

a > CCZ . These sets, Ek
j := Qk

j \X
D
η,ak+1, are mutually disjoint for all indices j and k,

such that
(

1−

(

Ccz

a

)
1

1−η

)

σ(Qk
j ) ≤ σ(Ek

j ) ≤ σ(Qk
j ). (2.8)

If set µ(X) < ∞, then Calderón-Zygmund cubes can be established for every function
f ∈ L1

loc(σ) at any height λ > λ0 :=
´

X
|f |σdµ, meanwhile, (2.7) also holds. Under these

conditions, the sets Ek
j are pairwise disjoint with (2.8) holds, for k > loga λ0.

Proof. The first case is that µ(X) = ∞. We only need to consider XD
η,λ 6= ∅. Otherwise,

we can take {Qj} to be the empty sets.

As the property of the dyadic cube in Theorem 2.17, for every x ∈ XD
η,λ, there exists

a dyadic cube Qx
k of each generation k > 0, such that x ∈ Qx

k and MD
η,σf(x) > λ. So

there exist k, such that

σ(Qx
k)

η−1

ˆ

Qx
k

|f(y)|dσ > λ. (2.9)

Since limk→∞ σ(Qx
k)

η−1
´

Qx
k

|f(y)|dσ = 0, then there are only finite k such that (2.9)

holds. Select k to be the smallest integer such that (2.9) holds, in this case, we denote the
cube with generation k by Qx. What’s more, the set

{

Qx : x ∈ XD
η,λ

}

can be enumerated
as {Qj} due to there are countable dyadic cubes. If Qi ∩ Qj 6= ∅, without loss of
generality, we define Qi ⊆ Qj. Moreover, by the maximality, Qi = Qj. Thus, the set
{

Qx : x ∈ XD
η,λ

}

:= {Qj} is countably non-overlapping maximal dyadic cubes. Hence,

XD
λ ⊆

⋃

j Qj .

On the other hand, if z ∈ Qx, for some x ∈ XD
η,λ, then

λ < σ(Qx)
η−1

ˆ

Qx

|f(y)|dσ ≤ MD
η,σf(z).

Thus, XD
λ =

⋃

j Qj .

Next, we will prove (2.7). The left inequality of (2.7) holds since the choice of Qj .
For the second inequality, by the maximality of each Qj , we can deduce that its parent

Q̃j satisfies

σ(Q̃j)
η−1

ˆ

Qj

|f(y)|dσ ≤ λ

It follows from Lemma 2.17 and 2.1 that

σ(Qj)
η−1

ˆ

Qj

|f(y)|dσ ≤
σ
(

Q̃j

)

σ (Qj)
λ ≤

σ
(

B
(

xc

(

Q̃j

)

, Cdk+1
0

))

σ
(

B
(

xc (Qj) , dk0
)) λ ≤ Cd

log2 Cµ

0 λ.
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Consequencely, (2.7) holds.

Setting a > CCZ , we define the Calderón-Zygmund cubes {Qk
j} at heights a

k for k ∈ Z.
We abbreviate XD

η,ak to Xk. Given Qk+1
i and for any x ∈ Qk+1

i , we have Qk+1
i ∈ {Qx

k}

(defined as above). It follows that there must be an index j for which Qk+1
i ⊆ Qk

j .

Next, we want to show that the Ek
j are pairwise disjoint for all j, k. Setting k1 ≤ k2,

it suffices to prove that Ek1
j1

∩ Ek2
j2

= ∅ for Ek1
j1

6= Ek2
j2
. If k1 = k2 and j1 6= j2, then

Qk1
j1
∩Qk2

j2
= ∅ can deduce the desired results. If k1 < k2, then Ek1

j1
⊆ (Xk1+1)

c ⊆ (Xk2)
c

and Ek2
j2

⊆ Xk2 can deduce the desired results.

Finally, we will prove that σ(Qk
j ) ≈ σ(Ek

j ). It follows obviously from that

σ(Qk
j ∩Xk+1)

1−η =







∑

i:Qk+1
i ⊆Qk

j

σ(Qk+1
i )







1−η

≤
∑

i:Qk+1
i ⊆Qk

j

(

σ(Qk+1
i )

)1−η

≤
1

ak+1

∑

i:Qk+1
i ⊆Qk

j

ˆ

Qk+1
i

|f | dσ ≤
1

ak+1

ˆ

Qk
j

|f | dσ ≤
Ccz

a
σ(Qk

j )
1−η.

Note that σ(Qk
j ) = σ(Qk

j ∩Xk+1) + σ(Ek
j ), then we have

(

1−

(

Ccz

a

)
1

1−η

)

σ(Qk
j ) ≤ σ(Ek

j ) ≤ σ(Qk
j ).

�

3. The proof of Theorem 1.9 and 1.10

3.1. Necessity. In this subsection, we want to prove the Necessity of Theorem 1.9.
But actually, we prove the stronger claim, which is the necessity of Theorem 1.10. In
this proof, somewhere, we will use the sufficiency of Theorem 1.10, whose proof can
be referred to the next subsection 3.2. Now, we supppose that Mη is bounded from
Lp(·)(X,ω) to WLq(·)(X,ω), which means that

sup
t>0

∥

∥tωχ{x∈X:Mηf(x)>t}

∥

∥

q(·)
. ‖ωf‖p(·). (3.1)

For following, it suffices to prove that ω ∈ Ap(·),q(·).

Firstly, we claim that for every B ⊆ X ,

‖ωχB‖q(·) < ∞. (3.2)

If ‖ωχB‖q(·) = ∞. For any x ∈ B, there exist E ⊆ B, such that x ∈ E. For any

t < µ(B)η−1µ(E), then MηχE(x) ≥ µ(B)η−1µ(E)χB(x) > t. Moreover, it follows from
(3.1) that

∞ = t‖ωχB‖q(·) ≤
∥

∥tωχ{x∈X:MηχE(x)>t}

∥

∥

q(·)
. ‖ωχE‖p(·) . µ(E)η‖ωχE‖q(·) ≤ ∞.
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By Lemma 2.5, we have

µ(E)−1

ˆ

E

ω(x)q(x)dµ = ∞.

When E → {x}, by the Lebesgue Differentiation Theorem, see [2, Theorem 1.4], we
can find that ω(x)q(x) = ∞ for almost every x. This result clearly contridicts with the
definition of a weight and therefore (3.2) is valid.

Secondly, we will show that ω ∈ Ap(·),q(·).

Case 1: ‖ω−1χB‖p′(·) < ∞.

In this case, since the homogeneity, we assume that ‖ω−1χB‖p′(·) = 1. It suffices to
prove that

sup
B⊆X

µ(B)η−1‖ωχB‖q(·) . 1 (3.3)

We define the following sets

B0 ≡ {x ∈ B : p′(x) < ∞}, B∞ ≡ {x ∈ B : p′(x) = ∞}.

By the definition of the norm, for any λ ∈ (1
2
, 1),

1 ≤ ρp′(·)

(

ω−1χB

λ

)

=

ˆ

B0

(

ω(x)−1

λ

)p′(x)

dµ+ λ−1
∥

∥ω−1χB∞

∥

∥

∞
.

At least one of the two terms on the right-hand side is not less than 1
2
. Furthermore,

one of the following two situations must be true: either ‖ω−1χB∞
‖∞ ≥ 1

2
, or given

λ0 ∈ (1
2
, 1), then

´

B0

(

ω(x)−1

λ

)p′(x)

dµ ≥ 1
2
for any λ ∈ [λ0, 1).

Suppose that the first situation holds. Set s > ‖ω−1χB∞
‖∞ = essinf

x∈B∞

ω(x), there

exists a subset E ⊆ B∞ with µ(E) > 0, such that µ(E)−1ω(E) ≤ s. Note that p(·)
is equal to 1 on B∞, then ‖ωχE‖p(·) = ω(E). Then, for all t < µ(B)η−1µ(E), we have

MηχE(x) ≥ µ(B)η−1µ(E)χB(x) > tχB(x). Thus, it follows from (3.1) that

t‖ωχB‖q(·) ≤
∥

∥tωχ{x∈X:MηχE(x)>t}

∥

∥

q(·)
. ‖ωχE‖p(·) = ω(E).

Letting t → µ(B)η−1µ(E), we get that µ(B)η−1µ(E) ‖ ωχB‖q(·) . ω(E). Then,

µ(B)η−1 ‖ ωχB‖q(·) . µ(E)−1ω(E) ≤ s

Letting s →‖ ω−1χB∞
‖−1
∞ , we have

µ(B)η−1‖ωχB‖q(·) .
∥

∥ω−1χB∞

∥

∥

−1

∞
≤ 2,

then (3.3) is valid.

When the second situation holds, we define BR = {x ∈ B0 : p′(x) < R}, for
any R > 1. By Lemma 2.7, there exists R that close to ∞ sufficiently, such that
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´

BR

(

ω(x)−1

λ0

)p′(x)

dµ > 1
3
. It follows from ‖ω−1χB‖p′(·) = 1 and Lemma 2.5 that

ˆ

BR

(

ω(x)−1

λ0

)p′(x)

dµ ≤

ˆ

BR

(

2

λ0

)p′(x)(
ω(x)−1

2

)p′(x)

dµ ≤

(

2

λ0

)R

< ∞.

We need to use the following auxiliary function

G(λ) =

ˆ

BR

(

ω(x)−1

λ

)p′(x)

dµ,

where 1
3
< G(λ0) < ∞. The Lebesgue dominated convergence theorem can deduce that

G is continuous on [λ0, 1].

For any λ ∈ [λ0, 1), if G(1) ≥ 1
3
, by Lemma 2.5,

1

3λ
≤

1

λ

ˆ

BR

ω(x)−p′(x) dµ ≤ G(λ) ≤ λ−R < ∞.

Let λ sufficiently close to 1, then λ−R ≤ 2 and

1

3
≤

ˆ

FR

(

ω(x)−1

λ

)p′(x)

dµ ≤ 2. (3.4)

If G(1) < 1
3
, by continuity of G, there exists λ ∈ (λ0, 1) such that G(λ) = 1

3
. Then (3.4)

holds for this λ as well.

Fixed λ and let
f(x) = ω(x)−p′(x)λ1−p′(x)χBR

.

Then

ρp(·)(ωf) =

ˆ

BR

(

ω(x)−1

λ

)p′(x)

dµ ≤ 2.

By Lemma 2.5, ‖ωf‖p(·) ≤ 2
1

(p′)− . For any x ∈ B,

Mηf(x) ≥ µ(B)η−1

ˆ

B

fdµ = λµ(B)η−1

ˆ

BR

(
ω(x)−1

λ
)

p′(x)

dµ ≥
λ

3
µ(B)η−1.

For any t < λ
3
µ(B)η−1, it follows from (3.1) that

t‖ωχB‖q(·) ≤
∥

∥tωχ{x∈X:Mηf(x)>t}

∥

∥

q(·)
. ‖ωf‖p(·) ≤ 2

1
(p′)− .

Letting t → λ
3
µ(B)η−1, (3.3) is valid.

Case 2: ‖ω−1χB‖p′(·) = ∞.

In this case, we will use the perturbation method to prove.

Given ǫ > 0, denote the weight ωǫ(x) = ω(x) + ǫ. Then ω−1
ǫ ≤ ǫ−1 < ∞ and so

‖ω−1
ǫ χB‖p′(·) < ∞. It follows immediately from the sufficiency of Theorem 1.9, Lemma

2.15, and (3.1) that

t
∥

∥ωǫχ{x∈X:Mηf(x)>t}

∥

∥

q(·)
≤ t
∥

∥ωχ{x∈X:Mηf(x)>t}

∥

∥

q(·)
+ ǫt

∥

∥χ{x∈X:Mηf(x)>t}

∥

∥

q(·)

. ‖ωf‖p(·) + ǫ‖f‖p(·) ≤ 2‖ωǫf‖p(·)
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This shows that ωǫ satisfies (3.1). When ‖ω−1χB‖p′(·) < ∞, it follows from (3.3) that

sup
B⊆X

µ(B)η−1‖ωǫχB‖q(·)
∥

∥ω−1
ǫ χB

∥

∥

p′(·)
≤ K,

where K is actually independent of ǫ. Thus,

µ(B)η−1‖ωχB‖q(·)
∥

∥ω−1
ǫ χB

∥

∥

p′(·)
≤ µ(B)η−1‖ωǫχB‖q(·)

∥

∥ω−1
ǫ χB

∥

∥

p′(·)
≤ K.

Letting ǫ → 0, by Lemma 2.7 and ω−1
ǫ increases to ω−1, we have that [ω]Ap(·),q(·)

≤ K.

This finishes the necessity of Theorems 1.9 and 1.10.

3.2. Sufficiency.

The purpose of this section is to prove the sufficiency of Theorem 1.9, which implicits
the sufficiency of Theorem 1.10. We will discuss the case for µ(X) < ∞ at the end of
this subsection. The initial focus will be on cases where µ(X) = ∞.

Case 1: µ(X) = ∞. We first simplify some details with three steps.

Step 1. Lemma 2.20 implies that to establish the boundedness of Mη, it is sufficient
to demonstrate the boundedness of MD

η . By the homogeneity and Lemma 2.6, it suffices
to consider that f is a nonnegative function with ‖ωf‖p(·) = 1.

Step 2. We introduce the weights W (·) = ω(·)q(·) and σ(·) = ω(·)−p′(·). According
to Lemma 2.13 and Lemma 2.9, W (·) and σ(·) are both in A∞ and satisfy the doubling
property.

Step 3. Due to Lemma 2.22, it suffices to show that for any nested sequence
{Qk ∈ Dk}

∞
k=1 with Qk ⊆ Qk−1, we have

lim
k→∞

µ(Qk)
η−1

ˆ

Qk

fdµ = 0. (3.5)

Indeed, since W is doubling, if we fix a sequence with k = 1, then

W (Q1) ≤ W (B (xc (Q1) , Cdd0)) ≤ C
log2 Cd

W W (B (xc (Q1) , d0)) .

By Lemma 2.17, for any k, with the similar argument, we have

1

W (Qk)
.

1

W
(

B
(

xc (Qk) , Cddk0
))

Using lemma 2.9 combining above two estimates, we get

W (Q1)

W (Qk)
.

W (B (xc (Q1) , d0))

W
(

B
(

xc (Qk) , Cdd
k
0

)) .

(

µ (B (xc (Q1), d0 )

µ
(

B
(

xc (Qk) , Cdd
k
0

))

)δ

.

If we rearrange and apply Lemma 2.1 (the lower mass bound),

µ
(

B
(

xc (Q1) , Cdk0
))δ

. µ
(

B
(

xc (Qk) , Cdd
k
0

))δ
. W (Qk) .

By continuity of µ and the fact X = lim
k→∞

B
(

xc (Q1) , Cdk0
)

, we have lim
k→∞

W (Qk) = ∞.
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By the condition of Ap(·),q(·) and Lemma 2.10, and Lemma 2.5,

µ(Qk)
η−1

ˆ

Qk

fdµ . [ω]Ap(·),q(·)
‖ωf‖p(·) ‖ωχQk

‖−1
q(·) . ‖ωχQk

‖−1
q(·) .

Since Lemma 2.5 implies lim
k→∞

W (Qk) = lim
k→∞

‖ωχQk
‖q(·) = ∞, (3.5) is valid.

Next, we decompose f = f1+f2, where f1 = fχ{fσ−1>1} and f2 = fχ{fσ−1≤1}. Lemma
2.5 can deduce that

ˆ

X

|fi(x)|
p(x) ω(x)p(x)dµ ≤ ‖fiω‖p(·) ≤ ‖fω‖p(·) = 1, i = 1, 2. (3.6)

By Lemma 2.5 again and the sublinearity of MD
η , it suffices to show that

ˆ

X

(

MD
η fi(x)

)q(x)
ω(x)q(x)dµ . 1, i = 1, 2, (3.7)

where the implicit constant is independent on f .

Estimate for f1: Let k ∈ Z and a > CCZ , define

Xk =
{

x ∈ X : MD
η f1(x) > ak+1

}

.

Since f ∈ L1
loc and lim

k→∞
µ(Qk)

η−1
´

Qk
fdµ = 0, MD

η f1 is finite almost everywhere, then

{

x ∈ X : MD
η f1(x) > 0

}

=
⋃

k∈Z

Xk\Xk+1.

Let {Qk
j} be the CZ cubes of f1 at height ak. Then by Lemma 2.22, for every k,

Xk =
⋃

j

Qk
j . (3.8)

Set Ek
j = Qk

j\Xk+1, we find that

Xk\Xk+1 =
⋃

j

Ek
j .

It is obviously to get that
ˆ

X

MD
η f1(x)

q(x)ω(x)q(x)dµ

=
∑

k

ˆ

Xk\Xk+1

MD
η f1(x)

q(x)ω(x)q(x)dµ

.
∑

k

ˆ

Xk\Xk+1

akq(x)ω(x)q(x)dµ

.
∑

k,j

ˆ

Ek
j

(

ˆ

Qk
j

f1(y)σ(y)
−1σ(y)dµ

)q(x)

µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ. (3.9)
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Through the definition of f1, σ and (3.6),
ˆ

Qk
j

f1(y)σ(y)
−1σ(y)dµ ≤

ˆ

Qk
j

(

f1(y)σ(y)
−1
)p(y)

σ(y)dµ ≤

ˆ

Qk
j

(f1(y)ω(y))
p(y)dµ ≤ 1.

Then,

∑

k,j

ˆ

Ek
j

(

ˆ

Qk
j

f1(y)σ(y)
−1σ(y)dµ

)q(x)

µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ

≤
∑

k,j

(

ˆ

Qk
j

(

f1(y)σ(y)
−1
)p(y)/p−(Qk

j ) σ(y)dµ

)q−(Qk
j ) ˆ

Ek
j

µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ.

Next, it follows from Hölder’s inequality that the above

.
∑

k,j

(

−

ˆ

Qk
j

(

f1(y)σ(y)
−1
)p(y)/p−

σ(y)dµ

)

q−(Qk
j
)

p−(Qk
j
)
p−
ˆ

Ek
j

σ
(

Qk
j

)q−(Qk
j ) µ

(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ.

(3.10)
We claim that

ˆ

Ek
j

σ
(

Qk
j

)q−(Qk
j ) µ

(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ . σ

(

Qk
j

)

q−(Qk
j
)

p−(Qk
j
) . (3.11)

Since µ
(

Qk
j

)

≈ µ
(

Ek
j

)

and σ ∈ A∞, by Lemma 2.13 applied to ω−1 ∈ Aq′(·),p′(·),

Lemma 2.22 and Lemma 2.9, we obtain σ
(

Qk
j

)

≈ σ
(

Ek
j

)

. Thus, (3.11) can deduce that
(3.10) is bounded by

∑

k,j

(

−

ˆ

Qk
j

(

f1(y)σ(y)
−1
)p(y)/p− σ(y)dµ

)

q−(Qk
j
)

p−(Qk
j
)
p−

σ
(

Ek
j

)

q−(Qk
j
)

p−(Qk
j
)
p−

.
∑

k,j

(

ˆ

Ek
j

MD
σ ((f1σ

−1)p(·)/p−)(x)p−σ(x) dµ

)

q−(Qk
j
)

p−(Qk
j
)

.
∑

θ=1,
q+
p−

∑

k,j

(

ˆ

Ek
j

MD
σ ((f1σ

−1)
p(·)/p−)(x)p−σ(x)dµ

)θ

≤
∑

θ=1,
q+
p−

(

∑

k,j

ˆ

Ek
j

MD
σ ((f1σ

−1)
p(·)/p−)(x)p−σ(x)dµ

)θ

≤
∑

θ=1,
q+
p−

(
ˆ

X

MD
σ ((f1σ

−1)
p(·)/p−)(x)p−σ(x)dµ

)θ

.
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By Lemma 2.21 and (3.7), the above is bounded by
∑

θ=1,
q+
p−

(

´

X
(ω(x)f1(x))

p(x)dµ
)θ

. 1.

Next, we will verify (3.11) to finish the estimate for f1. In fact, the left-hand side of
(3.11) can be rewrite by







σ
(

Qk
j

)

∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)







q−(Qk
j )
ˆ

Qk
j

∥

∥

∥
ω−1χQk

j

∥

∥

∥

q−(Qk
j )−q(x)

p′(·)

∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)

p′(·)
µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ.

(3.12)
To prove (3.11), it suffices to prove that

ˆ

Qk
j

∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)

p′(·)
µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ . 1, (3.13)

∥

∥

∥
ω−1χQk

j

∥

∥

∥

q−(Qk
j )−q(x)

p′(·)
. 1, (3.14)







σ
(

Qk
j

)

∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)







q−(Qk
j )

. σ
(

Qk
j

)

q−(Qk
j
)

p−(Qk
j
) . (3.15)

Firstly, (3.13) follows instantly from the condition of Ap(·),q(·) and Lemma 2.5. Sec-
ondly, we will prove (3.14) as follows.

Assume that
∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)
< 1, otherwise, there is nothing to prove. Then,

p(x)− p−(Q
k
j ) ≈

1

p−(Qk
j )

−
1

p(x)
=

1

q−(Qk
j )

−
1

q(x)
≈ q(x)− q−(Q

k
j ), (3.16)

which only depend on p(·) and η. Moreover, we have

q(x)− q−
(

Qk
j

)

=
q′(x)

q′(x)− 1
−

(q′)+
(

Qk
j

)

(q′)+
(

Qk
j

)

− 1

=
(q′)+

(

Qk
j

)

− q′(x)

[q′(x)− 1]
[

(q′)+
(

Qk
j

)

− 1
]

. (q′)+
(

Qk
j

)

− (q′)−
(

Qk
j

)

≈ (p′)+
(

Qk
j

)

− (p′)−
(

Qk
j

)

,

where the last step holds since we used (3.16) and the implicit constants only depend on
p(·) and η. Thus, (3.14) follows immediately from Lemma 2.12 (applied to cubes) and
(1.4).
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Last, we prove (3.15) as follows. If
∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)
> 1, then by Lemma 2.5,







σ
(

Qk
j

)

∥

∥

∥ω−1χQk
j

∥

∥

∥

p′(·)







q−(Qk
j )

≤

(

σ
(

Qk
j

)1−1/(p′)+(Qk
j )
)q−(Qk

j )
= σ

(

Qk
j

)

q−(Qk
j
)

p−(Qk
j
) .

If
∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)
≤ 1, then applying Lemma 2.5 and Lemma 2.12,







σ
(

Qk
j

)

∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)







q−(Qk
j )

≤

(

∥

∥

∥
ω−1χQk

j

∥

∥

∥

(p′)−(Qk
j )−1

p′(·)

)q−(Qk
j )

≤

(

∥

∥

∥
ω−1χQk

j

∥

∥

∥

(p′)−(Qk
j )−1+(p′)+(Qk

j )−(p′)+(Qk
j )

p′(·)

)q−(Qk
j )

.

(

∥

∥

∥
ω−1χQk

j

∥

∥

∥

(p′)+(Qk
j )−1

p′(·)

)q−(Qk
j )

.



σ
(

Qk
j

)

(p′)+(Qk
j )−1

(p′)+(Qk
j )





q−(Qk
j )

. σ
(

Qk
j

)

q−(Qk
j
)

p−(Qk
j
) .

Eventually, (3.11) is valid and then we finish the proof of (3.6) for f1.

Estimate for f2: Initially, we notice that 1, σ, and W are in A∞. Considering {Qk
j}

as the Calderón-Zygmund dyadic cubes for f2 relative to µ, and selecting a nested tower
of cubes {Qk,0}, it is observed that the measures µ(Qk,0), σ(Qk,0), and W (Qk,0) all tend
towards infinity. We will often use the doubling property for A∞ in following.

Finding a cube Qk0,0 =: Q0 ∈ Dk0 s.t. µ (Q0) ,W (Q0) and σ (Q0) ≥ 1 and fixing a
LH∞ base point x0 = xc (Q0), by Lemma 1.6. Define N0 = 2A0Cd and the sets

F =
{

(k, j) ∈ Z× Z : Qk
j ⊆ Q0

}

;

G =
{

(k, j) ∈ Z× Z : Qk
j * Q0 and d

(

x0, xc

(

Qk
j

))

< N0d
k
0

}

;

H =
{

(k, j) ∈ Z× Z : Qk
j * Q0 and d

(

x0, xc

(

Qk
j

))

≥ N0d
k
0

}

.

By the same argument of getting (3.9), and replacing f1 with f2, we have

ˆ

X

MDf2(x)
q(x)ω(x)q(x)dµ .

∑

k,j

ˆ

Ek
j

(

−

ˆ

Qk
j

f2(y)σ(y)σ(y)
−1dµ

)q(x)

(µ
(

Qk
j

)η
ω(x))

q(x)
dµ.

We decompose
∑

k,j into
∑

(k,j)∈F
= I1,

∑

(k,j)∈G
= I2 and

∑

(k,j)∈H
= I3.
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Estimate for I1: Noting that f2σ
−1 ≤ 1 allows us to remove f2 from consideration.

Subsequently, by applying (3.10), we obtain

I1 ≤
∑

(k,j)∈F

ˆ

Ek
j

(

−

ˆ

Qk
j

σ(y)dµ

)q(x)

(µ
(

Qk
j

)η
ω(x))

q(x)
dµ

≤
∑

(k,j)∈F

ˆ

Ek
j

σ
(

Qk
j

)q(x)−q−(Qk
j ) σ

(

Qk
j

)q−(Qk
j ) µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ

≤
∑

(k,j)∈F

(

1 + σ
(

Qk
j

))q+(Qk
j )−q−(Qk

j )
ˆ

Ek
j

σ
(

Qk
j

)q−(Qk
j ) µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ

. (1 + σ (Q0))
q+−q−

∑

(k,j)∈F

σ
(

Qk
j

)

q−(Qk
j
)

p−(Qk
j
)

. (1 + σ (Q0))
q+−q−

∑

θ=1,
q+
p−

∑

(k,j)∈F

(

σ
(

Qk
j

)θ
)

. (1 + σ (Q0))
q+−q−

∑

θ=1,
q+
p−





∑

(k,j)∈F

σ
(

Ek
j

)





θ

≤ (1 + σ (Q0))
q+−q−

∑

θ=1,
q+
p−

σ(Q0)
θ,

where the implicit constants are independent on Qk
j and f .

Estimate for I2: Set Bk
j = B(xc(Q

k
j ), A0(Cd + 1)N0d

k
0). For (k, j) ∈ G , as Qk

j 6⊆ Q0,

if xc(Q
k
j ) ∈ Q0, then by Lemma 2.17, Q0 ⊆ Qk

j ⊆ Bk
j . If xc(Q

k
j ) 6∈ Q0, noting that

Q0 ⊇ B(x0, d
k0
0 ), we have

dk00 ≤ d(x0, xc(Q
k
j )) ≤ N0d

k
0.

By Lemma 2.17 again, since x0 ∈ B(xc(Q
k
j ), N0d

k
0) and Q0 ⊆ B(x0, Cdd

k0
0 ), then for

every x ∈ Q0,

d(x, xc(Q
k
j )) ≤ A0(d(x, x0) + d(x0, xc(Q

k
j ))) ≤ A0(Cdd

k0
0 +N0d

k
0) ≤ A0(Cd + 1)N0d

k
0.

Hence, for any (k, j) ∈ G , Q0 ⊆ Bk
j . Furthermore, W (Bk

j ), σ(B
k
j ) ≥ 1. Note also that

by doubling property and Lemma 2.17, µ(Qk
j ) ≈ µ(Bk

j ).

Lemma 2.5 can deduce that ‖ω−1χQ0‖p′(·) ≥ 1, since σ (Q0) ≥ 1. By (2.2), (1.4), and

Lemma 2.14, it follows that

µ
(

Qk
j

)−1
≈ µ

(

Bk
j

)−1
. µ(Q0)

−1

(

σ (Q0)

σ
(

Bk
j

)

)
1

(1−η)p′∞

≈
∥

∥

∥
ω−1χBk

j

∥

∥

∥

1
(η−1)

p′(·)
.
∥

∥

∥
ω−1χQk

j

∥

∥

∥

1
(η−1)

p′(·)
.
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Together with the above and Lemma 2.10, we have

µ
(

Qk
j

)η−1
ˆ

Qk
j

f2(y)dµ .
∥

∥

∥
ω−1χQk

j

∥

∥

∥

−1

p′(·)
‖f2ω‖p(·)

∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)
. 1.

It follows immediately from Lemma 2.8 that

I2 .
∑

(k,j)∈G

ˆ

Ek
j

(

C−1µ
(

Qk
j

)η−1
ˆ

Qk
j

f2(y)dµ

)q(x)

ω(x)q(x)dµ

≤ Ct

∑

(k,j)∈G

ˆ

Ek
j

(

µ
(

Qk
j

)η−1
ˆ

Qk
j

f2(y)dµ

)q∞

ω(x)q(x)dµ+
∑

(k,j)∈G

ˆ

Ek
j

W (x)

(e + d (x0, x))
tq−

dµ

(3.17)

Similar to getting (2.4), we can choose t sufficiently large to obtain

∑

(k,j)∈G

ˆ

Ek
j

W (x)

(e + d (x0, x))
tq−

dµ ≤

ˆ

X

W (x)

(e+ d (x0, x))
tq−

dµ ≤ 1 (3.18)

To finish the estimation of I2, it suffices to estimate the first term of (3.17). Therefore,
we have

∑

(k,j)∈G

ˆ

Ek
j

(

µ
(

Qk
j

)η−1
ˆ

Qk
j

f2(y)dµ

)q∞

ω(x)q(x)dµ

=
∑

(k,j)∈G

(

1

σ
(

Qk
j

)

ˆ

Qk
j

f2(y)σ(y)
−1σ(y)dµ

)q∞ (

σ
(

Qk
j

)

µ
(

Qk
j

)1−η

)q∞

W
(

Ek
j

)

.

Next, we claim that

(

σ(Qk
j )

µ(Qk
j )

1−η

)q∞

.
σ(Qk

j )

W (Qk
j )
. (3.19)

Indeed, applying (2.5) to (σ, p′(·)) and (W , q(·)) for cubes, and by Ap(·),q(·) condition,
it follows that

σ(Qk
j )

q∞−1 .
∥

∥

∥
ω−1χQk

j

∥

∥

∥

q∞

p′(·)
.







µ(Qk
j )

1−η

∥

∥

∥
ωχQk

j

∥

∥

∥

q(·)







q∞

.
µ(Qk

j )
(1−η)q∞

W (Qk
j )

Thus, (3.19) follows obviously from the rearrangement.

In the following, we proceed to estimate the first term of (2.4).
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∑

(k,j)∈G

(

1

σ
(

Qk
j

)

ˆ

Qk
j

f2(y)σ(y)
−1σ(y)dµ

)q∞ (

σ
(

Qk
j

)

µ
(

Qk
j

)1−η

)q∞

W
(

Ek
j

)

.
∑

(k,j)∈G

(

1

σ
(

Qk
j

)

ˆ

Qk
j

f2(y)σ(y)
−1σ(y)dµ

)q∞

σ
(

Qk
j

)

.
∑

(k,j)∈G

ˆ

Ek
j

Mσ

(

f2σ
−1
)

(x)q∞σ(x)dµ.

≤

ˆ

X

Mσ

(

f2σ
−1
)

(x)q∞σ(x)dµ (3.20)

.

ˆ

X

(

f2(x)σ(x)
−1
)q∞

σ(x)dµ (3.21)

≤

ˆ

X

(

f2(x)σ(x)
−1
)p∞

σ(x)dµ. (3.22)

≤Ct

(
ˆ

X

(

f2(x)σ(x)
−1
)p(x)

σ(x)dµ+

ˆ

X

σ(x)

(e + d (x0, x))
tp−

dµ

)

(3.23)

≤Ct

(
ˆ

X

f2(x)
p(x)ω(x)p(x)dµ+

ˆ

X

σ(x)

(e + d (x0, x))
tp−

dµ

)

. (3.24)

where (3.21) comes from Lemma 2.21, (3.22) holds due to the fact that f2σ
−1 ≤ 1, and

(3.23) is valid due to Lemma 2.8. Then, the second term of (3.24) is similar to (3.18)
and we just replace W with σ. Thus, I2 is bounded by a constant due to (3.6).

Estimate for I3: Firstly, we claim that

sup
x∈Qk

j

d (x0, x) ≈ inf
x∈Qk

j

d (x0, x) (3.25)

where the implicit constant is independent on Qk
j .for some constant R ≥ 1 which is inde-

pendent of k and j. In our analysis, the validity of inequality (3.25) will be established
through substitution of Qk

j with the ball Ak
j = N−1

0 Bk
j , which encompasses Qk

j . For this

purpose, we fix a pair (k, j) within H and choose an arbitrary x from Ak
j . We get that

d(x, x0) ≤ A0[d(x, xc(Q
k
j )) + d(x0, xc(Q

k
j ))] ≤ A0[Cdd

k
0 + d(x0, xc(Q

k
j ))] ≤

(

A0 +
1

2

)

d(x0, xc(Q
k
j )).

In the other hand,

d(x0, xc(Q
k
j )) ≤ A0[d(x0, x) + d(x, xc(Q

k
j ))] =

1

2
N0d

k
0 + A0d(x0, x) ≤

1

2
d(x0, xc(Q

k
j )) + A0d(x0, x).

Then, we obtain that

d
(

x0, xc

(

Qk
j

))

≤ 2A0d (x0, x) .

Consequently, (3.25) holds.
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To proceed with the estimation of I3, it becomes necessary to partition H into two
distinct subsets,

H1 =
{

(k, j) ∈ H : σ
(

Qk
j

)

≤ 1
}

, H2 =
{

(k, j) ∈ H : σ
(

Qk
j

)

> 1
}

.

Initially, we aggregate over H1. Consider x+ within Ak
j , chosen such that q+(A

k
j ) =

q(x+), a selection made possible by the continuity of q(·) in LH0. Subsequently, in
accordance with the LH∞ criterion and inequality (3.25), it holds for almost every x in
Qk

j that,

0 ≤ q+
(

Qk
j

)

− q(x) ≤ |q (x+)− q∞|+ |q(x)− q∞|

≤
C∞

log (e + d (x0, x+))
+

C∞

log (e + d (x0, x))

≈
1

log (e + d (x0, x))

By Lemma 2.8 and (3.18), we derive

∑

(k,j)∈H1

ˆ

Ek
j

(

µ
(

Qk
j

)η−1
ˆ

Qk
j

f2(y)dµ

)q(x)

ω(x)q(x)dµ

.





∑

(k,j)∈H1

ˆ

Ek
j

(

µ
(

Qk
j

)η−1
ˆ

Qk
j

f2(y)dµ

)q+(Qk
j )

ω(x)q(x)dµ



+ 1 (3.26)

It follows from Lemma 2.3 that

µ
(

Qk
j

)q(x)−q+(Qk
j ) .

(

µ
(

Qk
j

)q+(Qk
j ) + µ

(

Qk
j

)q−(Qk
j )
)

µ
(

Qk
j

)−q+(Qk
j ) . 1.

The first term of (3.26) is bounded by

∑

(k,j)∈H1

ˆ

Ek
j

(

1

σ
(

Qk
j

)

ˆ

Qk
j

f2(y)σ(y)
−1σ(y)dµ

)q+(Qk
j )

σ
(

Qk
j

)q+(Qk
j ) µ

(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ.

Through Lemma 2.8 and f2σ
−1 ≤ 1, the above

.
∑

(k,j)∈H1

ˆ

Ek
j

(

1

σ
(

Qk
j

)

ˆ

Qk
j

f2(y)σ(y)
−1σ(y)dµ

)q∞

σ
(

Qk
j

)q+(Qk
j ) µ

(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ

+
∑

(k,j)∈H1

ˆ

Ek
j

σ
(

Qk
j

)q+(Qk
j ) µ

(

Qk
j

)(η−1)q(x) ω(x)q(x)

(e+ d (x0, x))
tq−

dµ

=: J1 + J2.
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To estimate J2, we note that σ(Ek
j ) ≈ σ(Qk

j ) ≤ 1. By (3.11) and (3.25), we deduce that

J2 ≤
∑

(k,j)∈H1

sup
x∈Ek

j

(e+ d (x0, x))
−tq−

ˆ

Ek
j

σ
(

Qk
j

)q−(Qk
j ) µ

(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ

.
∑

(k,j)∈H1

sup
x∈Ek

j

(e+ d (x0, x))
−tq− σ

(

Ek
j

)

.
∑

(k,j)∈H1

ˆ

Ek
j

σ(x)

(e + d (x0, x))
tq−

dµ

≤

ˆ

X

σ(x)

(e+ d (x0, x))
tq−

dµ

. 1.

where the last inequality is the same as the argument for estimating the second term in
(3.24). Similarly, it follows obviously from (3.10) that

J1 .
∑

(k,j)∈H1

(

σ
(

Qk
j

)−1
ˆ

Qk
j

f2(y)σ(y)
−1σ(y)dµ

)q∞

σ
(

Qk
j

)

q−(Qk
j
)

p−(Qk
j
)

.
∑

(k,j)∈H1

(

σ
(

Qk
j

)−1
ˆ

Qk
j

f2(y)σ(y)
−1σ(y)dµ

)q∞

σ
(

Ek
j

)

.

ˆ

X

Mσ

(

f2σ
−1
)

(x)q∞σ(x)dµ.

where the last estimate similar to (3.20), which is bounded by a constant. We finish the
estimate for H1.

Finally, for the case of H2, by Lemma 2.10, we have
ˆ

Qk
j

f2(y)dµ . ‖f2ω‖p(·)

∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)
≤
∥

∥

∥
ω−1χQk

j

∥

∥

∥

p′(·)
.

Applying Lemma 2.8,

∑

(k,j)∈H2

ˆ

Ek
j

(

−

ˆ

Qk
j

f2(y)dµ

)q(x)

(µ(Qk
j )

ηω(x))q(x)dµ

.
∑

(k,j)∈H2

ˆ

Ek
j

(

c
∥

∥

∥
ω−1χQk

j

∥

∥

∥

−1

p′(·)

ˆ

Qk
j

f2(y)dµ

)q(x)
∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)

p′(·)
µ(Qk

j )
(η−1)q(x)ω(x)q(x)dµ

.
∑

(k,j)∈H2

ˆ

Ek
j

(

∥

∥

∥
ωχQk

j

∥

∥

∥

−1

p′(·)

ˆ

Qk
j

f2(y)dµ

)q∞
∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)

p′(·)
µ(Qk

j )
(η−1)q(x)ω(x)q(x)dµ

+
∑

(k,j)∈H2

ˆ

Ek
j

∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)

p′(·)
µ(Qk

j )
(η−1)q(x)

ω(x)q(x)

(e+ d(x0, x))
tq−

dµ
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=:K1 +K2.

To estimate K2, note that 1 ≤ σ
(

Qk
j

)

≈ σ
(

Ek
j

)

. By (3.13) and (3.25), it follows from
that

K2 .
∑

(k,j)∈H2

sup
x∈Ek

j

(e+ d (x0, x))
−tq−

ˆ

Ek
j

∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)

p′(·)
µ(Qk

j )
(η−1)q(x)

ω(x)q(x)dµ

.
∑

(k,j)∈H2

sup
x∈Ek

j

(e+ d (x0, x))
−tq−

.
∑

(k,j)∈H2

sup
x∈Ek

j

(e+ d (x0, x))
−tq− σ

(

Ek
j

)

.

ˆ

X

σ(x)

(e + d (x0, x))
tq−

dµ. (3.27)

Actually, (3.27) has been argued in J2 and I2 which is bounded by a constant.

To estimate K1, it follows from (2.5) to get
∥

∥

∥
w−1χQk

j

∥

∥

∥

−q∞

p′(·)
σ(Qk

j )
q∞ . σ(Qk

j )
q∞−q∞/q′∞ = σ(Qk

j )
q∞
p∞ .

Since 1 ≤ σ
(

Qk
j

)

≈ σ
(

Ek
j

)

, by (3.13), we have

K1

=
∑

(k,j)∈H2

ˆ

Ek
j

(

σ
(

Qk
j

)−1
ˆ

Qk
j

f2(y)dµ

)q∞
∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)−q∞

p′(·)
σ
(

Qk
j

)q∞
µ(Qk

j )
(η−1)q(x)

ω(x)q(x)dµ

.
∑

(k,j)∈H2

(

1

σ
(

Qk
j

)

ˆ

Qk
j

f2(y)dµ

)q∞

σ
(

Qk
j

)
q∞
p∞

ˆ

Qk
j

∥

∥

∥
ω−1χQk

j

∥

∥

∥

q(x)

p′(·)
µ(Qk

j )
(η−1)q(x)ω(x)q(x)dµ

.





∑

(k,j)∈H2

(

1

σ
(

Qk
j

)

ˆ

Qk
j

f2(y)dµ

)p∞

σ
(

Ek
j

)





q∞
p∞

.

(
ˆ

X

Mσ

(

f2σ
−1
)

(x)p∞σ(x)dµ

)
q∞
p∞

Next, we use the same method as for estimating (3.20) to make the above estimate
bounded by a constant. Thus the estimates for I3 are completed, which accomplishs the
proof of sufficiency for µ(X) = ∞.

Case 2: µ(X) < ∞.

Last but not least, we turn to the case for µ(X) < ∞. In the finite case, the proof
is similar to before and we just need to make some changes for Calderón-Zygmund
Decomposition. We also consider f is a nonnegative funcion with ‖ωf‖p(·) = 1 and
decompose f = f1 + f2 as before. The construction of Calderón-Zygmund cubes at any

height λ > λ0 := µ
(

Qk
j

)η−1 ´

Qk fidµ.
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By Lemma 2.10, Lemma 2.2, and the condition of Ap(·),q(·),

λ0 ≤ 4µ(X)η−1‖fiω‖p(·)
∥

∥ω−1
∥

∥

p′(·)
≤ 4[ω]Ap(·),q(·)

‖ω‖−1
q(·) .

In addition, by Lemma 2.5 and Lemma 2.2 again, we can conclude that λ0 . 1.

From Lemma 2.22, set a = 2CCZ and
{

Qk
j

}

is the Calderón-Zygmund cubes of fi at

height ak, for all integers k ≥ k0 = [loga λ0]. Then

X = XD
η,ak0

⋃

(

XD
η,ak0

)c

=

(

∞
⋃

k=k0

XD
η,ak\X

D
η,ak+1

)

⋃

(

XD
η,ak0

)c

,

where XD
η,ak0

:=
{

x ∈ X : MD
η fi(x) > λ0

}

⊆
{

Qk
j

}

.

It follows instantly from the getting of (3.9) that
ˆ

X

MD
η fi(x)

q(x)ω(x)q(x)dµ

=

ˆ

(

XD

η,ak0

)c M
D
η fi(x)

q(x)ω(x)q(x)dµ+
∞
∑

k=k0

ˆ

XD

η,ak
\XD

η,ak+1

MD
η fi(x)

q(x)ω(x)q(x)dµ

.λ0W (X) +
∑

k≥k0,j

(

ˆ

Qk
j

fi(y)σ(y)
−1σ(y)dµ

)q(x)

µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ.

The first term is bounded by a constant, which depends only on X , D, ω, η, and p(·).
When i = 1, the second term is similar to the infinite case. We consider the following
for i = 2.

After choosing Q0 = X , then I2 = I3 = 0. Further, since f2σ
−1 ≤ 1, σ(Qk

j ) ≈ σ(Ek
j ),

and (3.11), the second term is bounded by

∑

k≥k0,j

ˆ

Ek
j

σ(X)q(x)

(

σ
(

Qk
j

)

σ(X)

)q(x)

µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ

≤ (σ(X)q+ + σ(X)q−)
∑

k≥k0,j

ˆ

Ek
j

(

σ
(

Qk
j

)

σ(X)

)q−(Qk
j )

µ
(

Qk
j

)(η−1)q(x)
ω(x)q(x)dµ

. (σ(X)q+ + σ(X)q−)

(

1

σ(X)q+
+

1

σ(X)q−

)

∑

k≥k0,j

σ
(

Ek
j

)

q−(Qk
j
)

p−(Qk
j
)

≤
(σ(X)q+ + σ(X)q−)2

σ(X)q++q−

∑

θ=1,
q+
p−

∑

k≥k0,j

(

σ
(

Ek
j

)θ
)

≤
(σ(X)q+ + σ(X)q−)2

σ(X)q++q−

∑

θ=1,
q+
p−

(

∑

k≥k0,j

σ
(

Ek
j

)

)θ
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≤
(σ(X)q+ + σ(X)q−)

2

σ(X)q++q−

∑

θ=1,
q+
p−

σ(X)θ.

We accomplish estimate for i = 2 and finish the proof of sufficiency for µ(X) < ∞.
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