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Abstract

We examine the subtleties of regularization schemes in four-dimensional space (4S),
related in particular to the introduction of the γ5 matrix. To illustrate we use a “Bum-
blebee” model featuring dynamically induced Lorentz symmetry violation. The analysis
centers on how different regularization methods affect the solutions to the gap equation
in this model. We highlight the resolution of ambiguities associated with the γ5 matrix in
ultraviolet divergent integrals by employing an enhanced Implicit Regularization (IREG)
method. This method extends IREG to a quasi-four-dimensional space, Q4S = 4S ⊕X,
drawing parallels with the consistent approach of Dimensional Reduction (DRED). Com-
parative analysis is conducted against results from the ’t Hooft-Veltman regularization
scheme, conventional IREG in strict 4S, and sharp momentum cutoff techniques. Our
results illustrate a scheme to compute γ5 interactions in physical dimension of divergent
amplitudes, confirming the approach in [1].

1 Introduction

The Standard Model of Particle Physics (SM) is a successful quantum theoretical framework
that describes three among four of fundamental particle interactions, namely electromagnetism,
the weak force, and the strong nuclear force — excluding only gravity. Lorentz symmetry is
at the core of the SM framework. A profound connection between Lorentz symmetry and
charge, parity, and time reversal (CPT) symmetry invariance is unveiled by the CPT theorem:
any Lorentz-invariant local quantum field theory with Hermitian Hamiltonian must have CPT
symmetry. This is important because CPT symmetry imposes stringent constraints on the
permissible interactions and processes in nature. However, whilst an interacting theory that
violates CPT necessarily violates Lorentz invariance, it is possible to have Lorentz violation
without CPT violation [2]. On the other hand, observable manifestations of an underlying
unified quantum gravity theory may present signals of Planck scale physics associated with
Lorentz symmetry breaking [3]. Indeed, various quantum-gravity approaches result in a scenario
where Lorentz symmetry is broken.

Despite the absence of a complete quantum theory of gravity, investigating Lorentz sym-
metry violation (LV) remains pertinent. LV carries observable implications, e.g. in cosmology
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and the early universe. Some theoretical frameworks propose scenarios where Lorentz sym-
metry is dynamically broken, potentially influencing cosmic microwave background radiation
and the large-scale structure of the universe [4–6]. In this sense, SM Extensions (SME) serve
as effective field theories models for investigating specific instances of LV providing valuable
insights for probing the fundamental nature of spacetime. In practice, this approach introduces
correction terms in the Lagrangian that explicitly break Lorentz symmetry, thereby enabling
the generation of measurable deviations from the Standard Model predictions. Usually such LV
terms are introduced in the model through spontaneous (SSB) or dynamical (DSB) symmetry
breaking. [7–20]. Spontaneous Symmetry Breaking (SSB) plays a crucial role, for instance, in
the unified framework of weak and electromagnetic forces. Conversely, Dynamical Symmetry
Breaking (DSB) was suggested by Bjorken in 1963 as a method for the ”dynamical generation
of quantum electrodynamics” (QED). This approach sought to reproduce the observable effects
of standard QED without presupposing the local U(1) gauge invariance. DSB is an important
alternative to the Higgs mechanism and plays central role in QCD chiral symmetry breaking.

In this contribution we study a dynamically generated Lorentz symmetry breaking model
inspired by a four-fermion field model effective potential generated as a quantum correction.
The minimum of the potential is determined by a tadpole finite contribution which is superfi-
cially divergent and contains γ5 Dirac matrices. It is well known that the evaluation of divergent
integrals involving γ5 matrices potentially leads to regularization dependence. Such ambiguities
in defining the γ5 algebra across different regularizations can lead to discrepancies in the evalu-
ation of these integrals, impacting the physical predictions. On the other hand, regularizations
that operate in the physical dimension should, in principle, be exempt from such problems.
This expectation is however too naive, as discussed in detail in [1], where further examples can
be found in [21–25].

This work is organized as follows: after introducing the model to be used as our test
case, we explore in Section 3 the ambiguities associated with using the γ5 matrix algebra in
four-dimensional space (4S) with divergent integrals in IREG, and how IREG ensures result
uniqueness. Section 4 details the solutions to the gap equation for the Bumblebee model
using IREG in both strict 4S and quasi-4S (Q4S), comparing these to results from the ’t
Hooft-Veltman dimensional scheme [26], and two sharp cutoff schemes in 4S. We present our
conclusions in Section 5, which are followed by two appendices: one reviews the basic rules of
IREG, and the other presents results for the finite integrals specific to the IREG method used
in this analysis.

2 The model

In the late eighties, Kostelecký and Samuel [27] studied a model based on the Einstein-Maxwell
action with a potential for the vector field that induces LV when a vector (or tensor) field
acquires a non-zero vacuum expectation value. For instance a potential term 1/(2α)(BµBµ+b

2)2

for a background field Bµ such that 〈0|Bµ|0〉 = bµ 6= 0 can act as indicator of global Lorentz
violation. The potential reaches its minimum when the condition BµBµ = −b2 is met, which
can be achieved, for instance, by considering a time-like 4-vector Bµ = (b, 0, 0, 0). Obviously,
this choice of Bµ establishes a preferred direction in spacetime.

For definiteness, consider the Bumblebee-type model given by the of Lagrangian in which
we have a Lagrange-multiplier potential proportional to a positive parameter λ:

LB = −
1

4
FµνF

µν + ψ̄(i∂µγ
µ −m− e /Bγ5)ψ −

λ

4
(BµB

µ − α2)2. (1)

Here FµνF
µν = ∂µBν − ∂νBµ. Performing a shift Bµ → bµ + Aµ, with 〈Aµ〉 = 0, yields:

LB = −
1

4
FµνF

µν + ψ̄[i/∂ −m− e( /A+ /b)γ5]ψ −
λ

4
(AµA

µ + 2Aµb
µ)2 , (2)
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in which the term in bµ explicitly violates Lorentz symmetry.
A different venue to arrive at this model comes by following the work of Coleman and Wein-

berg [28] that established that spontaneous symmetry breaking can be generated at quantum
level. It has been demonstrated in the literature that Bumblebee-type potentials, analogous to
those found in the Bumblebee model of gauge symmetry breaking, can arise dynamically within
certain theoretical frameworks. [29]. In particular, considering as a starting point an interaction
term consisting of a fermion bilinear of massless fields transforming as an axial-vector under
Lorentz transformations [29]:

L = ψ̄i/∂ψ −
e2

2g2
(ψ̄γµγ5ψ)2 +

g2

2

[

Bµ −
e

g2
ψ̄γµγ5ψ

]2

=
g2

2
BµB

µ + ψ̄(i/∂ − e /Bγ5)ψ, (3)

in which the term − e2

2g2
(ψ̄γµγ5ψ)2 has been cancelled out. Following [26], after some manipu-

lations we arrive at the effective potential for the Bumblebee field:

Veff = −
g2

2
BµB

µ + itr

∫
d4k

(2π)4
ln(/k − e /Bγ5). (4)

The nontrivial minimum of this potential is obtained by imposing:

dVeff
dBµ

∣
∣
∣
∣
∣
eBµ=bµ

= −
g2

e
bµ − iΠµ = 0, (5)

where

Πµ = tr

∫
d4k

(2π)4
i

/k − /bγ5
(−ie)γµγ5 (6)

is the one-loop tadpole amplitude. It is evaluated in Ref. [26] to

Πµ =
ie2b2

3π2
bµ, (7)

leading to a gap equation:

dVeff
dBµ

∣
∣
∣
∣
∣
eBµ=bµ

=

(

−
1

G
+

b2

3π2

)

ebµ = 0. (8)

It has the non-trivial solution

b2 =
3π2

G
, (9)

with G > 0 (G < 0) for timelike (spacelike) bµ. On the other hand, the effective potential reads

Veff = −
e2b2

6π2
B2 +

e4

12π2
B4 + c, (10)

where c is an integration constant. In this way, the Bumblebee potential in equation 1 is
reproduced by choosing c = b4/(12π2) and λ = e4/(3π2).

This illustrates that within the four-fermion model, a bumblebee potential featuring non-
trivial minima can arise due to quantum corrections, which in turn leads to dynamical Lorentz
symmetry breaking within this context. To ensure the framework’s consistency, it is neces-
sary for Πµ to be finite, as this condition is essential for obtaining a physical solution that
corresponds to the potential’s minimum.

In this work, we explore how the coefficients in eq. (10) depend on a coherent treatment of the
γ5 algebra by various regularization techniques. Our primary attention is on regularizations that
are applied in the physical dimension, as these can notably simplify higher-order calculations
if a consistent approach to chiral theories is adopted.
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3 γ5 matrix algebra in implicit regularization

Handling the γ5 Dirac matrix in conventional dimensional regularization (CDR) is problematic,
as expanding its specific algebra to arbitrary dimensions D breaks chiral symmetry. To resolve
this, authors have devised new schemes for precise calculations beyond leading order [30–45],
redefining algebraic rules for extended Lorentz tensors and gamma matrices, enforcing con-
straints order by order, and adding counterterms to restore symmetries according to quantum
action principles [46].

On the other hand, refining theoretical predictions in particle physics requires effective
computational methods for calculating Feynman amplitudes beyond the next-to-leading order
(NLO). For some processes, high-precision measurements already call for theoretical calcula-
tions up to at least four loop order [47] and serve to probe extensions of the Standard Model.
In this sense exploring non-dimensional regularization schemes offers a promising approach to
simplify computations following some already successful mixed schemes such as dimensional
reduction (DRED) [48,49] and four-dimensional helicity (FDH) [50,51]. Among such schemes,
notable examples include four-dimensional formulation (FDF) [52], four dimensional regular-
ization (FDR) [53], the four dimensional unsubtracted (FDU) method [54, 55] and implicit
regularization (IREG) [56–59], see [60, 61] for reviews.

In conventional dimensional methods (CDR), a primary challenge comes from the relation
between the emergence of anomalous terms and the breakdown of cyclicity — a characteristic
typically preserved in finite dimensions [62]. While in CDR {γ5, γµ} = 0 is typically preserved in
D 6= 4, in the Breitenlohner, Maison, ´t Hooft and Veltman (BMHV) extension [31] {γ5, γµ} 6= 0
and, as a byproduct, gauge and BRST invariance should be consistently restored by symmetry-
restoring counterterms at all orders [63–65]. One might anticipate that for four-dimensional
regularization schemes, the γ5 matrix issue would not arise. Nonetheless, there exist subtleties
related to finite ambiguities when integrating over internal momenta. One example is symmetric
integration in the internal loop momenta [66]. Such operation alters the Lorentz structure
and consequently the γ5 Clifford algebra by introducing spurious terms [1, 22, 23, 25]. In a
nutshell, the contraction of Lorentz indices does not commute with renormalization in these
non-dimensional schemes. To circumvent this problem, Bruque and collaborators [1] proposed
a scheme in which Dirac matrices, with the exception of γ5, are defined in a quasi-dimensional
space Q4S = QdS ⊕ Q(2ǫ)S [46]. However, in contrast to DRED (where the momenta still
need to be treated in QdS) the amplitude momenta are also defined in Q4S. One defines
Q4S = 4S ⊕ X , X being an auxiliary space, which needs not be explicitly defined [1]. In the
specific case of IREG, the inconsistencies boil down to the contraction of internal momenta in
Feynman amplitudes. Let us illustrate this point with a toy integral1 involving the internal
momentum k and symmetric integration: k2 → kαkβg

αβ or kαkβ → k2

4
gαβ. On one hand,

∫

k

k2

k2(k − p)2
=

∫

k

1

(k − p)2
= lim

µ2
→0

∫

k

1

(k − p)2 − µ2
= lim

µ2
→0

∫

k

1

k2 − µ2
= 0 (11)

whereas, performing symmetric integration,

gαβ
∫

k

kαkβ

k2(k − p)2
= gαβ

{(
pαpβ

3
−

gαβp
2

12

)[

Ilog(λ
2)− b ln

(

−
p2

λ2

)

+
13b

6

]

−
gαβbp

2

24

}

= −
b

6
p2,

(12)

where b = i/(4π)2, and
∫

k
≡

∫
d4k/(2π)4, clearly showing an ambiguity in the evaluation, which

is dependent on regularization since symmetric integration is not applicable in general [66]. In
the γ5 matrix algebra, such ambiguity emerges in non-dimensional regularization schemes upon

1A concise summary of IREG’s fundamental rules can be found in the appendix.
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consistently requiring {γµ, γ5} = 0:

∫

k

/kγ5/k

k2(k − p)2
=

{

0, using eq. (11) or
b
6
p2γ5, using eq.(12) .

(13)

In order to avoid these ambiguities, one defines

γ5 = −
i

4!
ǫabcdγ̄

aγ̄bγ̄cγ̄d (14)

where we use an overbar to denote an object pertaining to 4S. Since the Dirac matrices are
defined in Q4S, they are required to satisfy:

{γµ, γν} = 2gµν1; {γ̄µ, γ̄ν} = {γµ, γ̄ν} = 2ḡµν1; γµγ
µ = γµγ̄

µ = 4 1 (15)

{γ̄µ, γ̂ν} = 0; {γµ, γ̂ν} = {γ̂µ, γ̂ν} = 2ĝµν1; γµγ̂
µ = γ̄µγ̂

µ = γ̂µγ̂
µ = 0; (16)

{γ̄µ, γ5} = 0; {γµ, γ5} = 2γ5γ̂µ; [γ̂µ, γ5] = 0 (17)

where hatted objects belong to X space. In view of the above properties, equation (13) is
evaluated as [25]

∫

k

/kγ5/k

k2(k − p)2
= 2γ5

∫

k

/̂k/k

k2(k − p)2
−

∫

k

γ5k
2

k2(k − p)2

= γ5

∫

k

k2

k2(k − p)2
− 2γ5

∫

k

k̄2

k2(k − p)2

= −2ḡabγ5

∫

k

k̄ak̄b

k2(k − p)2
=
bp2

3
γ5. (18)

Notice that the above result differs from the two naive options of equation 13. Since this is
just a toy integral, it is not possible to connect any of the approaches to the (possible) breaking
of Ward identities. However, only the last approach, extending the theory to the Q4S space, is
completely free of ambiguities (particularly at multiloop calculations), since it does not require
reading points to be defined [39, 40, 67], for instance 2.

4 The bumblebee model from distinct regularizations

In [26], Πµ in equation 6 was evaluated by employing the exact propagator and using dimen-
sional regularization with ’t Hooft-Veltmann prescription [30] following an analytical exten-
sion from 4 to a D-dimensional spacetime. Moreover Dirac matrices are required to obey
{γµ, γν} = 2gµν , with gµνg

µν = D. Dirac matrices γµ and the metric tensor gµν are split as

γµ = γ̄µ + γ̂µ,

gµν = ḡµν + ĝµν , (19)

that is, into 4-dimensional parts (expressed with a bar) and (D−4)-dimensional parts (hatted),
so that now the Dirac matrices satisfy the relations

{γ̄µ, γ̄ν} = 2ḡµν , {γ̂µ, γ̂ν} = 2ĝµν, {γ̄µ, γ̂ν} = 0, (20)

and the metric tensors obey

ḡµν ḡ
µν = 4, ĝµν ĝ

µν = D − 4, ḡµν ĝ
µν = 0. (21)

2The main drawback is that chiral symmetry is inevitably broken, as happens in the BMHV scheme. It can,
nevertheless, be restored by including finite counterterms (see [1, 25] for examples in IREG).
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In this way one has
[γ̂µ, γ5] = 0 (22)

and the anticommutation relation
{γ̄µ, γ5} = 0. (23)

is maintained.
We proceed to study how eq.(6) can be evaluated in four-dimensional regularization schemes,

such as IREG. Before discussing the gap equation, though, we will take a step back and discuss
how the Feynmann rules are extracted from eq.(2).

This task may be non trivial in the presence of γ5, which is only defined in the physical
dimension. In particular, if the regularization to be adopted is defined in a different dimension,
the Lagrangian (and thereof the Feynman rules) must also be extended to this dimension. In
particular, once γµ is defined in the extended dimension, the property {γµ, γ5} = 0 may not
hold. For the bumblebee model in particular, this implies that fermionic propagator (DB) will
not be written in terms of the left/right propagators (PL/PR) only. Consider, for instance, that
{γµ, γ5} = 2γ̂µ, where γ̂µ is defined in the extra space X defined in the previous section. At
first sight, we have

DB =
1

/k − /bγ5
, D−1

B =
(
(/k − /b)PR + (/k + /b)PL

)
. (24)

However, it is straightforward to show that

DBD
−1
B = 1−

(
1

/k − /b
+

1

/k + /b

)

(/̂k − /̂bγ5) . (25)

Thus, D−1
B cannot be the inverse propagator, unless {γµ, γ5} = 0 holds.

In the following, consider that the regularization to be employed is defined in the physical
dimension, implying that {γµ, γ5} = 0 holds and the gap equation can be written as

Πµ = Tr

[∫

k

1

/k − /bγ5
γµγ5

]

= Tr

[∫

k

(
1

/k − /b
PL +

1

/k + /b
PR

)

γµγ5
]

= 2

∫

k

kµ − bµ

(k − b)2
− 2

∫

k

kµ + bµ

(k + b)2

= 2

∫
kµ[(k + b)2 − (k − b)2]− bµ[(k + b)2 + (k − b)2]

(k − b)2(k + b)2
(26)

After employing Feynman parametrization, we obtain

Πµ = Tr

[∫

k

1

/k − /bγ5
γµγ5

]

= −2

∫ 1

0

dx

∫

k

2bµ(k2 −∆)− 4kµ(b · k)

(k2 −∆)2
(27)

where ∆ = 4b2x(x − 1) + µ2, and µ2 is a fictitious mass introduced in the propagators of
eq.26. This result should be compared with the one obtained in the framework of Dimensional
Regularization [26]

Tr

[∫

k

1

/k − /bγ5
γµγ5

]

= −2µ4−D

∫ 1

0

dx

∫
dkd

(2π)d
2bµ(k2 −M2 − 2k̂2)− 4kµ(b · k)

(k2 −M2)2
(28)

where M2 = 4b2x(x− 1). The main difference is the appearance of a term containing k̂2.
We proceed to compute eq.27 using IREG. The main idea is to extract the UV divergent

part, in a way that the integrals only depend on internal momenta. This can be achieved
employing the identity as many times as necessary

1

k2 −M2 − µ2
=

1

k2 − µ2

(

1 +
M2

k2 −M2 − µ2
.

)

(29)
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For instance,

I2 =

∫

k

1

k2 −∆
=

∫

k

1

k2 − µ2

︸ ︷︷ ︸

Quad Div

+

∫

k

M2

(k2 − µ2)2
︸ ︷︷ ︸

Log Div

+

∫

k

M4

(k2 − µ2)2(k2 −M2 − µ2)
︸ ︷︷ ︸

Finite

(30)

Iµν2 =

∫

k

kµkν
(k2 −∆)2

=

∫

k

kµkν
(k2 − µ2)2

︸ ︷︷ ︸

Quad Div

+

∫

k

2kµkνM
2

(k2 − µ2)3
︸ ︷︷ ︸

Log Div

+

+

∫

k

2kµkνM
4

(k2 − µ2)3(k2 −M2 − µ2)
︸ ︷︷ ︸

Finite

+

∫

k

kµkνM
4

(k2 − µ2)2(k2 −M2 − µ2)2
︸ ︷︷ ︸

Finite

(31)

In terms of the integrals above, the gap equation can be written as

Πµ = Tr

[∫

k

1

/k − /bγ5
γµγ5

]

= −2

∫ 1

0

dx (2bµI2 − 4bαI
µα
2 ) . (32)

By employing the identities
∫

k

kµkν
(k2 − µ2)2

=
gµν
2

∫

k

1

(k2 − µ2)
,

∫

k

kµkν
(k2 − µ2)3

=
gµν
4

∫

k

1

(k2 − µ2)2
, (33)

it is immediate to notice that all divergences will cancel in the gap equation. Regarding the
finite pieces, they will also cancel, as shown in appendix A. Therefore, if the regularization is
defined in the physical dimension (in particular if {γµ, γ5} = 0 does hold), we obtain a null
result for the gap equation, in disagreement with [26].

There are, however, subtleties when defining a regularization in the physical dimension.
In particular, if the regularization complies with shift invariance, it can be shown [1] that
f({γµ, γ5})Iµν 6= 0. Here f() stems for an expression containing Dirac matrices (for instance
a Dirac Trace), and Iµν is a divergent integral. The crucial point is that both indexes of
the integral Iµν are contracted when multiplying f(). From a more formal point of view, the
fact that {γµ, γ5} 6= 0 does not hold under regularization can be incorporated by extending the
dimension of the underlying Lagrangian, while γ5 is still only defined in the physical dimension.
In the framework of Dimensional Regularization, this stands for the BHMV approach [63–65].
For IREG, a similar approach can be envisaged [1].

Once we define the theory on Q4S, we can treat the propagator of the Bumblebee theory
(eq. 2), which is given by

DB =
1

/k − /bγ5
. (34)

Notice that the /k, /b were extended to Q4S, while γ5 stays in 4S. Using the properties regarding
Dirac matrices in Q4S (see eqs.(15)-(17)), it can be shown that the propagator may also be
expressed as

DB =
1

/k − /bγ5
=
k2 + b

2
+ (2k · b+ [/̂k, /̄b])γ5

(k − b)2(k + b)2 − 4k̂2b
2 (/k + /̄bγ5) . (35)

Thus, the gap equation is now obtained as

Πµ = Tr

[∫

k

1

/k − /bγ5
γµγ5

]

= Tr

[
∫

k

k2 + b
2
+ (2k · b+ [/̂k, /̄b])γ5

(k − b)2(k + b)2 − 4k̂2b
2 (/k + /̄bγ5)γµγ5

]

. (36)

After a tedious, yet straightforward calculation, we obtain

Πµ(b) = −2

∫ 1

0

dx

∫

k

2b
µ
(k2 −∆)− 4kµ

(
b · k

)

(k2 −∆)2
+ 8

∫ 1

0

dx

∫

k

b
µ
k̂2

(k2 −∆)2
(37)
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which should be compared against eq.27. The only difference from the first term to the gap
equation written in the physical dimension (eq.27) is that the internal momentum is now defined
in Q4S. However, all the steps leading to the integrals Iµν2 and I2 still hold. Therefore, we arrive
at the same conclusion as before, the first term is null, and the gap equation is given simply by

Πµ(b) = 8

∫ 1

0

dx

∫

k

b
µ
k̂2

(k2 −∆)2
. (38)

In order to evaluate this integral, we notice that k̂2 = k2 − k̄2. In the framework of IREG,
we have the property below (required to fulfill shift invariance in Q4S) [1]

∫

k

k2f(k) 6= gαβ

∫

k

kαkβf(k) . (39)

This ultimately implies that Lorentz contraction and regularization do not commute, once the
internal momenta are in Q4S. On the other hand, for contracted internal momenta in 4S, we
have

∫

k

k̄2f(k) = ḡαβ

∫

k

kαkβf(k) . (40)

Thus, the gap equation can be expressed as

Πµ(b) = 8b
µ

[∫ 1

0

dx

∫

k

k2

(k2 −∆)2
− ḡαβ

∫ 1

0

dx

∫

k

kαkβ

(k2 −∆)2

]

. (41)

Therefore these integrals should again be decomposed in its finite and basic divergent contri-
butions. With N(k) = k2 − ḡαβk

αkβ and recalling that ∆ =M2 + µ2 one has

∫

k

N(k)

(k2 −∆)2
=

∫

k

N(k)

(k2 − µ2)2
︸ ︷︷ ︸

Quad Div

+

∫

k

2M2N(k)

(k2 − µ2)3
︸ ︷︷ ︸

Log Div

+

∫

k

2M4N(k)

(k2 − µ2)3(k2 −M2 − µ2)
︸ ︷︷ ︸

Finite

+

∫

k

M4(N(k)

(k2 − µ2)2(k2 −M2 − µ2)2
︸ ︷︷ ︸

Finite

. (42)

For the finite pieces the contraction displayed in eq. 40 can be applied leading immediately to
a cancellation of these terms.

Regarding the divergent pieces one uses N(k) = (k2 − µ2) + µ2 − ḡαβk
αkβ to cancel powers

in the denominator and be able to use the relations 33, obtaining

Πµ(b)|div = 8b
µ
∫ 1

0

dx

[∫

k

µ2

(k2 − µ2)2
−

∫

k

1

(k2 − µ2)

]

(43)

+ 8b
µ
∫ 1

0

dx

∫

k

2M2µ2

(k2 − µ2)3
. (44)

(45)

After taking the limit µ2 → 0, the first two terms are null and the last term yields the finite
contribution to the gap equation,

Πµ(b) = 8b
µ

[
2i

(4π)2
b2

3

]

= i
b
µ

3π2
. (46)
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4.1 Cut-off regularizations

A widely used regularization procedure consists in applying a sharp 4D momentum cutoff Λ
on the divergent integrals. Here we will discuss two types of cutoff regularization.

First we consider the standard approach, in which the tensor structures involving the loop
momentum k are dealt with using symmetric integration. In the case of two Lorentz indices
this corresponds to the replacement

∫

k

kµkν
(k2 −M2)n

→
gµν
4

∫

k

k2

(k2 −M2)n
(47)

in finite as well as divergent integrals. Here
∫

k
=

∫
d4k
(2π)4

and M2 stands for any scalar de-

pendence on momenta (other than the loop momentum), masses or Feynman parameters. In
general this reduction turns out to induce all sorts of violations of symmetries when the sub-
stitution is done in divergent integrals.

In the case of the Bumblebee model studied here the integrals to be evaluated, after Dirac
trace is taken using the γ5 algebra in 4D and after Feynman parametrization, are identical to
the ones of eq. 28, but now evaluated with a sharp cutoff Λ instead. With

∫

k

Λ 1

k2 −M2
= −

i

(4π)2
(Λ2 −M2ln(

Λ2 +M2

M2
)), (48)

∫

k

Λ 1

(k2 −M2)2
=

i

(4π)2
(ln(

Λ2 +M2

M2
)−

Λ2

Λ2 +M2
), (49)

a simple calculation using the symmetric integration (47) leads to the result

Πµ =
ibµ
4

(
b2

3π2
+

Λ2

2π2

)

. (50)

This result differs from the ‘t Hooft Veltman scheme, eq. 46, by a cutoff dependence, which
antagonizes with the effective potential requirement for a finite result. Interestingly the finite
term has also a different coefficient.

Secondly we consider the gauge invariant sharp cutoff procedure of [68]. In this particular
calculation the main difference to the naive procedure just outlined is that the coefficient
that accompanies the reduction to the metric tensor in divergent integrals results from the
requirement that the surface terms (ST) relating the difference of the following two quadratic
divergences, or the following two logarithmic divergences, vanish

∫

k

∂

∂kν

kµ

k2 −M2
= gµν

∫

k

1

k2 −M2
− 2

∫

k

kµkν

(k2 −M2)2
= 0, (51)

∫

k

∂

∂kν

kµ

(k2 −M2)2
= gµν

∫

k

1

(k2 −M2)2
− 4

∫

k

Λ kµkν

(k2 −M2)3
= 0. (52)

The vanishing of ST complies with the requirement of momentum routing invariance (the
invariance under shifts in the loop momentum) and is at the core of gauge invariance (in the
case of IREG the conditions are embodied in eqs. 33). In order to be able to relate to a simple
momentum cutoff, the authors identify a set of rules [68] and get

∫

k

Λ kµkν

(k2 −M2)2
= −

gµν

2

i

(4π)2

[

Λ2 −M2ln

(
Λ2 +M2

M2

)]

. (53)

One finally obtains that he improved (gauge invariant) sharp cutoff momentum prescription
leads to an identical result as in IREG in strict four-dimensions, namely a null result for Πµ.
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5 Conclusions

The development of regularization methods that operate entirely or partially in the physical
dimension aims to automate calculations at and beyond next-to-leading order (NLO). Tradi-
tional dimensional regularization schemes often increase complexity when handling objects like
the γ5 matrix, which are well-defined only in the physical dimension. This complexity has
motivated the adoption of non-dimensional methods. However, it’s recognized that not all op-
erations of γ5 algebra are applicable to divergent integrals without introducing ambiguities. In
the case of Implicit Regularization (IREG), inconsistencies at NLO can generally be resolved
by either symmetrizing the trace in divergent integrals [21–23] or applying the “right-most po-
sition” technique in open fermionic strings [24, 69], both maintaining strict adherence to the
physical dimension. In this study, a new layer of complexity is introduced as the γ5 matrix
also appears in the fermionic propagator. Its handling in the physical dimension involves us-
ing {γ5, γµ} = 0 before trace symmetrization. We employ a version of “Bumblebee” model,
where Lorentz symmetry is ostensibly violated, to test these approaches. Using IREG in the
physical dimension results in the gap equation consistently evaluating to zero, indicating no
Lorentz violation. This is analogous to results from a gauge-invariant sharp cutoff scheme in
4S, unlike conventional sharp cutoff regularization that depends on symmetric integration and
yields different, cutoff-dependent results. However, extending loop momenta and Clifford alge-
bra to quasi-four-dimensional space Q4S = 4S⊕X , while keeping γ5 in 4S, and systematically
applying IREG yields finite results comparable to those from the ’t Hooft and Veltman (HV)
scheme. The Q4S extension offers unique results similar to the BMHV scheme, proving effec-
tive when combined with IREG. Despite technically extending beyond the physical dimension,
its application remains user-friendly, allowing to perform correctly all integrations in the phys-
ical dimension, by appropriately addressing potential symmetry-violating terms through the X
space, maintaining otherwise all the established rules of IREG.

Acknowledgements

We acknowledge support from Fundação para a Ciência e Tecnologia (FCT) through the
projects UIDP/04564/20203 and UIDB/04564/20204, and the grant FCT 2020.07172.BD. M.
Sampaio acknowledges support from CNPq through grant 302790/2020-9. A.C. is supported by
a postdoctoral fellowship from the Postdoctoral Researcher Program - Resolution GR/Unicamp
No. 33/2023.

A Finite integrals

Here we list the finite contributions due to the integrals I2 and I
µν
2 , eqs. 30 and 31 respectively.

They still have to be integrated over the Feynman parameter x, in the final expression 32.

3https://doi.org/10.54499/UIDB/04564/2020
4https://doi.org/10.54499/UIDP/04564/2020
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Defining A =
∫ 1

0
dxI2fin and (B + C)µν =

∫ 1

0
dxIµν2fin, one has

A =

∫ 1

0

dx

∫

k

M4

(k2 − µ2)2(k2 −M2 − µ2)
=

∫ 1

0

dxM4

∫ 1

0

dφ
(1− φ)

R(x, φ)
=

−2b2

9

[

8 + 3ln
(µ0

4

)]

(54)

Bµν =

∫ 1

0

dx

∫

k

2kµkνM
4

(k2 − µ2)3(k2 −M2 − µ2)

= −
gµν
2

∫ 1

0

dxM4

∫ 1

0

dφ
(1− φ)2

R(x, φ)
= −gµν

b2

18

[

19 + 6ln
(µ0

4

)]

(55)

Cµν =

∫ 1

0

dx

∫

k

kµkνM
4

(k2 − µ2)2(k2 −M2 − µ2)2
=

−gµν
2

∫ 1

0

dxM4

∫ 1

0

dφ
φ(1− φ)

R(x, φ)
=
b2

6
gµν . (56)

where R(x, φ) = µ2 +M2φ, M2 = 4b2x(x− 1) in terms of the Feynman parameters x, φ. Here

µ0 = µ2

b2
. In these results the limit µ2 → 0 has been taken. Notice the occurrence of infrared

divergences in integrals A and Bµν , they emerge in the process of separating the BDI from
the strictly finite UV contributions in the original integrals I2 and Iµν2 , which according to the
algorithm 59 increases the powers of loop momentum in the denominator. As expected these
cancel in the final result below 575.
Inserting these expressions in eq. 32 the final result for the gap equation vanishes in this case

Πµ = −2(2bµA− 4bν(B + C)µν) = 0 (57)

B Overview of Implicit Regularization

In section 3 it is explained how the γ5 can be consistently treated in connection with IREG.
The procedure below outlined assumes implicitly that whenever the γ5 matrix is present, the
operations pertaining to the space Q4S = 4S ⊕X have been performed beforehand.

In this section we present the rules of IREG focusing on one loop order and in the massless
limit considered in the present Bumblebee model. A complete n-loop set of rules can be found
in [73, 74].

In IREG, the extraction of the UV divergent content of a Feynman amplitude is done by
using algebraic identities at the integrand level. This is done in alignment with Bogoliubov’s
recursion formula [75–77], implying that the way the method defines an UV convergent integral
respects locality, Lorentz invariance and unitarity [59]. IREG has been shown to respect abelian
gauge invariance to n-loop order [21,78], as well as non-abelian and SUSY symmetries in specific
examples up to two-loop order [24, 74, 79–82]. This is achieved in a constrained version of the
method, in which surface terms (ST’s), which are related to momentum routing of loops in
Feynman diagrams, are set to zero. In the realm of applications, processes such as h→ γγ [70],
e−e+ → γ∗ → qq̄(g) [60], and H → gg(g) [71] were studied at NLO.

In a nutshell, the rules of IREG are summarized as follows: consider a general 1-loop
Feynman amplitude where we denote by k the internal (loop) momenta, and pi the external
momenta. To this amplitude, we apply the set of rules:

1. Perform Dirac algebra in the physical dimension;

5The parametrization of the infrared divergences adopted is employed successfully in decay and scattering
processes in connection with the Kinoshita-Lee-Nauenberg (KLN) theorem in various processes calculated with
IREG [60,61, 69–72]
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2. In order to respect numerator/denominator consistency, as described in the reference [1],
it is necessary to eliminate terms involving internal momenta squared in the numerator
by dividing them out from the denominator. For instance,

∫

k

k2

k2(k − p)2

∣
∣
∣
∣
IREG

6= gαβ
∫

k

kαkβ
k2(k − p)2

∣
∣
∣
∣
IREG

where

∫

k

≡

∫

d4k/(2π)4. (58)

3. Include a fictitious mass µ2 in all propagators, where the limit µ → 0 must be taken at
the end of the calculation. In the presence of IR divergences, a logarithm with µ2 will
remain. Assuming that we have an implicit regulator, we apply the following identity in
all propagators dependent on the external momenta pi

1

(k − pi)2 − µ2
=

n−1∑

j=0

(−1)j(p2i − 2pi · k)
j

(k2 − µ2)j+1
+

(−1)n(p2i − 2pi · k)
n

(k2 − µ2)n [(k − pi)2 − µ2]
. (59)

Here n is chosen such that the UV divergent part only has propagators of the form
(k2 − µ2)−j.

4. Express UV divergencies in terms of Basic Divergent Integrals (BDI’s) of the form

Ilog(µ
2) ≡

∫

k

1

(k2 − µ2)2
, Iν1···ν2rlog (µ2) ≡

∫

k

kν1 · · · kν2r

(k2 − µ2)r+2
. (60)

5. Surface terms (weighted differences of loop integrals with the same degree of divergence)
should be set to zero on the grounds of momentum routing invariance in the loop of
Feynman diagrams. This constrained version automatically preserves gauge invariance.
For instance,

∫

k

∂

∂kµ

kν

(k2 − µ2)2
= 4

[

gµν
4
Ilog(µ

2)− Iµνlog(µ
2)

]

= 0. (61)

Similar identities follow for BDI’s with a larger number of free Lorentz indexes, as well
as for quadratic divergent integrals, see eqs.(33)-(36) of Ref. [72] for more examples.

6. A renormalization group scale can be introduced by disentangling the UV/IR behavior
of BDI’s under the limit µ→ 0. This is achieved by employing the identity

Ilog(µ
2) = Ilog(λ

2) +
i

(4π)2
ln
λ2

µ2
, (62)

It is possible to absorb the BDI’s in the renormalisation constants (without explicit eval-
uation) [83], and renormalisation functions can be readily computed using

λ2
∂Ilog(λ

2)

∂λ2
= −

i

(4π)2
. (63)
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[7] V Alan Kosteleckỳ and Charles D Lane. Nonrelativistic quantum hamiltonian for lorentz
violation. Journal of Mathematical Physics, 40(12):6245–6253, 1999.

[8] Theodore J Yoder and Gregory S Adkins. Higher order corrections to the hydrogen spec-
trum from the standard-model extension. Physical Review D, 86(11):116005, 2012.

[9] Ralf Lehnert. Threshold analyses and lorentz violation. Physical Review D, 68(8):085003,
2003.
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[60] C Gnendiger, A Signer, D Stöckinger, A Broggio, AL Cherchiglia, F Driencourt-Mangin,
AR Fazio, B Hiller, P Mastrolia, T Peraro, et al. To d, or not to d: recent developments
and comparisons of regularization schemes. The European Physical Journal C, 77(7):1–39,
2017.

[61] WJ Torres Bobadilla, GFR Sborlini, P Banerjee, S Catani, AL Cherchiglia, L Cieri,
PK Dhani, F Driencourt-Mangin, T Engel, G Ferrera, et al. May the four be with you:
Novel ir-subtraction methods to tackle nnlo calculations. The European Physical Journal
C, 81:1–61, 2021.

[62] Dirk Kreimer. The γ5-problem and anomalies—a clifford algebra approach. Physics Letters
B, 237(1):59–62, 1990.
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