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Abstract
In prior work, Gupta et al. (SPAA 2022) presented a distributed algorithm for multiplying sparse
n × n matrices, using n computers. They assumed that the input matrices are uniformly sparse—
there are at most d non-zeros in each row and column—and the task is to compute a uniformly
sparse part of the product matrix. Initially each computer knows one row of each input matrix, and
eventually each computer needs to know one row of the product matrix. In each communication
round each computer can send and receive one O(log n)-bit message. Their algorithm solves this
task in O(d1.907) rounds, while the trivial bound is O(d2).

We improve on the prior work in two dimensions: First, we show that we can solve the same task
faster, in only O(d1.832) rounds. Second, we explore what happens when matrices are not uniformly
sparse. We consider the following alternative notions of sparsity: row-sparse matrices (at most d

non-zeros per row), column-sparse matrices, matrices with bounded degeneracy (we can recursively
delete a row or column with at most d non-zeros), average-sparse matrices (at most dn non-zeros in
total), and general matrices.

We show that we can still compute X = AB in O(d1.832) rounds even if one of the three matrices
(A, B, or X) is average-sparse instead of uniformly sparse. We present algorithms that handle a
much broader range of sparsity in O(d2 + log n) rounds, and present conditional hardness results
that put limits on further improvements and generalizations.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases distributed algorithms, low-bandwidth model, matrix multiplication

1 Introduction

In this work we study sparse matrix multiplication in a distributed setting, for the low-
bandwidth model (which is closely related to the node-capacitated clique model). Our work
improves over the prior work by [12] in two ways:
1. we present a faster algorithm, and
2. we study more general forms of sparsity.

1.1 Setting and prior work
The task is to compute the matrix product X = AB for n × n matrices using a network of n

computers. Initially each computer holds its own part of A and B. Computation proceeds
in rounds, and in one round each computer can send one O(log n)-bit message to another
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2 Low-Bandwidth Matrix Multiplication

computer and receive one message from another computer; we will assume that the elements
of A, B, and X fit in one message. Eventually each computer has to report its own part of
the product matrix X. How many communication rounds are needed to solve the task?

The trivial solution for dense matrices takes O(n2) rounds: everyone sends all information
to computer number 1, which solves the task locally and then distributes the solution to
other computers. However, we can do better: for matrix multiplication over semirings there
is an algorithm that runs in O(n4/3) rounds, and for matrix multiplication over fields there is
an algorithm that runs in O(n2−2/ω) rounds, where ω is the exponent of centralized matrix
multiplication [3]. By plugging in the latest value of ω < 2.371552 [20], we obtain O(n1.157)
rounds.

The key question is how much better we can do when we multiply sparse matrices. Let
us first look at the case of uniformly sparse matrices, with at most d nonzero elements in
each row and column. We also assume that we are only interested in a uniformly sparse part
of the product matrix X. Now it is natural to assume that each computer initially holds one
row of A and one row of B, and it needs to know one row of X. We assume the supported
setting: the sparsity structures of A, B, and X are known in advance, while the values of
the nonzero elements are revealed at run time. There are two algorithms from prior work
that are applicable in this setting: for moderately large values of d we can use the algorithm
by [2], which runs in O(dn1/3) rounds, while for small values of d the fastest algorithm is
due to [12], and the round complexity is O(d1.927) for semirings and O(d1.907) for fields; see
Table 1 for an overview.

1.2 Contribution 1: faster algorithm

Our first contribution is improvements in the running time: we design a faster algorithm that
solves the case of semirings in O(d1.867) rounds and the case of fields in O(d1.832) rounds.

While there are no non-trivial unconditional lower bounds, we point out that O(d1.333)
for semirings or O(d1.156) for fields would imply major breakthroughs for dense matrix
multiplication (by simply plugging in d = n). In the following figure, we illustrate the
progress we make towards these milestones:

1.000 2.000
1.156 1.832 1.907

1.333 1.867 1.927

The algorithm from prior work [12] is based on the idea of processing triangles. Here a
triangle is a triple {i, j, k} such that Aij and Bjk are nonzeros and Xik is one of the elements
of interest, and we say that we process the triangle if we add the product AijBjk to the sum

Table 1 Complexity of distributed sparse matrix multiplication

Semirings Fields Reference

O(n2) O(n2) trivial
O(n4/3) O(n1.157) [3, 20]
O(dn1/3) O(dn1/3) [2]
O(d2) O(d2) trivial, [12]
O(d1.927) O(d1.907) [12]
O(d1.867) O(d1.832) this work, Theorem 4
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Xik. Once all such triangles are processed, we have computed all elements of interest in the
product matrix.

There are two strategies that [12] uses for processing triangles:
1. If there are many triangles in total, we can find a dense cluster of them, we can interpret

such a cluster as a tiny instance of dense matrix multiplication, and we can apply dense
matrix multiplication algorithms to batch-process such clusters.

2. If there are few triangles in total, we can afford to process the triangles one by one.

Our improvements are in the second phase. Trivially, if we have a uniformly sparse
instance, there are at most d2n triangles in total, and we can process them in a naive manner
in O(d2) rounds. The second phase of [12] shows that if the number of triangles is d2−εn,
one can process them in O(d2−ε/2) rounds. Here the key obstacle is the expression ε/2 in
the exponent: even if we eliminate many triangles in the first phase, the second phase is
still relatively expensive. We design a new algorithm that is able to process d2−εn triangles
in O(d2−ε) rounds. By combining this with the general strategy of [12] and optimizing the
trade-off between using time in the first phase vs. using time in the second phase, we obtain
the new round complexities O(d1.867) and O(d1.832)—the difference between semirings and
fields is in the dense matrix multiplication routine that we use in the first phase.

1.3 Contribution 2: beyond uniform sparsity
So far we have followed the lead of [12] and discussed uniformly sparse matrices (i.e., each
row and column has at most d nonzeros). This is a rather restrictive notion of sparsity—can
we extend prior work to more general notions of sparsity?

Perhaps the most natural candidate to consider would be average sparsity: we would
simply assume that the total number of nonzeros in A and B and the total number of elements
of interest in X is at most dn. Unfortunately, it turns out that this notion of sparsity is way
too general, and we cannot expect fast algorithms for this case: in Lemma 19 we show that
if we could solve average-sparse matrix multiplication for n × n matrices using n computers
in time that is independent of n or only mildly depends on n (say, polylogarithmic in n), it
would imply major breakthroughs in our understanding of dense matrix multiplication.

In summary, in order to have any real hope of pushing the complexity of sparse matrix
multiplication down to O(d1.832) or even something more modest like O(d2 + log n), we need
to explore some intermediate notions of sparsity. In this work we make use of the following
notions of sparsity:

US(d) = uniformly sparse: at most d nonzeros per row and column.
RS(d) = row-sparse: at most d nonzeros per row.
CS(d) = column-sparse: at most d nonzeros per column.
BD(d) = bounded degeneracy: we can recursively eliminate the matrix so that at each
step we delete a row or column with at most d nonzeros.
AS(d) = average-sparse: at most dn nonzeros in total.
GM = general matrices.

We will omit (d) when it is clear from the context, and we will use e.g. expressions such as
US × BD = AS to refer to the task of computing AB = X such that A ∈ US(d), B ∈ BD(d),
and X̂ ∈ AS(d); here we write X̂ for the matrix that indicates which elements of the product
X we are interested in.

Family BD may at first look rather unusual in the context of linear algebra. However, if
we interpret a matrix A as a bipartite graph G (with an edge {i, j} whenever Aij is nonzero),
then A ∈ BD(d) corresponds to the familiar graph-theoretic notion that G is d-degenerate.
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This is a widely used notion of sparsity in the graph-theoretic setting, and also closely
connected with other notions of sparsity such as bounded arboricity.

We also point out that any matrix A ∈ BD(d) can be written as a sum A = X + Y such
that X ∈ RS(d) and Y ∈ CS(d); to see this, eliminate A by deleting sparse rows or sparse
columns, and put each sparse row in X and put each sparse column in Y . In particular,
matrix multiplication BD × BD decomposes into operations of the form CS × CS, RS × CS,
CS × RS, and RS × RS. In summary, we have

US ⊆
{

RS
CS

}
⊆ BD ⊆ AS ⊆ GM.

As we will see, all of our algorithmic results are symmetric w.r.t. the three matrices. To
help present such results, we will introduce the following shorthand notation. Let X, Y,
and Z be families of matrices. We write [X : Y : Z] to refer to the following six operation:
computing X × Y = Z, Y × X = Z, X × Z = Y, Z × X = Y, Y × Z = X, and Z × Y = X.

Now equipped with this notation, we can rephrase the main result from the prior work [12]:
they show that [US : US : US] can be solved in O(d1.927) rounds for semirings and in O(d1.907)
rounds for fields. On the other hand, in Lemma 19 we argue why it is unlikely to extend this
all the way to [AS : AS : AS]. The key question is what happens between the two extremes,
US and AS? In particular, could we solve [BD : BD : BD] efficiently?

Our answer to this question consists of four parts:
1. We generalize prior work and show that we can tolerate one average-sparse matrix:

[US : US : AS] can be computed in O(d1.867) rounds for semirings and in O(d1.832) rounds
for fields. We emphasize that here the running time is still independent of n.

2. As soon as two of the matrices are BD or more general, the task becomes at least as hard
as computing the sum of values distributed across n computers, or broadcasting a single
value to n computers. Hence, it is natural to expect an additional O(log n) term in the
running time.

3. We show that many combinations all the way to [BD : AS : AS] and [US : AS : GM] can
be solved in O(d2 + log n) rounds, for both semirings and fields.

4. Finally, we provide evidence that this is essentially as general as what we can hope for.
The results are summarized in Table 2.

1.4 Related work and applications
Our model of computing is the low-bandwidth model; this is closely related to the model
known as node-capacitated clique or node-congested clique in the literature [1]—in the low-
bandwidth model each computer can send and receive one message, while the node-capacitated
clique model is usually defined so that each computer can send and receive O(log n) messages
per round. Both the low-bandwidth model and the node-capacitated clique model can be
interpreted as variants of the congested clique model [16]. Indeed, any algorithm that runs
in T (n) rounds in the congested clique model can be simulated in nT (n) rounds in the
low-bandwidth model, and for many problems (such as the dense matrix multiplication) such
a simulation also results in the fastest known algorithms for the low-bandwidth model. Both
the low-bandwidth model and the congested clique model can be interpreted as special cases
of the classic bulk synchronous parallel model [19].

Matrix multiplication in this context has been primarily studied in the congested clique
model [2,3,5,15]. However, as observed by [12], the congested clique model is poorly-suited for
the study of sparse matrix multiplication: one can only conclude that for sufficiently sparse
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Table 2 Summary of results (for semirings)

Sparsity Upper bound Conditional
hardness

[US : US : US] O(d1.927) [12]

[US : US : US] O(d1.867) Theorem 4
. . .

[US : US : AS]

[US : US : GM] O(d2 + log n) Theorem 13

[US : BD : BD] O(d2 + log n) Theorem 13 Lemma 18
. . .

[US : AS : GM]

[BD : BD : BD] O(d2 + log n) Theorem 17 Lemma 18
. . .

[BD : AS : AS]

[US : GM : GM] Lemma 20
. . .

[GM : GM : GM]

[BD : BD : GM] Lemma 21
. . .

[GM : GM : GM]

[AS : AS : AS] Lemma 19
. . .

[GM : GM : GM]

matrices, the problem is solvable in O(1) rounds, and one cannot explore more fine-grained
differences between different algorithms.

Similar to [12], we work in the supported version of the low-bandwidth model. In general,
the supported model [10, 11, 18] refers to a setting in which the structure of the input is
known in advance (we can do arbitrary preprocessing based on the structure of the input),
while the specific instance is revealed at run time. In the case of graph problems, we can see
an unweighted graph G in advance, while the adversary reveals a weighted version G′ of G

(a special case being a 0/1-weighted graph, which can be interpreted as a subgraph of G).
For matrix multiplication, we know the sparsity structure in advance (i.e., which elements
are potentially nonzero), while the adversary reveals the concrete values at run time.

One of the main applications that we have in mind here is triangle detection, which has
been extensively studied in the distributed setting [4, 6, 7, 9, 12–14,17]. If we can multiply
matrices, we can also easily detect triangles in a graph. Moreover, [US : US : US] corresponds
to triangle detection in a bounded-degree graph, while e.g. [AS : AS : AS] corresponds to
triangle detection in a sparse graph.

1.5 Open questions for future work
In this work we initiated the study of different notions of sparsity in the context of low-
bandwidth matrix multiplication. This work also gives rise to a number of questions for
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future work.
First, our running times—O(d1.867) rounds for semirings and O(d1.832) for fields—are

still far from the conditional lower bounds Ω(d1.333) and Ω(d1.156), respectively. Pushing the
running time further down is a major challenge for future work. If we follow the two-phase
approach of [12], our present work essentially makes the second phase optimal; the main
hope for future improvements now lies in the first phase of the algorithm.

Our algorithms are designed for the supported model. Eliminating the knowledge of the
support (i.e., knowledge of the sparsity structure) is a major challenge for future work.

Our hardness results are conditional. Turning these into unconditional lower bounds is
yet another question for future work.

Finally, there are some gaps in Table 2. For example, we do not have conditional hardness
result for [US : US : GM], and also Lemmas 20 and 21 do not cover all permutations of the
matrix families.

2 Preliminaries

We work in the low-bandwidth model. There are n computers. Initially each computer holds
its own part of A and B, and eventually each computer has to report its own part of X.
When we study sparse matrices with at most dn nonzeros, we assume that each computer
holds at most d elements, while when we study dense matrices, we assume that each computer
holds at most n elements.

For our algorithms, it does not matter how the input and output is distributed among
the computers—with an additional O(d) time we can permute the input and output as
appropriate. Our conditional lower bounds hold for any fixed distribution of input and
output.

2.1 Supported model and indicator matrices
When we study matrix multiplication in the supported model, we assume that we know in
advance indicator matrices Â, B̂, and X̂ that encode the structure of our instance: Âij = 0
implies Aij = 0, B̂jk = 0 implies Bjk = 0, and X̂ik = 0 indicates that we do not need to
compute the value of Xik. When we make assumptions on sparsity, our assumptions refer to
the sparsity of Â, B̂, and X̂. For example, when we study US × BD = AS, we assume that
Â ∈ US(d), B̂ ∈ BD(d), and X̂ ∈ AS(d). It then also follows that A ∈ US(d) and B ∈ BD(d).

2.2 Tripartite graph and triangles
It will be convenient to assume that our matrices are indexed with indices from three disjoint
sets I, J , and K, each of size n. For example, elements of matrix A are indexed with Aij

where i ∈ I and j ∈ J . Following [12], we write T̂ for the set of all triangles, which are
triples {i, j, k} with i ∈ I, j ∈ J , and k ∈ K such that Âij ̸= 0, B̂jk ̸= 0, and X̂ik ̸= 0.

For a collection of triangles T , we write G(T ) for the tripartite graph G(T ) = (V, E),
where the set of nodes is V = I ∪ J ∪ K and there is an edge {u, v} ∈ E if there is a triangle
T ∈ T̂ with {u, v} ⊆ T . For a set of nodes U ⊆ V , we write T [U ] = {T ∈ T : T ⊆ U} for
the set of triangles induced by U .

We say that we process a triangle {i, j, k} if we have added the product AijBjk to the sum
Xik. The key observation is that processing all triangles is exactly equivalent to computing
all values of interest in the product matrix X = AB.
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2.3 Clusters and clusterings

We say that U ⊆ V is a cluster if U = I ′ ∪ J ′ ∪ K ′ for I ′ ⊆ I, J ′ ⊆ J , K ′ ⊆ K, |I ′| = d,
|J ′| = d, and |K ′| = d. We say that a collection of triangles P is clustered if there are disjoint
clusters U1, . . . , Uk such that P = P[U1] ∪ · · · ∪ P[Uk].

A clustered collection of triangles can be processed efficiently by applying an algorithm
for dense matrix multiplication in parallel to each cluster [12]. By applying the strategy
of [3] and the latest value of ω from [20], we obtain:

▶ Lemma 1. A clustered instance of matrix multiplication can be solved in O(d4/3) rounds
over semirings, and in O(d1.156671) rounds over fields.

3 Handling few triangles fast

We will start by a general result that will form the foundation for all of our upper-bound
results. [12, Lemma 5.2] observed that if we have a balanced instance in which each node
touches at most κ triangles, we can solve matrix multiplication in O(κ) rounds. However, the
key challenge is what to do in unbalanced instances: we have at most κn triangles, but some
nodes can touch many more than κ triangles. The following lemma shows how to handle
also such instances efficiently:

▶ Lemma 2. Let T be a set of triangles with |T | ≤ κn, and assume that for each pair of
nodes u, v ∈ V there are at most m triangles T ∈ T with {u, v} ∈ T . Assume that each
computer initially holds at most d elements of A and at most d elements of B, and it will
need to hold at most d elements of X. Then all triangles in T can be processed (over fields
or semirings) in O(κ + d + log m) rounds.

We emphasize that this strictly improves over [12, Lemma 5.1] in two different ways: our
result is applicable in a more general setting, and we avoid the factor-2 loss in the exponent
of the running time.

3.1 High-level plan

Our high-level plan for proving Lemma 2 goes as follows:
1. We start with an arbitrary collection of κn triangles T over the original set of 3n nodes

V = I ∪ J ∪ K.
2. We construct a new virtual collection of κn triangles T ′ over a new set of O(n) virtual

nodes V ′.
3. The new virtual collection of triangles is balanced in the sense that each virtual node

touches only κ triangles.
4. The virtual nodes are assigned to real computers so that each real computer is responsible

for only O(1) virtual nodes.
5. We show how we can route original data to the virtual nodes, so that each virtual node

only needs to do work for each triangle that it touches, and we can also aggregate the
results back to the original nodes that need it.

The most challenging part is the final step, routing.
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3.2 Virtual instance
For each node v ∈ V , let T (v) be the set of triangles in T ∈ T with v ∈ T . Let t(v) = |T (v)|
and ℓ(v) = ⌈t(v)/κ⌉. Our set of virtual nodes is

V ′ = I ′ ∪ J ′ ∪ K ′,

I ′ =
{

(i, x)
∣∣ i ∈ I, x ∈ {1, 2, . . . , ℓ(i)}

}
,

J ′ =
{

(k, x)
∣∣ j ∈ J, x ∈ {1, 2, . . . , ℓ(j)}

}
,

K ′ =
{

(j, x)
∣∣ k ∈ K, x ∈ {1, 2, . . . , ℓ(k)}

}
.

The key observation is that the set of virtual nodes is not too large:

|V ′| =
∑

v

ℓ(v) ≤
∑

v

(t(v)/κ + 1) ≤ 3|T |/κ + n = 4n.

Now we can construct a new balanced collection of triangles T ′ over V ′ such that each virtual
node v′ ∈ V ′ touches at most κ triangles: for the first κ triangles in T (v) we replace v with
the virtual node (v, 1), for the next κ triangles we replace v with (v, 2), etc.

We assign the virtual nodes to real computers so that each computer is responsible for at
most 4 virtual nodes. Therefore, in what follows, we can assume that the virtual nodes are
computational entities, and we can simulate their work in the real computer network with
constant overhead.

3.3 Routing
Now let us see how we will process the triangles. Consider a triangle {i, j, k} ∈ T , and let its
unique virtual copy be {i′, j′, k′} ∈ T ′. Conceptually, we proceed as follows:
1. The real computer p(i, j) that initially holds Aij transmits it to virtual computer i′.
2. The real computer p(j, k) that initially holds Bjk transmits it to virtual computer i′.
3. Virtual computer i′ computes the product AijBjk and transmits it to the real computer

p(i, k) that is responsible for storing Xik.
If we did this in a naive manner, it would be prohibitively expensive; a more careful routing
scheme is needed; see Figure 1 for an illustration.

First consider step (1): the transmission of Aij from p = p(i, j) to i′. By assumption, i, j

is part of at most m triangles, and a single real computer initially holds at most d distinct
values of matrix A. On the other hand, a single virtual computer needs to receive up to κ

messages, so the total number of messages to transmit is bounded by κn.
The key idea is that we will do intermediate-point routing. Form an array of all triples

(i, j, i′) such that Aij is needed by i′, and order the array lexicographically (i, j, i′). For each
(i, j) the first triple (i, j, i′) is called the anchor element for (i, j). The array has at most κn

triples, and we can assign the triples to our real computers so that each computer has at
most κ triples. For each (i, j) we write q(i, j) for the computer that holds the anchor element
for (i, j).

Now we first route Ai,j from computer p(i, j) to computer q(i, j). This can be completed
in O(d + κ) rounds, as each computer has d outgoing messages and κ incoming messages.
We can implement this, for example, by considering the bipartite graph in which on one side
we have sender, on one side we have recipients: the sender-side has maximum degree d and
the recipient-side has maximum degree κ, and hence we can find a proper edge coloring with
O(d + κ) colors and use the color classes to schedule the messages. This way in each round
each computer sends and receives at most one message.
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Matrix A

Each computer initially
holds ≤ d input values,
computer p(i, j) holds
element Aij

Each virtual node can
compute κ products
of the form Aij Bjk

Aij

…

…

AijAij

Each computer holds
≤ κ input values,
computers q(i, j) … r(i, j)
hold copies of Aij

…

1:1 routing +
broadcast trees

1:1 routing

Matrix B
(similar routing)

Assumption: balanced input distribution

Aij

…

1:1 routing

Each computer holds
≤ κ products,
computers q(i, k) … r(i, k)
hold parts of Xik

convergecast trees
+ 1:1 routing

…

Matrix X = AB

(i, k)

Assumption: balanced output distribution

Each computer eventually
holds ≤ d output values,
computer p(i, k) holds
element Xik

Figure 1 Routing scheme from the proof of Lemma 2
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Next, we will spread the messages so that each computer that holds a triple (i, j, i′) knows
the value of Aij . Thanks to the array being sorted, this is now easy. Let us focus on some
pair (i, j). Recall that q(i, j) is the first computer that holds any triple of the form (i, j, ·),
and it already knows the value of Aij . Let r(i, j) be the last computer that holds any triple
of the form (i, j, ·). Now our task is to simply spread Aij from q(i, j) to all computers in
the range q(i, j) + 1, . . . , r(i, j). If r(i, j) = q(i, j), there is nothing to be done. On the
other hand, if r(i, j) ̸= q(i, j), we have a convenient situation: computer q(i, j) only needs to
spread the value of Aij , and computers q(i, j) + 1, . . . , r(i, j) only need to receive the value
of Aij . Hence, we can first let q(i, j) inform q(i, j) + 1, and then q(i, j) + 1, . . . , r(i, j) form a
broadcast tree that distributes Aij to each of the computers. Note that all these broadcast
trees involve disjoint sets of computers, and we can implement broadcast in parallel. We
have at most m triples of form (i, j, ·), and hence (using a very sloppy estimate) at most m

computers involved in each broadcast operation. A broadcast tree of depth O(log m) suffices.
At this point each real computer holds up to κ triples of (i, j, i′) and knows the corres-

ponding value Aij . Then we route Aij to virtual computer i′; as everyone needs to send and
receive up to κ messages, this can be implemented in O(κ) rounds.

Step (2) is essentially identical to step (1); instead of values Aij and triples (i, j, i′), we
transmit values Bjk and use triples (j, k, i′).

For step (3) we do the converse of step (1). We now form triples (i, k, i′) that indicate
that virtual computer i′ holds a product AijBjk that needs to be accumulated to Xik. We
sort the array as above, and then first use O(κ) rounds to route the products from virtual
computers to real computers. Now each real computer that holds multiple triples of the form
(i, k, ·) can locally aggregate all these products into a single sum. Then we define q(i, j) and
r(i, j) as above, and construct a convergecast tree with which computers q(i, j) + 1, . . . , r(i, j)
compute the grand total of the products AijBjk they have received, and finally q(i, j) + 1
relays this information to the anchor q(i, j), which can compute the sum Xij . Finally, we
route Xij to the computer that needs to report it, using additional O(κ + d) rounds.

This completes the proof of Lemma 2. In what follows, we will present applications of
this result.

4 Algorithm for [US : US : AS]

In our terminology, [12] proved the following statement:

▶ Theorem 3 ( [12]). In the supported low-bandwidth model, sparse matrix multiplication of
the form [US : US : US] can be computed in O(d1.927) rounds over semirings and in O(d1.907)
rounds over fields.

In this section, we both improve the running time and widen the scope of applicability:

▶ Theorem 4. In the supported low-bandwidth model, sparse matrix multiplication of the
form [US : US : AS] can be computed in O(d1.867) rounds over semirings and in O(d1.832)
rounds over fields.

4.1 Preliminaries
We start with the following technical lemma:

▶ Lemma 5. Let T̂ be defined by an instance of [US : US : AS]. For each node x ∈ V there
are at most d2 triangles T ∈ T̂ with x ∈ T .
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Proof. Consider first the case of US × AS = US. If x ∈ I, then x is incident to at most d

nodes j ∈ J and at most d nodes k ∈ K, and hence in total there can be at most d2 triangles
of the form {x, j, k}. If x ∈ J , then x is incident to at most d nodes i ∈ I, and each of them
is incident to at most d nodes k ∈ K, and hence in total there can be at most d2 triangles of
the form {i, x, k}. The case of x ∈ K is similar to x ∈ J . For the cases of AS × US = US and
US × US = AS, permute the roles of I, J , and K as appropriate. ◀

We have two simple corollaries that will be useful shortly:

▶ Corollary 6. Let T̂ be defined by an instance of [US : US : AS]. For each pair of nodes
u, v ∈ V there are at most d2 triangles T ∈ T̂ with {u, v} ∈ T .

▶ Corollary 7. The total number of triangles in any [US : US : AS] instance is bounded by
d2n.

4.2 Part 1: handling dense parts
In the first part we follow the basic structure of [12], with two changes:
1. we generalize it to [US : US : AS],
2. we choose different parameter values so that we can fully benefit from the new algorithm

for part 2.
We will then diverge from [12] in part 2, where we will apply Lemma 2.

Similar to [12], we first show that if there are many triangles, we can find a dense cluster :

▶ Lemma 8. Let T̂ be defined by an instance of [US : US : AS], and let T ⊆ T̂ . If |T | ≥ d2−εn

for some ε > 0, then there exists a cluster U ⊆ V with |T [U ]| ≥ d3−4ε/24.

Proof. This is a generalization of [12, Lemma 3.1], which holds for [US : US : US]. The
original proof makes use of the following facts about G(T ):

there are at most dn edges between J and K,
each i ∈ I is incident to at most d nodes of J ,
each i ∈ I is incident to at most d nodes of K,
each j ∈ J is incident to at most d nodes of I,
each k ∈ K is incident to at most d nodes of I.

All of these also hold for US × AS = US. For the cases of AS × US = US and US × US = AS,
permute the roles of I, J , and K as appropriate. ◀

Then by plugging in Lemma 8 instead of [12, Lemma 3.1] in the proof of [12, Lemma
4.1], we obtain the following corollary:

▶ Lemma 9. Let δ > 0 and ε > 0, and assume that d is sufficiently large. Let T̂ be defined
by an instance of [US : US : AS], and let T ⊆ T̂ . Assume |T | ≥ d2−εn. Then we can partition
T into disjoint sets P and T ′ such that P is clustered and |P| ≥ d2−5ε−4δn.

Proof. We follow the strategy in the proof of [12, Lemma 4.1]: Apply Lemma 8 to find
a cluster U . Put the triangles T ∈ T [U ] that are fully contained in U to P, and put the
triangles T ∈ T that only partially touch U to T ′. Repeat until there are sufficiently few
triangles left; put all remaining triangles to T ′.

The original proof makes use of the fact that each node x ∈ V is contained in at most d2

triangles. This is trivial for [US : US : US]. For [US : US : AS] we apply Lemma 5, and then
the original analysis holds verbatim. ◀
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Table 3 Parameters for the proof of Lemma 11 (semirings)

Step δ γ ε α β

1 0.00001 0.00000 0.10672 1.86698 1.89328
2 0.00001 0.10672 0.12806 1.86696 1.87194
3 0.00001 0.12806 0.13233 1.86697 1.86767
4 0.00001 0.13233 0.13319 1.86700 1.86681

Finally, by plugging in Lemma 9 instead of [12, Lemma 4.1] in the proof of [12, Lemma
4.2], we obtain the following corollary:

▶ Lemma 10. Let δ > 0 and 0 ≤ γ < ε, and assume that d is sufficiently large. Let T̂
be defined by an instance of [US : US : AS], and let T ⊆ T̂ . Assume |T | ≤ d2−γn. Then
we can partition T into disjoint sets T = P1 ∪ · · · ∪ PL ∪ T ′ such that each Pi is clustered,
L ≤ 144d5ε−γ+4δ and |T ′| ≤ d2−εn.

Proof. We follow the proof of [12, Lemma 4.2]: Apply Lemma 9 repeatedly to construct
clusterings P1, P2, . . . . Stop once the residual set of triangles T ′ is sufficiently small. The
original analysis holds verbatim. ◀

Now we are ready to prove the following result. Note that unlike the analogous result
from [12], we have got here a convenient formulation in which the exponent in the time
complexity matches the exponent in the size of the residual part:

▶ Lemma 11. Let T̂ be defined by an instance of [US : US : AS]. We can partition T̂ into
T1 ∪ T2 such that:
1. For matrix multiplication over semirings, T1 can be solved in O(d1.867) rounds and

|T2| ≤ d1.867n.
2. For matrix multiplication over fields, T1 can be solved in O(d1.832) rounds and |T2| ≤

d1.832n.

Proof. For the case of semirings, we apply Lemma 10 with the parameters δ, γ, and ε shown
in Table 3. In the first step, we start with γ = 0; note that by Corollary 7 we satisfy the
assumption that our initial set of triangles has size at most d2−γn = d2n. We pick a very
small δ and choose a suitable ε. Then we use Lemma 1 to process each of Pi. The total
processing time will be O(dα), where α = 5ε − γ + 4δ + 4/3. Our choice of ε is optimized
so that α ≤ 1.867 and hence we do not exceed our time budget. After processing all of Pi,
we are left with the residual set of triangles of size |T ′| ≤ dβn, where β = 2 − ε. We then
repeat the same process, starting with γ = 2 − β, and again optimizing ε. We continue until
β ≤ 1.867.

For the case of fields, the idea is the same, but we make use of the parameter values in
Table 4. ◀

4.3 Part 2: handling few triangles
Let us recap: We started with an arbitrary instance, with possibly up to d2n triangles. Then
we have used O(dα) rounds to process “dense” parts, and we are left with only dαn triangles;
here α = 1.867 for semirings and α = 1.832 for fields.
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Table 4 Parameters for the proof of Lemma 11 (fields)

Step δ γ ε α β

1 0.00001 0.00000 0.13505 1.83197 1.86495
2 0.00001 0.13505 0.16206 1.83197 1.83794
3 0.00001 0.16206 0.16746 1.83196 1.83254
4 0.00001 0.16746 0.16854 1.83196 1.83146

Now we can apply Lemma 2 to handle all these remaining dαn triangles in O(dα) rounds.
When we apply the lemma, we set κ = dα, and by Corollary 6 we have m = d2. The overall
running time is O(dα + d + log d2) = O(dα). This completes the proof of Theorem 4.

5 More general algorithms

We will now step beyond [US : US : AS] and consider more general settings. We will show
that we can handle much more general notions of sparsity in O(d2 + log n) rounds. For each
case we prove a bound on the total number of triangles, and then apply Lemma 2.

5.1 Algorithm for [US : AS : GM]
▶ Lemma 12. Let T̂ be defined by an instance of [US : AS : GM]. Then |T̂ | ≤ d2n.

Proof. We give a proof for US × AS = GM; the remaining cases can be proved similarly. We
can bound the number of triangles of the form {i, j, k} with i ∈ I, j ∈ J , and k ∈ K as
follows: there are at most dn edges of the form {j, k}, since B ∈ AS. For each such edge
{j, k} there are at most d edges of the form {i, j}, since A ∈ US. It follows that the number
of triangles is at most d2n. ◀

▶ Theorem 13. In the supported low-bandwidth model, sparse matrix multiplication of the
form [US : AS : GM] can be computed in O(d2 + log n) rounds over semirings and fields.

Proof. Follows from Lemma 12 and Lemma 2 by setting κ = d2 and m = n. ◀

5.2 Algorithm for [BD : AS : AS]
When we consider [BD : AS : AS], it will be convenient to decompose BD into RS and CS.

▶ Lemma 14. Let T̂ be defined by an instance of [RS : AS : AS]. Then |T̂ | ≤ d2n.

Proof. Let us consider the case RS × AS = AS; the other permutations are similar. We can
bound the number of triangles of the form {i, j, k} with i ∈ I, j ∈ J , and k ∈ K as follows:
there are at most dn edges of the form {i, k}, since X ∈ AS. For each such edge {i, k} there
are at most d edges of the form {i, j}, since A ∈ RS. It follows that the number of triangles
is at most d2n. ◀

▶ Lemma 15. Let T̂ be defined by an instance of [CS : AS : AS]. Then |T̂ | ≤ d2n.

Proof. Transpose the matrices in Lemma 14. ◀

▶ Lemma 16. Let T̂ be defined by an instance of [BD : AS : AS]. Then |T̂ | ≤ 2d2n.
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Proof. Let us consider the case BD × AS = AS; the other permutations are similar. As we
discussed in Section 1.3, we can decompose X = AB into X = A1B + A2B, where A1 ∈ RS
and A2 ∈ CS. The claim follows by applying Lemma 14 to X1 = A1B and Lemma 15 to
X2 = A2B. ◀

▶ Theorem 17. In the supported low-bandwidth model, sparse matrix multiplication of the
form [BD : AS : AS] can be computed in O(d2 + log n) rounds over semirings and fields.

Proof. Follows from Lemma 16 and Lemma 2 by setting κ = 2d2 and m = n. ◀

6 Conditional hardness

In this section we connect the hardness of sparse matrix multiplication with simpler primitives,
such as broadcasting.

6.1 Broadcasting and aggregation
For settings between [US : BD : BD] and [US : AS : GM] our upper bound from Theorem 13
has an additive O(log n) term, which comes from broadcast and convergecast operations. In
the following lemma, we show that some broadcasting and/or aggregation is needed in all
of these cases. We note that a simple low-bandwidth adaptation of the proof in [8] shows
an Ω(log n)-round lower bound for computing a sum over values held by all computers, and
hence this result also implies an unconditional lower bound.

▶ Lemma 18. In the supported low-bandwidth model, sparse matrix multiplication of the
form [US : BD : BD] is at least as hard as computing a sum of n values distributed among n

computers, or broadcasting a single value to n computers, even for d = 1.

Proof. Consider first BD × BD = US. A special case of this is computing AB = X such that
all nonzeros in A are in row 1, all nonzeros in B are in column 1, and we are only interested
in computing element (1, 1) of X. Furthermore, let all nonzeros of B be 1; we have the
following task (where “?” indicates elements of the result matrix that we are not interested
in):

a1 a2 . . . an

0 0 . . . 0
. . . . . . . . . . . . . . . .

0 0 . . . 0

 ×


1 0 . . . 0
1 0 . . . 0
. . . . . . . . . . . . .

1 0 . . . 0

 =


x ? . . . ?
? ? . . . ?
. . . . . . . . . . . . .

? ? . . . ?

 .

Now this is equivalent to computing a sum x =
∑

j aj , in a setting in which initially each
computer holds one aj .

Then consider BD × US = BD. A special case of this is computing AB = X such that all
nonzeros in A are in column 1, the only nonzero of B is at (1, 1), and we are only interested
in computing elements in the first column of X. Furthermore, let all nonzeros of A be 1; we
have the following task:

1 0 . . . 0
1 0 . . . 0
. . . . . . . . . . . . .

1 0 . . . 0

 ×


b 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . . .

0 0 . . . 0

 =


x1 ? . . . ?
x2 ? . . . ?
. . . . . . . . . . . . . .

x4 ? . . . ?

 .

Now we need to output x1 = . . . = xn = b, and each computer has to hold one of these
values. Hence, this is equivalent to broadcasting the value b to all computers.

The case of US × BD = BD is also a broadcast task, by a similar argument. ◀
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6.2 Dense matrix multiplication
Let us now argue why [AS : AS : AS] is unlikely to be solvable in O(d2 + log n) rounds, or
even in f(d) + O(nε) rounds for sufficiently small values of ε.

▶ Lemma 19. Computing [AS : AS : AS] for d = 1 in T (n) rounds implies an algorithm that
solves dense matrix multiplication in T ′(n) = nT (n2) rounds.

Proof. Assume A solves [AS : AS : AS] in T (n) rounds for d = 1. Let m =
√

n. We use A
as a black box to design an algorithm A′ that multiplies dense m × m matrices using m

computers in T ′(m) rounds. Algorithm A′ works as follows: given an input X ′ = A′B′ with
dimensions m × m, construct an instance X = AB of dimensions n × n by padding with
zeros:[

A′ 0
0 0

]
×

[
B′ 0
0 0

]
=

[
X ′ ?
? ?

]
.

This is now an average-sparse instance with m2 = n nonzeros. Then apply algorithm A, so
that each of the m computers simulates m =

√
n computers; this way we have n virtual

computers available for running A. The running time of A is T (n) = T (m2), and hence the
simulation completes in time T ′(m) = mT (m2). ◀

In particular, if we could achieve T (n) = o(n1/6) for sparse matrix multiplication over
semirings, then we could do dense matrix multiplication over semirings in T ′(n) = o(n4/3)
rounds, and it would imply major breakthroughs in our understanding of dense matrix
multiplication.

Similarly, if we could achieve T (n) = O(n0.01) over fields, then we could do dense matrix
multiplication over fields in T ′(n) = O(n1.02) rounds, which is far from the current upper
bound of O(n1.157).

This is the main justification why our upper bound in Theorem 17 is applicable up to
[BD : AS : AS], but not all the way to [AS : AS : AS].

6.3 Routing
Next we consider problem settings that are at least as hard as routing many elements to a
single computer. We will assume here that the assignment of the input and output values to
computers only depends on the structure of the input, and not on the numerical values. We
will write Av, Bv, and Xv to denote the set of elements of matrices A, B, and X that are
held by computer v.

We first consider [US : GM : GM]. We prove a hardness result for US × GM = GM; the
case of GM × US = GM is symmetric, but GM × GM = US is left for future work.

▶ Lemma 20. In the supported low-bandwidth model, to solve US × GM = GM, at least one
node needs to output Ω(

√
n) values originally held by other nodes.

Proof. For the sake of simplicity, we give a proof when matrix A contains at most 2n nonzero
elements, i.e. d = 2. Let all the elements of A except ai,i, ai,(i mod n)+1 for all i ∈ [n] are
equals to 0; that is, our task is to compute

a1,1 a1,2 0 0 . . . 0 0
0 a2,2 a2,3 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an,1 0 0 0 . . . 0 an,n

 × B = X,
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where B is a general (dense) matrix, and we are interested in all values of X.
Each computer in the network contains two (nonzero) elements of A, n elements of B and

n elements of X. We divide the analysis into the following two cases; consider a computer v:
1. If Xv contains at least

√
n elements from one of the columns of X: let us assume that

Xv contains
√

n elements from column j of X i.e.,

xi1,j , xi2,j , . . . , xi√
n,j ∈ Xv.

We know that

xi,j = ai,ibi,j + ai,(i mod n)+1b(i mod n)+1,j .

Let us set bi,j = 1, and ai,(i mod n)+1 = 0 for all i, j ∈ [n]. This implies xil,j = ail,il
for

all il ∈ [
√

n]. Since computer v initially holds only two of these ail,il
, we need to route at

least Ω(
√

n) values from other computers to computer v.
2. If Xv contains less than

√
n elements from every column of X: let

I = {(i, j) | xi,j ∈ Xv}.

If we set ai,i = 1 and ai,((i−1) mod n)+1 = 0 for all i ∈ [n], we have X = B. Thus, v

must output all the elements of bi,j such that (i, j) ∈ I. Therefore, v must receive all
these elements. Now it might happen that these n elements of B are already stored at v.
However, we will prove that computer v also requires at least

√
n more elements stored

at other computers in order to produce correct output for different values of nonzero
elements of A and B. Note that if Xv contains less than

√
n nonzero elements from each

column of X, then the number of columns of X from which Xv contains an element is
more than

√
n. Let Cv be the set of columns of X such that Xv contains some element

from these columns. From above, we can say that in each Ci ∈ Cv there exist two
elements xj,i, xj+1,i such that xj,i ∈ Xv and xj+1,i /∈ Xv (because Xv contains less than√

n elements from each column). Let

J = {j | xj,i ∈ Xv and xj+1,i /∈ Xv}.

Now we take a different assignment where we keep matrix B the same, and in matrix A

we set aj,j = 0 and aj,(j mod n+1) = 1 for all j ∈ J . This will result in xj,i = bj+1,i for
all i and j such that xj,i ∈ Xv and xj+1,i /∈ Xv. We know that there exist more than√

n such xj,i. From the above paragraph, we know that v must contain all bj,i such that
xj,i ∈ Xv. Therefore, we can say that v does not contain bj+1,i such that xj,i ∈ Xv and
xj+1,i /∈ Xv. Thus, v needs to receive Ω(

√
n) values from other computers. ◀

Next we consider [BD : BD : GM]. We prove a hardness result for BD × BD = GM; the
case of BD × GM = BD and GM × BD = BD is left for future work. We consider the special
case of RS × CS = GM; the case of BD × BD = GM is at least as hard:

▶ Lemma 21. In the supported low-bandwidth model, to solve RS × CS = GM, at least one
node needs to output Ω(

√
n) values originally held by other nodes.

Proof. We prove the lower bound for the case when d = 1, i.e. each node in the network
contains one element of A, one element of B and n elements of X. Let A and B be matrices
such that all the elements of these matrices are zero except ai,1 and b1,i for all i ∈ [n]:

a1,1 0 . . . 0
a2,1 0 . . . 0
. . . . . . . . . . . . . . .

an,1 0 . . . 0

 ×


bi,1 b1,2 . . . b1,n

0 0 . . . 0
. . . . . . . . . . . . . . . . . . .

0 0 . . . 0

 = X.
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Similar to the above, we divide the analysis into two cases.
1. If Xv contains at least

√
n elements from one of the columns of X: let us assume that

Xv contains
√

n elements from column j of X i.e.,

xi1,j , xi2,j , . . . , xi√
n,j ∈ Xv.

Let us set b1,i = 1 for all i ∈ n. This implies that xik,j = aik,1 for all k ∈
√

n. We know
that v contains only one element of A, and therefore we need to receive Ω(

√
n) elements

from other computers.
2. If Xv contains less than

√
n elements from each column of X: in such cases we know

that there exist at least
√

n elements xi1,j1 , xi2,j2 , . . . xi√
n,j√

n
such that ji ̸= jk for i ̸= k

and i, k ∈ [
√

n]. Now consider an assignment where we set all ai,1 = 1. This implies
xik,jk

= b1,jk
for all k ∈

√
n. Again we can conclude that we need to receive Ω(

√
n)

elements from other computers. ◀
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