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Polymers are an effective test-bed for studying topological constraints in condensed matter due

to a wide array of synthetically-available chain topologies.

When linear and ring polymers are

blended together, emergent rheological properties are observed as the blend can be more viscous
than either of the individual components. This emergent behavior arises since ring-linear blends
can form long-lived topological constraints as the linear polymers thread the ring polymers. Here,
we demonstrate how the Gauss linking integral can be used to efficiently evaluate the relaxation
of topological constraints in ring-linear polymer blends. For majority-linear blends, the relaxation
rate of topological constraints depends primarily on reptation of the linear polymers, resulting in
the diffusive time 74 r for rings of length Ngr blended with linear chains of length NV; to scale as

Td,R ~ N%Ng4

Topological constraints are long-lived interactions be-
tween atomic degrees of freedom that arise from the en-
tanglement of some element of their phase spaces. They
drive a variety of exotic nonlinear dynamics across an ar-
ray of fields: stabilizing solitons in nonlinear optics [I1 2],
hydrodynamic vortices in both classical [8H5] and quan-
tum fluids [6], and fractional electronic states in topo-
logical insulators and quantum spin liquids. For most
of these systems, the origin of the topological entangle-
ment is subtle and difficult to visualize or characterize
directly. The dynamics of polymer melts and blends are
also dominated by topological entanglement, but unlike
many quantum systems, this entanglement arises from
the interweaving, threading, and knotting of the poly-
mer chains in real space. Additionally, the mathematical
structure of models of polymer melts is nearly identical
to that for many quantum systems [7, 8], so much so that
some quantum problems are simulated using ring poly-
mers [9]. In addition, polymers have the advantage of a
large body of synthetic and characterization data com-
pared to many other fields due to advances that allow
for synthesis of polymers with nearly arbitrary size and
chain topology. This makes entangled polymer melts an
ideal and economical test bed for exploring the dynamics
of systems with complex topological constraints.

For melts of linear polymers, there are mature tech-
niques to evaluate topological constraints. These in-
clude contour reduction algorithms [I0, II] and isocon-
figurational averaging [I2]. Topological constraints in
ring polymers, in contrast, have been more difficult to
measure. Additionally, recent studies have found that
neat ring polymers have significantly different rheologi-
cal properties from linear polymers due to the differences
in knotting and entanglement [I3H20]. When ring and
linear polymers are blended together, emergent rheolog-
ical properties are observed as the blend can be more
viscous than either of the individual components [21}-

FIG. 1. (a) Snapshot of three ring polymers (red, Np =
200) threaded by a linear polymer (blue, Ny = 600) from a
molecular dynamics simulation. The initial configuration is
faded and the final configuration is shown in bold. In the
final configuration, the right ring is no longer threaded. (b)
Drawing of the dethreading of the right ring polymer due to
motion of the linear chain. The initial configuration is shown
with a dashed line and the final configuration is shown with
the solid line. Chain ends are marked with circles.

[23]. This emergent behavior has been ascribed to the
fact that ring-linear blends can form topological con-
straints via linear polymers threading the ring polymer
(Fig. |l) and these ring-linear threads are presumed to
be long-lived. Thus far, direct observation of the ring-
linear threading/dethreading process has been difficult
in experiments and simulations. In this work we use re-



cently implemented topology tools to directly measure
ring-linear thread relaxation in simulations of ring-linear
polymer blends.

We perform coarse-grained molecular dynamics (MD)
simulations of polymer melts where individual polymers
are modeled by bead-spring chains with FENE bonds
and all beads interact via purely repulsive Lennard-Jones
interactions characterized by energy € and distance o.
Model details are presented in the SI. Linear chains con-
tain Ny, beads and rings contain Np beads. All simula-
tions are conducted in cubic cells with periodic boundary
conditions at a particle density of 0.85 m/o®, where m is
the mass of a bead. Unconcatenated ring polymers were
constructed according to previously published methods
[24] and blends of various ring volume fraction ¢ were
constructed by removing a bond from some rings to con-
vert them into linear chains. Simulations are conducted
with a Langevin thermostat at temperature T = ¢/kp
with damping parameter 1007 and were time integrated
using a velocity-Verlet algorithm with time step 0.017,
where 7 = \/mo? /e is the Lennard-Jones time. All sim-
ulations were conducted using LAMMPS [25]. System
sizes and equilibration times are given in the SI; the
blends contained up to 960000 particles and were sim-
ulated for up to 10 billion time steps (10%7).

To evaluate ring-linear threads, we use an approach
based on the Gauss linking integral (GLI), which has re-
cently been implemented in a parallel, open-source code
TEPPP [26]. As a post-processing step of our simula-
tions, the periodic linking number Lp (a generalization
of the linking number to periodic simulations [27), 28]) is
computed between all pairs of ring and linear chains. Any
pair of chains with |Lp| > 0.5 is consider threaded. The
periodic linking number can take any real value as we do
not invoke a closure approximation on the linear chain,
unlike previous work [29]. All beads from the linear chain
are included in the analysis, unlike previous work which
excluded beads that were within one entanglement length
N, of the chain end [30]. To further characterize the time
dependence of threads, we construct a thread correlation
function, C(t), analogous to the intermittent association
correlation function used to study ion associations in so-
lution [3TH34]. Details of the linking number calculation,
thread cutoff, and correlation function are discussed fur-
ther in the SI. The number of ring-linear threads has
also been counted via other techniques such as primitive
path analysis with contact mapping [30], minimal sur-
faces [24], 35, 86], and persistent homology [37], though
most of these authors have not been able to measure the
dynamics of threading nor multiple threads.

The dynamics of individual ring and linear polymers
are characterized by the diffusion time 7. Here we define
T4 as the time for the mean squared displacement (MSD)
of a bead g1(74) = ((Ar(74))?) to move 3(R2), where R,
is the radius of gyration of a chain [38]. An example of
the MSD of the center of mass g3(¢) motion and of a bead
g1(t) are presented in Fig. for rings of length Np = 400
in a pure ring melt and in a blend with ¢r = 0.3 with
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FIG. 2. Mean-squared displacement of ring polymers of length
Nr = 400 in pure melts (black squares) or blends with ¢r =
0.3 (all other symbols). Mean squared displacement of the
center of mass g3(t) is shown with open symbols and motion
of a monomer g;(t) with filled symbols.

varying length of the linear chains 100 < N; < 600.
Fig. |2 clearly shows how as Ny, increases, the ring motion
becomes subdiffusive as the rings have to ‘wait’ for the
linear chains to release the topological constraints before
the ring can relax. While the motion of the rings depends
strongly on the length of the linear chains, the motion of
the linear is hardly affected by the presence of the rings
as shown in Fig. S6.

Theories for chain dynamics in ring-linear blends posit
that rings that are threaded by linears cannot diffuse un-
til the topological constraint imposed by the thread is
released via linear chain reptation (as seen in the MSD
plots). The classical constraint release model assumes
that there are Ng/N, threads per ring and that the
threads are released independently [39]. The time scale
for an individual relaxation event scales with the linear
chain diffusion time, which scales with the linear chain
size as 74, ~ N34, The Rouse-like constraint release
time for the ring polymer then scales like 74 g ~ NIQ%N 34
If the linear chains are short, however, there will be a
crossover to unentangled ring Rouse relaxation where the
diffusion time of the ring scales like 74 r ~ N}% and is in-
dependent of linear chain size.

The diffusion time for ring polymers in blends with
linear polymers of equal chain length Np = N, = N
as a function of linear chain length is shown in Fig. 3.
The diffusion time 74 of ring polymers increases as N°4,
in agreement with theory. In contrast, pure ring poly-
mers have a diffusion time that can be fit to an apparent
power law 74 ~ N&® (Fig. ) and pure, entangled linear
polymers have a diffusion time that scales as N3-4[14].

We next examine the effect of the linear chain size on
the relaxation of the rings. We fix the ring size (Ng = 200
or N = 400) and vary the linear chain length as shown in
Fig.[Bp. The open symbols show the diffusion time of the
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FIG. 3. Diffusion times for ring (filled symbols) and linear

polymers (open symbols) versus linear chain length Np in
a ring-linear blend with (a) equal ring and linear polymer
length, (b) fixed ring polymer length and ring fraction ¢r =
0.3. Solid lines indicate fitted crossover functions from eq S9.

linear chains, which scales like N3, which is expected
for entangled linear polymers. For the model considered
here, the linear chain entanglement length is N, ~ 28
[38]. For sufficiently long linear polymers, the ring poly-
mer diffusion time also follows the N34 scaling. However,
for short linear chains, the ring polymer diffusion has a
weaker dependence on Ny, and can be fit to a crossover to
unentangled ring polymer scaling 74z ~ NY. The solid
lines are a fit to a crossover function (eq S9 ) that includes
the N34 and N? limits. The fit indicates a crossover N,
value around 80.

The thread relaxation C(t) for blends with ¢z = 0.3,
Ng = 200, and variable N, is shown in Fig. [fh. C(t)
shows a similar shape for all Ny, but with shifted time
scales. These data can be collapsed by choosing a value
of the correlation function, in this case 0.5, and rescal-
ing time for each curve so that all curves overlap at the
chosen value. The time-rescaled data is given in Fig.
and the inset shows the times 79 5 used to collapse all the
data versus the diffusion time 74,7, of the linear chains.
The C(t) curves collapse nearly perfectly onto each other,
indicating that the dethreading dynamics is similar with
increasing linear polymer size.

The inset shows that 75 is directly proportional to
the linear chain diffusion time, though it is smaller by a
factor of = 1/6 for blends with ¢ = 0.3 and Ng = 200.
To relax the thread only requires a portion of the linear
chain to reptate through the ring, so it is expected for
the dethreading time to be less than the diffusion time.

We now evaluate the effect of the ring polymer size on
the chain diffusion and dethreading. When varying Np
one must be careful to note that small rings and large
rings in pure ring melts have different scaling behavior.
In pure ring melts, small rings are almost unperturbed
Gaussian rings with size that scales like Rg ~ N. As
the size of the ring increases, the rings impinge on each
other and there is a crossover to a loopy globule scal-
ing regime where R; ~ N?/3 [A0]. Rings in ring/linear
blends are expected to follow RE ~ Npg if the rings are
sufficiently diluted by linears. If a critical ring concentra-
tion is exceeded in the blend, then the large ring scaling

R; ~ N12~2/ % will be recovered. The critical concentration
is a function of the ring size, so increasing ring polymer
size at fixed volume fraction of rings may cause one to
cross the critical concentration.

Fig. shows the mean squared radius of gyration of
ring polymers in ring-linear blends (¢ = 0.3 and ¢ =
0.5) and pure ring melts (¢gr = 1.0) versus the size of
the rings Ng. The linear chains have length Ny = 200
in the blends. The data in Fig. |5l were fit to a crossover
function (eq S10) and a crossover N was extracted for
the blends and the pure rings. For blend systems the
crossover occurs for N = 445 (¢pp = 0.3) or N = 328
(pr = 0.5), so most of the data lies in the dilute-ring
scaling regime. For the pure ring melts (¢r = 1) the
crossover occurs for Ng = 122, so most of the data lies
in the concentrated ring regime.

The diffusion times for ring polymers are shown in
Fig. [fb. For rings that are of similar size to the lin-
ear chains (100 < Ngi < 400), the ring diffusion time
in the blends (red and black points) is an order of mag-
nitude larger than in the pure melt ring (blue points).
In this regime the ring motion is dominated by ring-
linear threadings, which are slow to relax. For small rings
(Ng < 50) the diffusion times in blends is much closer to
the diffusion time in the pure ring melt. This is because
the rings are so small that they have zero to two threads
(Fig. [6h), and thus have few topological constraints to
slow them down compared to the pure ring melt. For
larger rings (Np > 800), the blend and pure melt dif-
fusion times also approach in value. In this regime, the
ring dynamics are also affected by ring-ring interactions
which are similar between blends and pure ring melts.

The number fraction of rings with a given number of
linear chains threading the ring, Ny, is shown in Fig. [Bh.
The solid points show the value measured in MD sim-
ulations via the GLI analysis. Open symbols indicate
a Poisson distribution with mean equal to that of the
MD results. For the smallest ring size N = 50, the
majority of rings have two or fewer linear chains thread-
ing, and 17% of rings have no linear chains threading
them at all. As the ring size Ng is increased, the dis-
tribution of number of threads broadens and moves to
larger mean values, consistent with previous investiga-
tions [29 [36]. Notably the Poisson distribution fits the
measured distribution well for all Ng. This may indicate
that ring-linear threads are independent of each other.
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FIG. 4. (a) Dethreading correlation function C(t) for a ring-linear blend with ring fraction ¢z = 0.3 and ring length Nz = 200.
(b) C(t) versus t/70.5, where 795 is the time at which only 50% of the original ring-linear threads remain, which is different for
each linear length. The inset shows the thread relaxation time scale 79 5 versus the diffusion time for a linear chain, 74,r..
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FIG. 5. (a) Radius of gyration R, and (b) diffusion time
74 for ring polymers versus ring chain length Ng in a ring-
linear blends and a pure ring melt. In the blends, the linear
chain length Ny = 200. Solid lines in part (a) indicate fit to
crossover functions given in eq S10.

The inset of Fig. [6h shows the average number of linear
chains threading a ring, Ny, versus the ring size Ng. The
average number of linears threading a ring increases lin-
early with the ring size, Ny ~ Ny, which is consistent
with previous results based on primitive path analysis
[30] and minimal surfaces [36].

The dethreading correlation function for the blends

with ¢ = 0.3 is shown in Fig. |§|b For times t/7 < 10°
the curves overlap. Note that no rescaling of time has
been performed, unlike in Fig.[4p. The overlapped curves
indicate that dethreading dynamics at short times is
largely independent of ring size. This indicates that it
is the motion of the linear that largely drives dethread-
ing, consistent with previous work.

At long times, C(t) decays to zero more quickly for
smaller rings whereas larger rings have a slow relaxing
component that gets slower with increasing ring size. The
universal functional form that was observed for linear
polymers of different sizes in the blends does not occur
for rings. Thus, blending ring and linear polymers has
an asymmetric effect where thread relaxation has some
complicated dependence on ring polymer size and diffu-
sion, but for linear chains depends only on the diffusion
time.
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FIG. 6. (a) Number fraction of ring polymers with a given

number of linear polymers threading the ring, N:;. Linear
polymers have length Nr = 200 and ¢r = 0.3. Solid dots
indicate results from MD simulations. Open symbols indicate
a Poisson distribution with identical mean to the MD results.
Inset shows the average number of linear chains threading
the ring N; versus ring polymer size Ng. (b) Dethreading
correlation function C(¢) versus time ¢ for the same blends as
in (a).
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