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Concepción, Alonso de Ribera 2850, Concepción, Chile
3 Departamento de Ciencias Fisicas, Universidad Andres Bello, Autopista
Concepcion-Talcahuano 7100, Talcahuano, Chile
4 Facultad de F́ısica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860,
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Abstract. We elucidate the dependence of the Casimir energy on the trace anomaly
coefficients for a six-dimensional CFT on R × S5. This extends the universal dependence on
the central charge in 2D and the relation by Cappelli and Coste in 4D, unveiling the role of the
trivial total derivatives in the anomaly that renders the Casimir energy scheme dependent. We
obtain

Eo = −
15

8
a6 −

5

12

(

g5 +
1

4
g7 +

1

2
g8 − 10 g9 + g10

)

,

with a6 being the type A central charge and the g’s, the coefficients of five out of six terms
that form a basis for trivial total derivatives. The derivation is based on the Polyakov formulas
(conformal primitive) resulting from the integration of the trace anomaly.
Alternatively, on a 6D conformally flat background the above basis is redundant and one can
simplify further to get, in terms of the Schouten scalar J and the Schouten tensor V , Branson’s
basis for trivial total derivatives ∇2∇2J , ∇2J2 and ∇2|V |2 + 2∇ · (V · ∇ J) with coefficients
γ1, γ2 and γ3, respectively,

Eo = −
15

8
a6 −

1

24

(

γ1 − γ2 −
1

8
γ3

)

.

1. Introduction

The Casimir effect [1] is a remarkable macroscopic quantum response of a system to external
influences (e.g. boundary conditions or background fields). It has been extensively studied over
the years and experimentally verified [2, 3] (for a recent review, see [4]). One interesting route
contemplates the extension of the original setting regarding the 4D electromagnetic field to a
conformal field theory in a generic even dimension. Since conformal symmetry is quite restrictive,
the Casimir energy of a 2D CFT on the cylinder is universal and given by the ubiquitous central
charge c [5, 6] of the trace anomaly,

Eo = − c

12
. (1)

http://arxiv.org/abs/2404.15561v2


The aforementioned universality is partially lost in 4D, yet the trace anomaly coefficients
determine the vacuum energy1 as shown by Cappelli and Coste [7]

Eo =
3

4
a+

3

8
g , (2)

where a is the universal type A trace anomaly coefficient and g is the regularization scheme
dependent coefficient of the total derivative term

(4π)2〈T 〉 = −aE4 + cW 2 + g∇2R . (3)

The total derivative term ∇2R is a trivial anomaly since it comes from the conformal variation 2

of a conformal primitive that happens to be a local curvature invariant with the appropriate
scaling dimension3, namely R2, that can simply be added to the action.

There are good indications that in higher (necessarily even) dimensions the Casimir energy
on the cylinder 4 is still dictated by the trace anomaly of the CFT. The structure of the latter
was asserted years ago by Deser and Schwimmer [9] to consist of 5 a multiple of the Euler density
(type A), a point-wise Weyl invariant (type B) and a trivial total derivative

(4π)
n
2 · 〈T 〉 = −(−)

n
2 an · En + {Point-wise Weyl Invariant}+ t.t.d.

Remarkably, a simple relation between the Casimir energy on the cylinder and the type A trace
anomaly coefficient was found by Herzog and Huang in [16]

Eo =
(−1)

n
2 · (n− 1)!!

2
n
2

· an , (4)

but only valid in a particular regularization scheme where the trivial total derivatives are absent.
For example, in 6D one encounters discrepancies with the Casimir energy for the free (2,0) tensor
multiplet as computed via standard ζ-function regularization (see, e.g. [17, 18]). A 6D relation,
like the Cappelli and Coste one, taking into account the role of the trivial total derivatives in
the trace anomaly, is clearly still missing. This note aims to provide such an extension.

Our results are based on the following rather simple observation: since the trivial total
derivatives in the trace anomaly stem from a local conformal invariant in the action, it is enough
to evaluate the latter on the geometry of the cylinder to obtain its contribution to the partition
function and, in consequence, to the vacuum energy. For completeness, we will also re-derive the
dependence on the type A central charge by the direct examination of the Polyakov formulas that
provide the conformal primitive of the trace anomaly. We prefer Branson’s construction where
the Euler density is traded in for the Q-curvature, this reduces the answer to terms at most
quadratic in the Weyl factor that relates the standard metric on the cylinder to that of a flat
shell. Although our derivation is conceptually clear, in practice we face the complication that,
unlike the Euler term, the number of independent trivial total derivatives increases significantly
with the dimension; there are none in 2D, one in 4D, six in 6D, whereas 8D and beyond remain
largely unexplored 6.

1 We stick to the conventions of [8].
2 By conformal we mean a local Weyl rescaling of the metric. We will use both terms, conformal and Weyl,
indistinctly in what follows.
3 The other two candidates for a local curvature invariant Riem2 and Ric2 can be reduced to R2 by exploiting
the conformal invariance of the Euler density E4 and of the quadratic contraction of the Weyl tensor W 2.
4 Meaning that the spatial section is compactified to a sphere.
5 See also [10, 11, 12] for a cohomological approach. For the closely related question of the classification of global
conformal invariants, see [13] on conformally flat manifolds and [14, 15] in greatest generality.
6 There is, though, a basis of nine local conformal primitives on conformally flat backgrounds in 8D due to
Branson and Peterson [19].



We start in Section 2 with a brief account of Polyakov formulas. We then consider the explicit
cases of 2D, 4D, and 6D in Section 3 and test in Section 4 against data available in the literature.
We then conclude and collect some useful relations in the appendix.

2. Polyakov formulas, Q-curvature, and local curvature invariants

The (generalized) Polyakov formula provides a conformal primitive of the trace anomaly, as first
shown by Polyakov in 2D [20]. In higher even dimensions, Branson asserted the form of the
corresponding extension by making use of the suitable features of the critical Q-curvature (see,
e.g. [21]). In a (closed Riemanninan) conformally flat manifold the topological content of the
trace anomaly is also captured by the Q-curvature and all point-wise Weyl invariants vanish so
that the structure of the trace anomaly is significantly simplified

(4π)
n
2 · 〈T 〉 = −(−)

n
2 n · an ·Qn + t.t.d. (5)

Here one exploits the linear dependence of the variation of the Q-curvature on the Weyl factor
σ, that conformally relates two metrics ĝ = e2σg, and integrates in an auxiliary parameter t
along any interpolating path σ(t) such that σ(0) = 0 and σ(1) = σ, to obtain for the partition
functions

Γ[g, ĝ] = −Γ[ĝ, g] = logZ[ĝ]− logZ[g] = −(−)
n
2

n · an
(4π)

n
2

∫

Mn

dvg σ ·
{

Qn +
1

2
Pn σ

}

+

{
∫

M̂n

dvĝ F̂ −
∫

Mn

dvg F
}

. (6)

The explicit dependence on σ is at most quadratic and the GJMS operator Pn can be integrated
by parts to yield the so-called dilaton action for the Weyl factor, whereas higher order terms in
σ are hidden in the finite conformal variation of the local conformal primitive F .

Now, considering the standard metric on the cylinder R × Sn−1 conformally related to flat
space

ĝ = du2 + dΩ2 = r−2
{

dr2 + r2 dΩ2
}

(7)

via a Weyl factor σ = − ln r, we can readily read off the Casimir energy resulting from the
compactification of the spatial section referred to the vanishing vacuum energy of flat space.
Alternatively, one can consider a temperature circle with inverse temperature β and read off the
dominant vacuum term as β goes to infinity on S1

β × Sn−1.

In “flatland” (meaning flat space or a spherical shell for finite inverse temperature), the only
contribution comes from the nth-order kinetic term |∂∂2...∂2σ|2 or |∂2...∂2σ|2 depending on the
(even) dimension n, that produces the same answer ((n − 2)!!)2/rn so that the radial integral
results in

∫

dr
r =

∫

du or β. Performing the remaining volume integral on the sphere, the generic
relation for the Casimir energy (modulo trivial total derivative contributions) becomes

Eo =
(−1)

n
2 · n!!

2
n
2
+1

· an + ... . (8)

This ought to be compared with the result by Herzog and Huang in the Euler density basis

Eo =
(−1)

n
2 · (n− 1)!!

2
n
2

· an + ... . (9)

The apparent discrepancy above stems from the fact that each result is valid within a different
regularization scheme where trivial total derivatives are discarded. However, evaluation of the



local conformal primitive of the trivial total derivatives on the cylinder will complement the
result and the agreement between the two schemes and a more general one will be achieved.
The local conformal primitive vanishes on flat space, and must be a constant on the cylinder.
This yields the scheme-dependent contribution to the Casimir energy foreseen above. The only
technical difficulty in carrying out the above completion, as already pointed out, lies in the
increasing complexity of the trivial total derivative terms and their conformal primitives with
the dimension.

3. Casimir energy and trace anomaly: the explicit relation

In what follows we will revisit the 2D and 4D cases and obtain, for the first time to our knowledge,
the 6D extension of the Capelli-Coste relation.

3.1. 2D CFT

Let us start by reproducing the 2D relation 7 following Cappelli and Coste. There are no trivial
anomalies in 2D, by convention Q2 = R

2 is the Gaussian curvature of the closed surface and
P2 = −∇2, that is integrated by parts to write down the answer in the well-known Liouville
form

Γ[g, ĝ] =
a2
4π

∫

flatland
dvg

{

|∇σ|2 + σ · R
}

(10)

From this potential for the Weyl factor, also known in the conformal geometry literature as the
Moser functional, evaluated on the fiducial flat metric with R = 0 and for the conformal factor
|∂σ|2 = 1

r2
, one can readily obtain the leading contribution to the partition function as β → ∞

−β · Eo =
a2
4π

· 2π · β =
a2
2

· β (11)

This corresponds to the more familiar Eo = −c/12, when the central charge is tuned so that for
the scalar Laplacian a2 = 1/6 one gets c = 1, i.e., a2 = c/6. In all,

Eo = −a2
2
. (12)

3.2. 4D CFT

Now we revisit the derivation by Cappelli and Coste in 4D, but in the light of Branson’s insight
that exploited the suitable transformation law of the Q-curvature under Weyl rescaling of the
metric (see also Riegert’s action [22] in local form). The trace anomaly at a conformally flat
background becomes

(4π)2 · 〈T 〉 = −a4 ·E4 + g · ∇2 R = −4 a4 ·Q4 + g̃ · ∇2R , (13)

and its conformal primitive, referred to the fiducial flat metric, is then given by

Γ[g, ĝ] = − a4
4π2

∫

flatland
dvg

{

σ ·Q4 +
1

2
σ · P4 σ

}

+
g̃

16π2

∫

S1

β
×S3

dvĝ
−1

12
R̂2

= − a4
8π2

∫

flatland
dvg |∂2σ|2 + g̃

16π2

∫

S1

β
×S3

dvĝ
−1

12
R̂2 . (14)

7 This was essentially obtained by Affleck [6], except for the fact that his result applies to the modular transformed
torus, i.e., to the Cardy or high temperature regime.



We obtain contribution from the fourth-order kinetic term |∂2σ|2 = 4
r4

and from the local

curvature invariant −1
12 R̂

2 = −3, conformal primitive of the trivial total derivative, so that we
end up with

−β ·Eo = −
{

a4
2π2

+
3g̃

16π2

}

· 2π2 · β = −
{

a4 +
3

8
g̃

}

· β . (15)

Therefore, we obtain for the Casimir energy

Eo = a4 +
3

8
g̃ . (16)

To translate to the Euler basis, it is enough to remember that on conformally flat backgrounds
4Q4 = E4 − 2

3∇2R, so that g̃ = g − 2
3a4 and finally obtain the original result by Cappelli and

Coste8

Eo =
3

4

(

a4 +
1

2
g

)

. (17)

Notice that the precise shift g̃ = g − 2
3a4 decorates the dilaton action (eq. 14), by using the

conformal transformation of
√
ĝR̂2, as follows

Γ[δ, δ̂] = − a4
8π2

∫

flatland
dvδ |∂2σ|2 − 2

3

a4
16π2

∫

flatland
dvδ

−1

12

{

−6∂2σ − 6|∂σ|2
}2

+ ...

=
a4
8π2

∫

flatland
dvδ

{

2|∂σ|2∂2σ + (|∂σ|2)2
}

... , (18)

where the ellipsis stands for the contribution of the trivial anomaly g∇2R. Evaluating the first
part on the cylinder will again produce the dependence of the vacuum energy on the central
charge a, while the contribution from the trivial anomaly can easily be reintroduced by evaluating
the associated counterterm (conformal primitive) 9.

3.3. 6D CFT

It is at 6D that a subtle departure between total derivatives and trivial total derivatives occurs,
stemming out from the difference between global conformal invariants and the trace anomaly of
a CFT. The latter must comply with the Wess-Zumino consistency or integrability condition,
requiring that the allowed total derivatives must be derived from the conformal variation of a
local curvature invariant. In 6D, a basis for total derivatives is provided by the seven divergences
C1, C2, C3, C4, C5, C6 and C7 of [24], however once they are expressed in the reduced basis
for trivial total derivatives of M5,M6,M7,M8,M9 and M10 there remains an “offending term”
∇2|Ric|2. The basis for trivial total derivatives was obtained in [25] by performing the conformal
variation of all possible curvature invariants with the appropriate scaling dimension. There
are seventeen elements K1, ...,K17, from which seven combinations are the total derivatives
C1, C2, C3, C4, C5, C6, C7 whose integrals vanish identically, another combination gives the Euler
density E6 which is a topological invariant, and there are also three other combinations that
produce three independent point-wise conformal invariants I1, I2 and I3, so that in all there
remain six independent combinations -conformal primitives that we denote F5, F6, F7, F8, F9, F10

- whose conformal variations produce the trivial total derivatives M5,M6,M7,M8,M9,M10 (we
collect explicit expressions in Appendix A).

8 Our convention follows [8] and slightly differs from that of the original Cappelli-Coste paper [7].
9 This shortcut route to the Cappelli-Coste relation was somehow already implicit in [23](see appendix A.1
therein).



Therefore, the 6D CFT trace anomaly at a conformally flat background becomes

(4π)3 · 〈T 〉 = a6 ·E6 + g5 ·M5 + g6 ·M6 + g7 ·M7 + g8 ·M8 + g9 ·M9 + g10 ·M10

= 6 a6 ·Q6 + g̃5 ·M5 + g̃6 ·M6 + g̃7 ·M7 + g̃8 ·M8 + g̃9 ·M9 + g̃10 ·M10 . (19)

The conformal primitive, referred to a fiducial flat metric where all curvature invariants vanish,
is then given by

Γ[g, ĝ] =
3 a6
64π3

∫

flatland
dvg |∂ ∂2σ|2 (20)

+
1

64π3

∫

S1

β
×S5

dvg

{

g̃5 · F̂5 + g̃6 · F̂6 + g̃7 · F̂7 + g̃8 · F̂8 + g̃9 · F̂9 + g̃10 · F̂10

}

.

When evaluated at S1
β ×S5 with the standard product metric, we obtain contributions from the

sixth-order kinetic term |∇∇2σ|2 = 64
r6

and from the local curvature invariants

F̂5 =
80

3
, F̂6 = 0 , F̂7 =

20

3
,

F̂8 =
40

3
, F̂9 = −800

3
, F̂10 =

80

3
. (21)

Collecting all contributions

−β · Eo =
1

64π3

{

3a6 · 64 + g̃5 ·
80

3
+ g̃7 ·

20

3
+ g̃8 ·

40

3
+ g̃9 ·

−800

3
+ g̃10 ·

80

3

}

· π3 · β

=

{

3a6 +
5

12

[

g̃5 +
1

4
g̃7 +

1

2
g̃8 − 10 g̃9 + g̃10

]}

· β . (22)

Therefore, we obtain for the Casimir energy

Eo = −3 a6 −
5

12

[

g̃5 +
1

4
g̃7 +

1

2
g̃8 − 10 g̃9 + g̃10

]

. (23)

To translate to the Euler basis we have to express the 6D Q-curvature in terms of the Euler
density and trivial total derivatives in a conformally flat background. The linearity under
conformal transformations, a defining property of the Q-curvature, is shared by the whole
family of pondered Euler densities Ẽ6 introduced by Anselmi in [26] (see [25] as well). In
our conventions, the dictionary goes as follows

E6 = Ẽ6 +

(

67

10
− 5

2
ζ

)

M6 +

(

5

2
ζ − 51

5

)

M7 +

(

1

16
ζ − 9

200

)

M9 −
3

5
M10 , (24)

and results in the shift of the trivial anomaly coefficients

g̃5 = g5 , g̃6 = g6 + a6

(

67

10
− 5

2
ζ

)

, g̃7 = g7 + a6

(

5

2
ζ − 51

5

)

,

g̃8 = g8 , g̃9 = g9 + a6

(

1

16
ζ − 9

200

)

, g̃10 = g10 −
3

5
a6 . (25)



Substituting back in the Casimir energy relation (eqn.23), we obtain the alternative relation
that completes the partial result obtained by Herzog and Huang in 6D

Eo = −15

8
a6 −

5

12

[

g5 +
1

4
g7 +

1

2
g8 − 10 g9 + g10

]

. (26)

The above relation is robust in the sense that any construct with the same conformal
transformation property as the critical Q-curvature Q6 will produce the same result. For
completeness, let us also examine the two-parameter family of trivial total derivative terms
that respects the linearity in a generic background 10 found out by Hamada [27] (eqn.4.20 and
4.21 therein, see also [28, 29]) at the expense of modifying Branson’s operator P6 :

(i)
3

4
∇2W 2 − 3∇∇(WW ) = −3

4
C5 + 3C7 =

1

4
M5 +

1

2
M6 −

3

4
M7 +M8 +

9

160
M9 (27)

(ii)
3

2
∇2W 2 = 3C5 = −3M6 + 3M8 +

3

20
M9 (28)

It is reassuring to verify that none of the two combinations, ∇∇(WW ) nor ∇2W 2, will produce
a non-vanishing result in the relation for the Casimir energy. The above freedom agrees with
the usual wisdom in Conformal Geometry that the pair of critical Q-curvature Qn and critical
GJMS operator Pn is “pure Ricci” , while any other construct that shares the same conformal
properties is “contaminated” by explicit dependence on the Weyl tensor.

4. 6D CFT: examples

There are few examples in 6D, worked out some years ago [24], that can now be used to verify the
correctness of the novel relation put forward above between Casimir energy and trace anomaly
coefficients. We first write down the trace anomaly with the relevant coefficients, and in the
table below we report the values for the Casimir energies computed with the relation we found
out and the outcomes in all cases exactly match the known results in the literature (see, e.g.,
[17]).

Conformal scalar: The first instance is of course the conformally coupled scalar field, for which
we have

(4π)3 · 7! 〈T 〉 = 5

9
· E6 −

28

3
· I1 +

5

3
· I2 + 2 · I3 +∇i · J i , (29)

with the trivial total derivative term given by

∇i · J i =
6

5
· C1 −

2

5
· C2 + 4 · C3 +

12

5
· C4 +

17

5
· C6 + 12 · C7 ,

= M5 − 4 ·M7 + 7 ·M8 +
1

10
·M9 +

6

5
·M10 . (30)

Massless Dirac squared: The second instance of a conformally invariant free field corresponds
to the (square of the) massless Dirac operator, for which we have

(4π)3 · 7! 〈T 〉 = 191

9
· E6 −

896

3
· I1 − 32 · I2 + 40 · I3 +∇i · J i , (31)

10We are grateful to I.L. Shapiro for a useful discussion on this point.



with the trivial total derivative term given this time by

∇i · J i = 24 · C1 −
148

15
· C2 + 136 · C3 + 48 · C4 − 168 · C5 + 96 · C6 + 352 · C7 ,

=
88

3
·M5 − 136 ·M7 +

112

3
·M8 − 5 ·M9 + 24 ·M10 . (32)

Two-form: The third instance of a conformally invariant free field corresponds to a two-form
after a covariant gauge-fixing, for which we have

(4π)3 · 7! 〈T 〉 = 442 ·E6 −
8008

3
· I1 −

2378

3
· I2 + 180 · I3 +∇i · J i , (33)

and with the trivial total derivative term

∇i · J i = −60 · C1 +
2036

15
· C2 − 1152 · C3 − 120 · C4 − 504 · C5 − 646 · C6 + 856 · C7 ,

=
214

3
·M5 + 312 ·M7 −

14

3
·M8 + 93 ·M9 − 60 ·M10 . (34)

In summary,

conformal field 7! · a 7! · g5 7! · g6 7! · g7 7! · g8 7! · g9 7! · g10 Eo

conformal scalar 5
9 1 0 -4 7 1

10
6
5 − 31

60480

massless Dirac squared 191
9

88
3 0 -136 112

3 -5 24 − 367
24192

two-form 442 214
3 0 312 −14

3 93 -60 − 191
2016

As a verification of the above result for the conformal scalar in 6D, we can evaluate directly
in the Polyakov formula obtained by Branson [21] (see also [30])

− 3·7! (4π)3

2 log
det Ŷ

detY
= 10

∫

M6

dvg σ ·
{

Q6 +
1

2
P6 σ

}

+ 13

{
∫

M̂6

dvĝ |∇̂Ĵ |2 −
∫

M6

dvg |∇J |2
}

+34

{
∫

M̂6

dvĝ Ĵ
3 −

∫

M6

dvg J3

}

− 32

{
∫

M̂6

dvĝ Ĵ |V̂ |2 −
∫

M6

dvg J |V |2
}

, (35)

in terms of the Schouten tensor V and scalar J . Likewise, for the conformally related metrics
we get

−3 · 7! (4π)3 β ·Eo = 5

∫

flatland
dvg |∇∇2 σ|2 + 34

∫

S1

β
×S5

dvĝ Ĵ
3 − 32

∫

S1

β
×S5

dvĝ Ĵ |V̂ |2

= β π3 {5 · 64 + 34 · 8 − 32 · 3} = 496β π3 , (36)

and we again obtain Eo = − 31
60480 .



For the Dirac operator, we start with

−9 · 7! (4π)3
2

log
det /̂∇

2

det /∇2 = −1146

∫

M6

dvg σ ·
{

Q6 +
1

2
P6 σ

}

− 507

{
∫

M̂6

dvĝ |∇̂Ĵ |2 −
∫

M6

dvg |∇J |2
}

− 1578

{
∫

M̂6

dvĝ Ĵ3 −
∫

M6

dvg J
3

}

(37)

+ 1752

{
∫

M̂6

dvĝ Ĵ |V̂ |2 −
∫

M6

dvg J |V |2
}

,

and thus for the conformally related metrics we obtain

9 · 7! (4π)3 β ·Eo = −573

∫

flatland
dvg |∇∇2 σ|2 − 1578

∫

S1

β
×S5

dvĝ Ĵ3 + 1752

∫

S1

β
×S5

dvĝ Ĵ |V̂ |2

= β π3 {−573 · 64 − 1578 · 8 + 1752 · 3} = −44040β π3 , (38)

implying Eo = − 367
24192 .

5. Summary and outlook

In this work, the relation between the 6D CFT trace anomaly and the Casimir energy due
to compactifying the spatial section on a five-sphere has been fully established. The resulting
expression extends the 4D result of Cappelli and Coste to 6D by taking account of the trivial total
derivatives in the trace anomaly. The scheme-dependence of the Casimir energy is now controlled
by the trivial total derivatives, or equivalently, by the finite counterterms that can be added to
the effective action. We expect this will allow a better understanding of the discrepancies in
the vacuum energy in holographic scenarios. The present relation would also be well suited to
further explore the connection, within ζ-function regularization, between Casimir energy and
multiplicative anomaly [31] beyond conformal scalar fields 11.
Let us conclude by mentioning that going beyond the conformally flat case seems to be quite a
challenge (see e.g. [32]). One of the obvious difficulties consists in the choice of a fiducial metric.
Even in the conformally flat case, finite size effects on a higher dimensional torus (d > 2) are not
obtained by conformal symmetry from Rd because these geometries are no longer conformally
related, as pointed out by Capelli and Coste. Nonetheless, back to the cylinder, a deformation
of the sphere could be considered where a suitable candidate for reference metric would be
the homogeneously squashed (or Berger), instead of the round, sphere where many explicit
calculations are doable (see e.g. [33]).
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Appendix A. 6D basis of curvature invariants

A suitable basis for curvature invariants of degree six is due to Fulling et al. [36]

K1 = R3 , K2 = RRic2 , K3 = RRiem2 , K4 = Ric3 , K5 = −RiemRic2

K6 = RicRiemRiem , K7 = Riem3 , K8 = Riem′3 , K9 = R∇2R

K10 = Ric∇2 Ric , K11 = Riem∇2 Riem , K12 = Ric∇∇R , K13 = |∇Ric|2

K14 = ∇Ric∇Ric , K15 = |∇Riem|2 , K16 = ∇2R2 , K17 = ∇4R . (A.1)

Explicit expansion of the trivial anomalies

M5 = 6K6 − 3K7 + 12K8 +K10 − 7K11 − 11K13 + 12K14 − 4K15 , (A.2)

M6 = −1

5
K9 +K10 +

2

5
K12 +K13 ,

M7 = K4 +K5 −
3

20
K9 +

4

5
K12 +K14 ,

M8 = −1

5
K9 +K11 +

2

5
K12 +K15 ,

M9 = K16

M10 = K17.

Corresponding conformal primitives 12

F5 =
1

30
K1 −

1

4
K2 +K6 , F6 =

1

100
K1 −

1

20
K2 ,

F7 =
37

6000
K1 −

7

150
K2 +

1

75
K3 −

1

10
K5 −

1

15
K6 , F8 =

1

150
K1 −

1

20
K3 ,

F9 = − 1

30
K1 , F10 =

1

300
K1 −

1

20
K9 . (A.3)

Relevant curvature invariants at S1
β × S5

K1 = R3 = 8000 , K2 = RRic2 = 1600 , K3 = RRiem2 = 800 ,

K5 = −RiemRic2 = −320 , K6 = RicRiem2 = 160 , K9 = R∇2R = 0 . (A.4)

Appendix B. 6D Branson’s basis of conformal primitives

On conformally flat manifolds the general basis of six trivial total derivatives is reduced to only
three independent terms, stemming from only three conformal primitives. One convenient choice
of conformal primitives consists of J3, |∇J |2 and J |V |2. To compute the trivial total derivatives
obtained by the conformal variation of these curvature invariants under g → gω = e2ωg, it is
enough to keep only the term linear in the conformal factor ω and discard boundary terms since
the manifold is closed.
Let us start with J3

∫

M̂6

dvωJ
3
ω =

∫

M6

dv(J −∇2ω)3 =

∫

M6

dv(J3 − 3J2∇2ω) →
∫

M6

dv ω(−3∇2J2) , (B.1)

12These relations were reported in appendix C of [24]. We are indebted to F. Bastianelli for pointing this out to
us.



so that J3 turns out to be a conformal primitive for −3∇2J2.
In the case of |∇J |2, as conformal primitive it is equivalent to −J∇2J since they add up to a
boundary term 1

2∇2J2. A shortcut to compute the conformal variation is provided by considering
the Yamabe operator Y = −∇2 + 2J instead of the plain Laplacian, and exploit the conformal
covariance of Y as follows
∫

M̂6

dvωJωYωJω =

∫

M6

dv(J −∇2ω) Y (J −∇2ω) =

∫

M6

dv
{

JY J − (∇2ω)Y J − JY∇2ω)
}

→
∫

M6

dv ω(−2∇2Y J) . (B.2)

The integration by parts performed above is equivalent to the self-adjointness of both the
Laplacian and the Yamabe operator. We end up with the conclusion that a conformal primitive
for −2∇2Y J is given by JY J = J(−∇2+2J)J or, equivalently, |∇J |2+2J3. Combining this with
the previous result for J3, we obtain that |∇J |2 is a conformal primitive for 2∇2∇2J + 2∇2J2.
A shortcut to compute the conformal variation of the remaining curvature invariant J |V |2
involves the Paneitz operator P acting on the Schouten scalar

∫

M̂6

dvωQ4,ωJω =

∫

M̂6

dvωPωJω =

∫

M6

dveωPe−ω(J −∇2ω)

=

∫

M6

dv
{

PJ − P∇2ω + eωP o(e−ωJ)
}

=

∫

M6

dv
{

Q4J −Q4∇2ω + JP oω
}

→
∫

M6

dv ω(−∇2Q4 + P oJ) . (B.3)

We have kept only terms at most linear in ω and made use of the following properties of the
Q-curvature Q4 and Paneitz operator P in 6D

P = P o +Q4 , Q4 = 3J2 − 2|V |2 −∇2J , Pω = e−5ωPeω, (B.4)

where P o denotes the total derivative part of the Paneitz operator

P o = ∇2∇2 + 4∇ · (V · − J)∇ . (B.5)

We have therefore that Q4J is a conformal primitive of −∇2Q4 + P oJ which equals 2∇2∇2J −
5∇2J2+2∇2|V |2+4∇·(V ·∇J). With all the instances gathered so far, we can finally disentangle
the −J |V |2 term in Q4J , and obtain that it is a conformal primitive for ∇2|V |2+2∇· (V ·∇J)+
∇2J . We summarize the above results, which have also been independently verified with the
xAct package for Mathematica, in the table below.

trivial total derivative conformal primitive

∇2∇2J 1
2 |∇J |2 + 1

3J
3

∇2J2 −1
3J

3

∇2|V |2 + 2∇ · (V · ∇J) −J |V |2 + 1
3J

3



Endowed with this correspondence, we can now determine the contribution to the partition
function that originates in the trivial total derivatives of the trace anomaly on conformally flat
backgrounds

(4π)3 · 〈T 〉 = −a6 ·E6 + γ1∇2∇2J + γ2∇2J2 + γ3{∇2|V |2 + 2∇ · (V · ∇J)}

= −6 a6 ·Q6 + γ̃1∇2∇2J + γ̃2∇2J2 + γ̃3{∇2|V |2 + 2∇ · (V · ∇J)} . (B.6)

The contribution to the partition function from the trivial total derivatives reduces to the
evaluation on the cylinder of their corresponding conformal primitives. Collecting similar terms,
evaluating the conformal primitives J3 = 8, |∇J |2 = 0 and J |V |2 = 3, we arrive at volume times
a particular combination of coefficients

β π3

64π3

{

8γ1
3

− 8γ2
3

+
8γ3
3

− 3γ3

}

=
β

24

{

γ1 − γ2 −
1

8
γ3

}

, (B.7)

so that we obtain for the Casimir energy in the Euler basis

Eo = −15

8
a6 −

1

24

(

γ1 − γ2 −
1

8
γ3

)

, (B.8)

or, alternatively, in the Q-curvature basis

Eo = −3a6 −
1

24

(

γ̃1 − γ̃2 −
1

8
γ̃3

)

. (B.9)

The degeneracy of the basis for total derivatives at conformally flat manifolds is summarized in
the table below.

general basis of t.t.d. reduced basis of t.t.d.

M5 −24{∇2|V |2 + 2∇ · (V · ∇J)} − 7∇2J2

M6 8{∇2|V |2 + 2∇ · (V · ∇J)} − ∇2J2

M7 8{∇2|V |2 + 2∇ · (V · ∇J)} − 7
2∇2J2

M8 8{∇2|V |2 + 2∇ · (V · ∇J)} − 6∇2J2

M9 100∇2J2

M10 10∇2∇2J



This dictionary allows a direct verification of the vanishing on conformally flat manifolds of
the freedom in Anselmi’s pondered Euler density (eqn.24) and the two freedoms found out by
Hamada (eqns.27 and 28). It also allows to verify the relation for the Casimir energy in terms
of the coefficients of the reduced basis, collecting their coefficients

Eo = −15

8
a6 −

1

24

(

[10g10]− [−7g5 − g6 −
7

2
g7 − 6g8 + 100g9]−

1

8
[−24g5 + 8g6 + 8g7 + 8g8]

)

= −15

8
a6 −

5

12

(

g5 +
1

4
g7 +

1

2
g8 − 10g9 + g10

)

. (B.10)

Appendix C. Critical GJMS on the cylinder

Let us show here that the evaluation of the dilaton action (eqn.6) can be done as well on
the cylinder. Again, the critical Q-curvature vanishes for topological reasons (vanishing Euler
characteristic) whereas the critical GJMS gets factorized (see, e.g. [37, 38, 39, 31])

Pn =

n/2
∏

j=1

{

−∂ 2
o + (

√

∆0 + 2j − n/2− 1)2
}

, (C.1)

where the shifted Laplacian on the sphere ∆0 = −∇2+ (n−2)2

4 acting on the Weyl factor produces

only a constant factor. Therefore the σ P̂nσ term results simply in a factor
∏n/2

j=2 {2j − 2} times

−u∂2
ou. After integration by parts, we obtain again the contribution ((n − 2)!!)2 times

∫

du or
β. We notice that the Weyl factor is a zero mode of the Laplacian, and only after integration by
parts to get a kinetic term it does produce a nonvanishing contribution proportional the type A
central charge a. The corresponding boundary term that is being discarded, is related to the fact
that the mapping from flat space to the cylinder is an improper one. A more detailed analysis for
a cylinder with finite height and careful consideration of boundary conditions should shed light
on this subtlety. After all, the Polyakov formula in two dimensions relates a torus to another
torus in the same conformal family, and not to a disk. Nonetheless, the finite contribution from
the conformal primitives on the flat shell and on the cylinder remains unaffected.
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