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Abstract
In contemporary problems involving genetic or neuroimaging data, thousands of hypotheses

need to be tested. Due to their high power, and finite sample guarantees on type-1 error under
weak assumptions, Monte-Carlo permutation tests are often considered as gold standard for these
settings. However, the enormous computational effort required for (thousands of) permutation
tests is a major burden. Recently, Fischer and Ramdas [12] constructed a permutation test for a
single hypothesis in which the permutations are drawn sequentially one-by-one and the testing
process can be stopped at any point without inflating the type I error. They showed that the
number of permutations can be substantially reduced (under null and alternative) while the power
remains similar. We show how their approach can be modified to make it suitable for a broad
class of multiple testing procedures. In particular, we discuss its use with the Benjamini-Hochberg
procedure and illustrate the application on a large dataset.
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1 Introduction
In a classical Monte-Carlo permutation test, we observe some test statistic Y0, generate B additional
test statistics Y1, . . . , YB and calculate the permutation p-value by

pperm
B “

1 `
řB

t“1 1tYt ě Y0u

1 ` B
. (1)

In order to be able to reject the null hypothesis at level α, we would need to generate at least
B ě 1{α´1 permuted datasets with corresponding test statistics. This can already lead to considerably
computational effort when the data generation process is demanding. However, it is even much higher
when M hypotheses are tested instead of a single one. First, we need to perform a permutation test
for each hypothesis, leading to a minimum number of Mp1{α ´ 1q permutations in total. Second, when
multiple testing corrections are performed, each hypothesis is tested at a lower individual level than
the overall level α. For example, if the Bonferroni correction is used, each hypothesis is tested at level
α{M leading to the requirement of at least MpM{α ´ 1q « M2{α permutations. Even if we use more
powerful multiple testing procedures such as the Benjamini-Hochberg (BH) procedure [5], this lower
bound for the total number of permutations usually remains. The problem is that B need to be chosen
in a manner that protects against the worst case in which all p-values are large except for one that is
then essentially tested at level α{M . In this paper, we consider applying multiple testing procedures
to anytime-valid permutation p-values which allows to stop resampling early and reject (or accept)
a hypothesis as soon as the corresponding p-value is rejected (or accepted) by the multiple testing
procedure. In this way, we can adapt the number of permutations to the number of rejections and
potentially save a lot of permutations.

Despite our terminology and notation focusing on permutation tests, everything in this paper
identically applies to other Monte Carlo methods such as conditional randomization tests as well, which
are also common in the causal inference literature, and have been applied to genetic settings under the
so-called model-X assumption [9, 4, 3].

There are many existing approaches considering sequential Monte-Carlo tests for multiple testing —
in particular for the BH procedure [28, 20, 41, 33, 2, 13, 14, 15, 32]. All these works can be categorized
into the following three approaches, from which only the first and third one are useful for saving
computational resources.

1. The first idea is to use early stopping rules that ensure obtaining the same decisions as applying
the multiple testing procedure to the permutation p-value pperm

B for a fixed B P N with high
probability [28, 20, 41].

2. Another line of work provides bounds for the probability of obtaining a different decision than
the limiting permutation p-value [13, 14, 15]. Here, the main goal is not to reduce the number of
permutations but to minimize the resampling risk [10].

3. As a third approach, Sandve et al. [33], Pounds et al. [32] and Bancroft et al. [2] consider applying
multiple testing procedures to the sequential permutation p-value by Besag and Clifford [7].

The problem with the third approach is that the Besag-Clifford p-value only allows to stop early for
accepting the null hypothesis because the evidence is weak, and it cannot be stopped early for rejection.
For this reason, the previous works either did not stop for rejection [2, 32] or use heuristics that do not
provide provable error control [33]. To the best of our knowledge, the only existing method allowing to
adapt the number of permutations to the number of rejections while guaranteeing FDR control, is
the AMT algorithm by Zhang et al. [41]. They fix the number of permutations B P N in advance and
consider the generation process of the test statistics as a multi-armed bandit (MAB) problem, and
their guarantee falls into the first category above.

We will follow a strategy similar to the third path, however, instead of the Besag-Clifford p-value,
we consider the anytime-valid permutation p-values recently constructed by Fischer and Ramdas [12].
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These reduce the number of permutations under both the null and the alternative, without compromising
power or type I error. With this, our approach allows to adapt the number of permutations to the
number of rejections while providing provable error control. If the used multiple testing procedure
provides the desired error control under arbitrary dependence of the p-values, our approach works with
all anytime-valid permutation p-values and allows to stop fully data-adaptively. If a specific dependence
structure is required, some care regarding the stopping time and used anytime-valid permutation
p-value needs to be taken. For brevity, we restrict to the BH procedure in this case and prove that
FDR control is guaranteed, if the limiting permutation p-values are independent, or if the limiting
permutation p-values are PRDS and we use the anytime-valid BC method. In addition, we argue
heuristically why we also do not expect the FDR to be inflated, if the limiting permutation p-values
are PRDS and we use other strategies than the anytime-valid BC method. Consequently, in contrast
to the AMT algorithm [41], our method can be applied with a large variety of p-value based multiple
testing procedures, allows to stop for rejection data-adaptively at any time and does not require a
prespecified maximum number of permutations. Furthermore, our method outperformed the AMT
algorithm significantly in all considered experiments (see Sections 5 and 6).

In Section 2, we begin with a recap of the betting approach for sequential permutation tests
by Fischer and Ramdas [12]. Afterward, we extend this methodology to multiple testing by using
α-dependent e-to-p calibration (Section 3). The proposed technique is straightforward for all p-value
based multiple testing procedures that do not require assumptions on the dependence structure. In
Section 4, we discuss what needs to be considered when applying multiple testing procedures for which
the p-values must be independent or PRDS with the example of the Benjamini-Hochberg procedure.
Finally, we demonstrate the application of the BH procedure with sequential permutation p-values to
simulated data and real neuroimaging data in Sections 5 and 6, respectively.

2 Recap: Sequential Monte-Carlo testing by betting
In this section, we recap the method by [12] on Monte Carlo testing of a single hypothesis via betting,
since this is a key module in the multiple testing methods that we return to in the following sections.

Suppose we observed some data X0 and have the ability to generate additional data X1, X2, . . .,
e.g., by permuting the treatment labels of X0 in a treatment vs. control trial. Let Yi “ T pXiq for
some test statistic T . If the same generating mechanism is used independently for each Xi, i ě 1,
then the test statistics Y1, Y2, . . . are always exchangeable conditional on Y0, which means that the
joint distribution of the sequence does not change for any finite permutation of the test statistics. We
consider testing the null hypothesis

H0 : Y0, Y1, . . . are exchangeable (2)

against the alternative

H1 : Y1, Y2, . . . are exchangeable conditional on Y0, and Y0 is stochastically larger than Y1, Y2, . . . .
(3)

Note that these hypotheses implicitly assume that we sample the permutations with replacement,
since there would be an upper bound for the number of permutations otherwise. However, this is the
usual state of affairs in practice, since remembering which permutations have already been drawn is
computationally intensive and if the data size is large, not all permutations can be drawn anyway
[36]. Thus, the standard approach to this testing problem uses Monte Carlo sampling, that is the
permutation p-value (1). In general, one would want to choose B as large as possible, since the power
increases with B. However, the computational effort can be too high for large B. In order to reduce the
computational cost in permutation testing, Besag and Clifford [7] introduced a sequential permutation
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p-value:

pBC
γph,Bq “

#

h{γph, Bq, Kγph,Bq “ h

pKγph,Bq ` 1q{pB ` 1q, otherwise,
(4)

where h is some predefined parameter, KB :“
řB

t“1 1tYt ě Y0u is the random number of “losses” after
B permutations and γph, Bq “ minpinftt P N : Kt “ hu, Bq is a stopping time. In case of B “ 8, we
just write γphq. The Besag-Clifford (BC) p-value only allows to stop at the particular time γph, Bq

and not at any other stopping time. Hence, it allows to stop early when h losses occurred before all B
permutations were sampled and therefore only saves computations under the null hypothesis, but not
when the evidence against the null is strong.

To solve this issue, Fischer and Ramdas [12] recently introduced an anytime-valid permutation test
based on a testing by betting technique [19, 34]. This makes it possible to look at the data at any
time point and then decide whether to stop and make a decision or to continue sampling based on
the evidence gathered so far. They showed that this approach is fundamental for the construction
of (sequential) permutation tests, meaning that any rank-based permutation test can be obtained by
betting. Furthermore, they were able to reduce the number of permutations compared to the classical
permutation p-value and the BC method substantially, while achieving a similar power.

Their approach works as follows. At each step t “ 1, 2, . . ., the statistician bets on the outcome of
the relative rank Rt “

řt
i“0 1tYi ě Ytu by specifying a non-negative t ` 1-dimensional betting vector

Bt. If Rt “ r, the wealth of the statistician gets multiplied by Btprq. Starting with an initial wealth of
W0 “ 1, after t rounds of gambling the wealth of the statistician is given by

Wt “

t
ź

s“1
BspRsq.

The wealth process pWtqtPN is a test martingale with respect to the filtration generated by the relative
ranks pRtqtPN, if

t`1
ÿ

r“1
Btprq “ t ` 1 pt P Nq.

By the optional stopping theorem, this implies that pWtqtPN is an anytime-valid e-value, meaning
EH0 rWτ s ď 1 for any stopping time τ . In addition, by Ville’s inequality pptqtPN, where

pt :“ 1
maxs“1,...,t Ws

, (5)

is an anytime-valid p-value, meaning PH0 ppτ ď αq ď α for all α P r0, 1s. In particular, this shows
that a hypothesis could be rejected as soon as the wealth is larger or equal than 1{α. The concrete
structure of the wealth depends on the betting strategy used.

An anytime-valid generalization of the Besag-Clifford method. The wealth of the aggressive
strategy after t permutations is given by

W agg
t “ pt ` 1q1tY1 ă Y0, . . . , Yt ă Y0u. (6)

This is the most aggressive strategy, as the wealth hits zero as soon as one of the generated test
statistic is larger or equal than the observed one. However, it also requires the least possible number
of permutations. At the stopping time γp1, Bq, the p-value of the aggressive strategy equals the
BC p-value with parameter h “ 1. Since the aggressive strategy is also valid at any stopping time
τ ă γp1, Bq, it can be seen as a generalization of the BC method for h “ 1. Fischer and Ramdas [12]

4



showed that the BC method for arbitrary h can also be generalized by their strategy, which results in
the p-value

pavBC
t “

h

t ` h ´ Kt
(7)

at time t ď γphq, if no maximum number of permutations is prespecified. For t ą γphq, we just
have pavBC

t “ pavBC
γphq

. This anytime-valid BC method might seem very simple, since pavBC
t is just the

classical BC p-value (with B “ 8) in the case that only losses occur after step t. However, we have
not seen it being explored in the literature before and it seems particularly useful in the multiple
testing setting. Note that for a fixed level α, the anytime-valid BC method is equivalent to the classical
permutation p-value for B “ rh{αs ´ 1, although it might stop earlier [35]. Hence, if the significance
level an individual hypothesis is tested at is not predefined, as it is the case in multiple testing, the
anytime-valid BC method naturally adapts the number of permutations to this data-dependent level.
This simple idea of stopping early because the decision will remain the same if we continue sampling
was previously explored for the classical permutation p-value, but not found to be very useful [21, 18].
However, it is much more efficient for the BC method. First, because it automatically adapts to the
individual significance level. Second, since usually h ! B, it is much less conservative to assume that
all permutations are losses until hitting h losses than B permutations. For example, suppose h “ 10
and B “ 999. If α “ 0.01, the anytime-valid generalizations of the BC method and the permutation
p-value are equivalent. They can both stop for accepting the null hypothesis as soon as the number of
losses equals 10 or stop for rejecting the null if the number of losses after 990 ` k permutations is k,
k P t0, 1, . . . , 9u. Now suppose α increases to 0.05. Suddenly, the anytime-valid BC method allows to
stop for rejection after 190 ` k permutations, if k losses are observed, while at least 950 permutations
would need to be sampled such that a rejection can be obtained by the permutation p-value.

The binomial mixture strategy. A more sophisticated betting strategy that particularly leads
to desirable asymptotic behavior is the binomial mixture strategy [12]. For a predefined parameter
c P r0, 1s, the wealth of the binomial mixture strategy is given by

W̄ c
t “ p1 ´ BinpKt; t ` 1, cqq{c, (8)

where BinpKt; t ` 1, cq is the CDF of a binomial distribution with size parameter t ` 1 and probability
c. Fischer and Ramdas [12] showed that

W̄ c
t |tplim “ plimu

a.s.
Ñ

#

1{c, if plim P r0, cq

0, if plim P pc, 1s
(9)

for t Ñ 8, where plim is the limiting permutation p-value plim “ lim
BÑ8

pperm
B . Therefore, if we choose

c ă α for some predefined significance level α, the binomial mixture strategy rejects almost surely
after a finite number of permutations if plim ă c. Hence, we can make the loss compared to the
limiting permutation p-value arbitrarily small by choosing c ă α arbitrarily close to α. In addition to
this desirable asymptotic behavior, an advantage of the binomial mixture strategy compared to the
Besag-Clifford method is that it automatically adapts to the difficulty of the decision. If the evidence
against the null is strong, the wealth will go fast to 1{c, and if the evidence for the null hypothesis is
strong, it will go fast to 0. Consequently, we obtain a fast decision if the data are unambiguous, but if
the decision is close, meaning the limiting permutation p-value is close to α, the binomial mixture
strategy will take its time and we can always opt to continue sampling.

In multiple testing scenarios the level of an individual hypothesis might not be predefined and
depends on the rejection or non-rejection of the other hypotheses. In the following section, we will
show how we can still use the binomial mixture strategy and all other α-dependent betting strategies
in multiple testing procedures.
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3 Multiple testing with anytime-valid permutation tests by
α-dependent p-value calibration

Suppose we have M null hypotheses H1
0 , . . . , HM

0 of the form (2) with corresponding alternatives
H1

1 , . . . , HM
1 as in (3). We denote by Y i

0 , Y i
1 , . . . the sequence of test statistics for Hi

0 and by Ki
B the

random number of losses for hypothesis Hi
0 after B permutations. Furthermore, let I0 Ď t1, . . . , Mu

be the index set of true hypotheses, R Ď t1, . . . , Mu the set of rejected hypotheses and V “ I0 X R the
set of falsely rejected hypotheses. Two of the most common error rates considered in multiple testing
are the familywise error rate (FWER) and the false discovery rate (FDR). The FWER is defined as
probability of rejecting any true null hypothesis

FWER :“ Pp|V | ą 0q. (10)

The FDR is the expected proportion of falsely rejected hypotheses among all rejections

FDR :“ E
„

|V |

|R| _ 1

ȷ

. (11)

The aim is to control either the FWER or FDR at some prespecified level α P p0, 1q. Although we focus
on FWER and FDR in this paper for concreteness, our approach also works with all other common
error metrics (FDP tail probabilities, k-FWER, etc.). Control of the FWER implies control of the
FDR [5] and is therefore more conservative. Hence, FDR controlling procedures often lead to more
rejections and are more appropriate in large-scale exploratory hypothesis testing. In non-exploratory
validation studies, FWER control is usually the norm.

Many multiple testing methods take p-values p1, . . . , pM as inputs and reject Hi
0, if pi ď αi for

some potentially data-dependent individual significance level αi P r0, 1q. Therefore, we do not know
in advance at which individual significance level the hypothesis Hi

0 will be tested at. However, most
betting strategies derived by Fischer and Ramdas [12], including the binomial mixture strategy defined
in Section 2, require the significance level as input and thus it need to be fixed in advance. In the
following, we show how this can be circumvented by calculating an anytime-valid e-value for each level
α P r0, 1s and then calibrating these into an anytime-valid p-value by taking the smallest level α at
which the corresponding e-value can reject the null hypothesis.

For each null hypothesis Hi
0 we define a strategy we would use if we test at level α1 P p0, 1q. Let

W i,α1

t be the wealth of the strategy for hypothesis Hi and level α1 after t permutations. We suppose
that for all α1

1 ă α1
2,

tW
i,α1

1
t ě 1{α1

1u Ď tW
i,α1

2
t ě 1{α1

2u. (12)

This means that if our strategy for level α1
1 rejects at level α1

1, our strategy for some larger level
α1

2 ą α1
1, needs to reject at level α1

2 as well. In particular, this is satisfied if we use for each α1 P p0, 1q

the binomial mixture strategy with parameter c “ bα1 for some constant b P p0, 1q. To see this, note
that

W̄ c
t ě 1{α1 ðñ

1 ´ BinpKt; t ` 1, bα1q

b
ě 1

and p1 ´ Binpk; t ` 1, bα1qq{b is monotone increasing in α1. In the following, we therefore also use the
parameter b instead of c to parameterize the binomial mixture strategy in an α-independent way.

We define the p-value for the i-th hypothesis at step t P N as

pi
t “ inftα P p0, 1q|Ds P t1, . . . , tu : W i,α

s ě 1{αu. (13)

For example, the anytime-valid version of the BC method (7) is the result of such an α-dependent
calibration, however, Fischer and Ramdas [12] just used this implicitly and did not write this approach
down in its general form. Note that if we use the same strategy for each α, as it is for example the
case with the aggressive strategy, then (12) is trivially satisfied and the p-value in (13) reduces to the
one in (5).
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Proposition 3.1. If (12) holds, then ppi
tqtPN in (13) is an anytime-valid p-value.

Proof. Due to Ville’s inequality and Condition (12), for every stopping time τi we have

PHi
0
ppi

τi
ď αq “ PHi

0
pDt P t1, . . . , τiu : W i,α

t ě 1{αuq ď α.

It is important to note that ppi
tqtPN is not only valid at any stopping time τi, but also at any random

time Ti which is not required to be adapted to the filtration generated by the sequential ranks for
Hi

0. This means, we can use any (data-dependent) information to stop the testing process without
violating the validity of the stopped p-value. In particular, we can stop and reject Hi

0 as soon as pi
t

is less or equal than αi for some t ě 1, or equivalently, if W i,αi

t ě 1{αi, where αi is the (possibly)
data-dependent threshold obtained by a multiple testing procedure. Nevertheless, since random and
stopping times are equivalent for anytime-valid p-values [27], we will stick to the term stopping time
in the following.

Consequently, we can choose any betting strategy from the very general class provided by (12), stop
at any time we want and then apply the multiple testing procedure to the stopped p-values. This is
the first multiple testing method for sequential permutation p-values providing such flexibility. We are
mainly interested in monotone multiple testing procedures [37]. That means, if d : r0, 1sM Ñ t0, 1uM

is the multiple testing procedure mapping the p-values to the decisions (1 “ reject; 0 “ accept), then
d should be coordinatewise nonincreasing. Hence, if some of the p-values become smaller, all previous
rejections remain and additional rejections might be obtained. A useful property of our anytime-valid
p-value ppi

tqtPN is that it is nonincreasing in time (see (13)). Together with the monotonicity of the
multiple testing procedure, this implies that as soon as pi

t can be rejected by the multiple testing
procedure, we can stop the sampling process for Hi

0 and report a rejection, since the decision would
not change if we continue sampling. Our general method is summarized in Algorithm 1. This also
shows that we do not need to evaluate W i,α

t for each α P r0, 1s in order to calculate pi
t, but to compare

pi
t with αi we can just check whether W i,αi

t ě 1{αi, saving a lot of computational effort. It should be
noted that in its most general case, error control is only provided if the multiple testing procedure
works under arbitrary dependence. This is captured in the following theorem, whose proof follows
immediately from the explanations above.

Theorem 3.2. If d is a monotone multiple testing procedure with FWER or FDR control under
arbitrary dependence of the p-values, then Algorithm 1 controls the FWER or FDR respectively at level
α.

For FWER control, the class of monotone multiple testing procedures under arbitrary dependence
includes all Bonferroni-based procedures such as the Bonferroni-Holm [25], the sequentially rejective
graphical multiple testing procedure [8] and the fixed sequence method [30]. For FDR control, the
Benjamini-Yekuteli (BY) procedure [6] is most common. In order to control the desired error rate
under arbitrary dependence, the procedures usually need to protect against the worst case distribution.
Therefore, improvements can be derived under additional assumptions. A typical assumption is
positive regression dependence on a subset (PRDS), under which Hochbergs’s [24] and Hommel’s [26]
procedure provide uniform improvements of Holm’s procedure and the famous Benjamini-Hochberg
(BH) procedure uniformly improves BY. However, if PRDS is required, caution with respect to the
choice of betting strategy and stopping time needs to be taken. We address this in the next section by
the example of the BH procedure.

7



Algorithm 1 General sequential multiple testing with α-dependent p-value calibration
Input: Overall significance level α, wealth strategies W i,α1

t that satisfy (12), monotone p-value
based multiple testing procedure d, data-dependent stopping rules Si and sequences of test statistics
Y i

0 , Y i
1 , . . ., i P t1, . . . , Mu.

Output: Stopping times τ1, . . . , τM and rejection set R.
1: A “ t1, . . . , Mu

2: R “ H

3: for t “ 1, 2, . . . do
4: for i P A do
5: Check whether W i,αi

t ě 1{αi, where αi is the potentially data dependent significance level
6: obtained by multiple testing procedure d.
7: if W i,αi

t ě 1{αi then
8: R “ R Y tiu
9: A “ Aztiu

10: τi “ t
11: end if
12: if Sipdataq “ stop then
13: A “ Aztiu
14: τi “ t
15: end if
16: end for
17: if A “ H then
18: return τ1, . . . , τM , R
19: end if
20: end for

4 The Benjamini-Hochberg procedure with anytime-valid per-
mutation p-values

The Benjamini-Hochberg (BH) procedure [5] rejects all hypotheses Hi
0 with p-value pi ď m˚α{M ,

where

m˚ “ max
#

m P t1, . . . , Mu :
M
ÿ

i“1
1tpi ď mα{Mu ě m

+

(14)

with the convention maxpHq “ 0. In the following we write m˚
t for the BH threshold at time t P N

when the p-values in (14) are replaced by anytime-valid p-values at time t. The BH procedure controls
the FDR when the p-values are positive regression dependent on a subset (PRDS). In order to define
PRDS we need the notion of an increasing set. A set D Ď RM is increasing, if z P D implies y P D for
all y ě z.

Property 1 (PRDS [6, 11]). A random vector of p-values p is weekly PRDS on I0 if for any null
index i P I0 and increasing set D Ď RM , the function x ÞÑ Ppp P D | pi ď xq is nondecreasing in x for
any x P R. We call p strongly PRDS on I0, if “pi ď x” is replaced with “pi “ x”.

Strong PRDS implies weak PRDS, but for controlling the FDR with the BH procedure, weak PRDS
on I0 is sufficient [11]. When we just write PRDS in the remainder of this paper, we always mean
weak PRDS. For example, the PRDS condition holds when the null p-values are independent from
each other and the non-nulls. However, it also holds when there is some kind of positive dependence,
which is an appropriate assumption in many trials. To guarantee FDR control by applying the BH
procedure to our anytime-valid p-values, we need to ensure that our stopped p-values are PRDS. In
the following we discuss when this is a reasonable assumption.
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4.1 Stopping early for rejection
When PRDS is required, one needs to be careful with choosing the stopping time, as it could possibly
induce some kind of negative dependence. For example, suppose we stop sampling for hypothesis Hi

0
as soon as pi

t ď m˚
t α{M . The smaller the other p-values, the sooner we could stop, which potentially

induces some negative dependence between the p-values, even if the data used for calculating the
different p-values is independent. However, the following proposition shows that stopping early for
rejection with the BH procedure cannot inflate the FDR, which is very important as it allows to adapt
the number of permutations to the number of rejections.

Theorem 4.1. Let τ 1
i be a stopping time for each i P t1, . . . , Mu such that the stopped anytime-valid

p-values p1
τ 1

1
, . . . , pM

τ 1
M

are PRDS and define

τi “ inftt ě 1 : τ 1
i “ t _ pi

t ď m˚
t α{Mu. (15)

Then the BH procedure applied on p1
τ1

, . . . , pM
τM

rejects the same hypotheses as if applied on p1
τ 1

1
, . . . , pM

τ 1
M

and therefore controls the FDR.

Proof. Note that pi
t, i P t1, . . . , Mu, is nonincreasing and m˚

t is nondecreasing in t. Hence, if
pi

t ď m˚
t α{M for some t P N, then pi

s ď m˚
s α{M for all s ě t.

In the following subsections, we discuss how to choose the stopping times τ 1
1, . . . , τ 1

M in Theorem
4.1 such that the p-values p1

τ 1
1
, . . . , pM

τ 1
M

are PRDS.

4.2 Stopping early for futility with independent p-values
We differentiate between two different stops; stop for rejection and stop for futility. By stop for futility,
we mean that we stop early because it is unlikely that we would reject the hypothesis if we continue
sampling. Thus, provided that the wealth of the used strategy is nonincreasing in the number of losses,
one could write a stop for futility quite generally as

τ 1
i “ inftt ě 1 : Ki

t ą zi
tu, (16)

where the parameters zi
t can either be constant or dependent on the number of losses of the other

hypotheses based on the multiple testing procedure used. For example, the stopping time of the
Besag-Clifford method γiph, Bq is obtained by zi

1 “ . . . “ zi
B´1 “ h ´ 1 and zB “ ´1. A stop for

futility in combination with a stop for rejection includes most reasonable stopping times. Theorem 4.1
shows that stopping for rejection is never a problem. Therefore, it remains to show that stopping for
futility does not violate the PRDS condition as well. One obvious sufficient condition is if the data
for different hypotheses is independent and the stopping time τ 1

i only depends on the data for the
corresponding hypothesis Hi

0, which is, for example, the case if the zi
t in (16) are constants. This is

captured in the following proposition.

Proposition 4.2. Suppose we generate the permuted samples independently for all hypotheses and
the vector of limiting p-values plim is independent on I0. Furthermore, for each i P t1, . . . , Mu,
let the stopping time τ 1

i be given by τ 1
i “ inftt P N : Ki

t ą zi
tu, where zi

t are constant parameters.
Then the stopped p-values pτ 1 “ pp1

τ 1
1
, . . . , pM

τ 1
M

q are independent on I0. In particular, applying BH to
pτ “ pp1

τ1
, . . . , pM

τM
q, where τi is defined as in (15), controls the FDR.

Proof. Due to De Finetti’s theorem Ki
t , i P t1, . . . , Mu and t ě 1, follows a mixture binomial

distribution with size parameter t and random probability pi
lim. Since plim is independent on I0, pτ 1 is

independent on I0 as well.

9



4.3 Stopping early for futility with PRDS p-values
If there is some positive dependence between the data for the different hypotheses, proving PRDS
for the anytime-valid p-values becomes more difficult. The reason for this is that pi

t is not only a
function of the losses at step t, but might depend on the losses of all previous steps Ki

1, . . . , Ki
t . This

can lead to situations in which a larger p-value pi
t yields more evidence against a large pi

lim, which
makes it hard to use that plim is PRDS for proving that pt is PRDS. To illustrate this, consider
a simple example in which for some x ă x˚: pi

3 ď x is equivalent to Ki
1 ď 0 Y Ki

2 ď 0 Y Ki
3 ď 0,

which reduces to Ki
1 ď 0, and pi

3 ď x˚ is equivalent to Ki
1 ď 0 Y Ki

2 ď 0 Y Ki
3 ď 1, which reduces

to Ki
1 ď 0 Y Ki

3 ď 1. Recall that Ki
t follows a binomial distribution with size parameter t and

random probability pi
lim. With this, under the assumption that pi

lim follows a uniform distribution,
one can check that Pppi

lim ą 0.9 | Ki
1 ď 0q “ 0.01 ą 0.0091 “ Pppi

lim ą 0.9 | Ki
1 ď 0 Y Ki

3 ď 1q. To
understand why this is the case, note that Ki

1 ď 0 yields the following set of possible loss sequences
tp0, 1, 1q, p0, 0, 1q, p0, 1, 0q, p0, 0, 0qu, while Ki

1 ď 0 Y Ki
3 ď 1 only adds p0, 0, 1q to this set. For this

reason, Ki
1 ď 0 Y Ki

3 ď 1 provides more evidence against small values for pi
lim, but also more evidence

against very large values of pi
lim. Therefore, pi

lim is not PRDS on pi
t in general.

Nevertheless, we expect the effect from the above phenomenon, that larger bounds for the number
of losses can lead to a lower probability for very large values of the limiting permutation p-value, to
be very minor and not inflating the FDR. If we choose a betting strategy with nonincreasing wealth
in the number of losses and the zi

t in (16) are constant, then the stopped anytime-valid p-values pi
τ 1

i
,

i P t1, . . . , Mu, are coordinatewise nondecreasing and nonrandom functions of the number of losses
pKi

tqtPN. Due to De Finetti’s theorem, plim being PRDS implies that pK1
t , . . . , KM

t q is PRDS for
any t P N. Hence, in this case p1

τ1
, . . . , pM

τM
potentially have some kind of positive association as well

and therefore we argue that it is reasonable to replace the classical permutation p-values with our
anytime-valid ones in the BH procedure. Even if the zi

t depend in a nonincreasing way on the losses
of the other hypotheses, we do not see any reason why this should hurt the PRDS of the stopped
p-values. Since we can additionally stop for rejection (Theorem 4.1), this provides a large class of
possible betting strategies and stopping times. Fischer and Ramdas [12] proposed to stop for futility if
the wealth drops below α. This can easily be transferred to a condition of the form (16) with constant
parameters zi

t. In the multiple testing case the level an individual hypothesis is tested at is not fixed
in advance. For this reason, we propose to stop sampling for Hi

0 at time t, if W
i,αmax

t
t ă αmax

t , where
αmax

t :“ αp|At| ` m˚
t q{M and At is the index set of hypotheses for which the testing process did not

stop before step t. Hence, αmax
t can be interpreted as the maximum level a hypothesis will be tested

at by the BH procedure according to the information up to step t. When using the binomial mixture
strategy, the combined stopping time of this stop for futility with a stop for rejection is almost surely
finite if pi

lim is continuously distributed (see (9)). The detailed algorithm of the entire BH procedure
using the binomial mixture strategy is illustrated in Appendix C. Of course, this is only one possible
stop for futility and there are many other reasonable choices. For example, in situations where the
sampling process takes several weeks or months it would also be possible to choose the stopping time
interactively, meaning to revisit the data at some point and decide for which hypotheses to continue
sampling based on the study interests and the evidence gathered so far.

We believe that for most applications this heuristic argumentation should be reasonable enough to
replace the classical permutation p-values with our sequential ones in the BH procedure. Note that
the PRDS of the classical permutation p-values cannot usually be checked in practice either and is
just assumed if there is no explicit evidence against this. However, if this heuristic argumentation for
PRDS of the stopped p-values is not allowed, one could still use the anytime-valid version of the BC
method (7) with its incorporated stop for futility γphq as shown by the next proposition.

Proposition 4.3. Suppose we generate the permuted samples independently for all hypotheses and
the vector of limiting p-values plim is strongly PRDS on I0. Then the anytime-valid BC p-values
pavBC

γphq
“ ppavBC,1

γ1phq
, . . . , pavBC,M

γM phq
q, where γiphq “ inftt ě 1 : Ki

t “ hu, are weakly PRDS on I0. In
particular, applying BH to pavBC

τ “ ppavBC,1
τ1

, . . . , pavBC,M
τM

q, where τi is defined as in (15) for τ 1
i “ γiphq,
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controls the FDR.

The proof can be found in the appendix.

5 Simulated experiments
In this section, we aim to characterize the behavior of applying the BH procedure with the proposed
sequential permutation p-values using simulated data. We consider an independent Gaussian mean
multiple testing problem. That means, each hypothesis is given by Hi

0 : ErY i
0 s “ 0, i P t1, . . . , Mu,

where Y i
0 follows a standard normal distribution under the null hypothesis and a shifted standard

normal distribution with mean µA under the alternative. The probability for a hypothesis being false
was set to πA P r0, 1s and the generated test statistics Y i

1 , . . . , Y i
B were sampled from Np0, 1q. Note

that this matches the setting described in Section 2.

5.1 Power and average number of permutations
First, we evaluate the power and average number of permutations per hypothesis using the aggressive
strategy (6), the anytime-valid generalization of the BC method with h “ 10 (7), the binomial mixture
strategy (8) with b “ 0.9, the AMT algorithm by Zhang et al. [41] with δ “ 0.01 and the classic
permutation p-value (1). The early stops for our sequential methods were chosen as described in
Section 4, but all methods were stopped after a maximum number of B “ 10 000 permutations. In
addition to applying the classical permutation p-value for B “ 10 000, we also evaluated it for B “ 200
as a reference. It should be noted that the AMT algorithm was applied at an overall level of α ´ δ
such that FDR control at level α is provided [41].

The results in Figure 1 were obtained by averaging over 10 independently simulated trials. Similarly
as in [41], we set the standard values of the simulation parameters to πA “ 0.4, µA “ 2.5, α “ 0.1 and
M “ 1000, while one of them was varied in each of the plots. It can be seen that the anytime-valid
BC method and binomial mixture strategy lead to a similar power as the classical permutation p-value
for B “ 10 000 permutations, while being able to reduce the number of permutations by orders of
magnitude. The anytime-valid BC method performs slightly better than the binomial mixture one,
however, the binomial mixture strategy provides more flexibility with respect to the stopping time and
one could, for example, continue sampling for the hypotheses where the data looks promising but did
not lead to a rejection after the first 10 000 permutations. In addition, it has advantages with respect
to early reporting of rejections as described in the next section. When the number of permutations
of the classical permutation p-value is reduced to 200, the power reduces substantially, particularly
if the proportion of false hypotheses, strength of the alternative or significance level is small. Since
the anytime-valid BC and binomial mixture method also need approximately 200 permutations on
average, this shows that the performance of these sequential methods cannot be accomplished by the
permutation p-value with a fixed number of permutations. The AMT algorithm was outperformed by
the anytime-valid BC method and the binomial mixture strategy in terms of power and number of
permutations in all considered scenarios. The use of the aggressive strategy can be reasonable when the
main goal is to reduce the number of permutations, while a power loss is acceptable. It should be noted
that the behavior of the methods does not change much with the number of hypotheses, since the other
parameters remain fixed, which implies that m˚

t {M , and thus the significance level of BH procedure,
remain approximately constant. Lastly, we would like to highlight that the results for all these different
constellations of the simulation parameters were obtained with the same hyperparameters for the
sequential methods, which thus seem to be universally applicable choices.

5.2 Early reporting of decisions
In the previous subsection, we have shown that a lot of permutations can be saved by our sequential
strategies, while the power remains similar to the classical permutation p-value. However, reducing the
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Figure 1: Power and average number of permutations per hypothesis for varying simulation parameters
obtained by applying the BH procedure to different (sequential) permutation strategies. The anytime-
valid BC method and the binomial mixture strategy lead to marginally less power than the classical
permutation p-value, while reducing the number of permutations by orders of magnitude.
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total number of permutations is not the only way of increasing efficiency with sequential permutation
tests. We can also report already made decisions, and particularly rejections, before the entire process
has stopped. This might not be important if the entire procedure only takes some hours or one day to
run. However, in large-scale trials generating all required permutations and performing the tests can
take up to several months or even longer. This can slow down the research process, as the results are
crucial for writing a scientific paper or identifying follow up work. Therefore, it would be very helpful
to be able to already report the unambiguous decisions at an earlier stage of the process. Note that
this is not possible with the AMT algorithm by Zhang et al. [41], since no decisions can be obtained
until the entire process has finished.

In Figure 2 we show the distribution of the rejection times in an arbitrary simulation run using
the anytime-valid BC and the binomial mixture strategy in the standard setting described in Section
5.1. In this case, the binomial mixture strategy rejected 305 and the anytime-valid BC method 304
hypotheses, while the former needed a mean number of 459 and the latter of 328 permutations to
obtain a rejection. However, the distribution of the stopping times looks very different. More than
50% of the rejections made by the binomial mixture strategy were obtained after 147 permutations
and more than 75% after less than 180 permutations, while the rest is distributed quite broadly up to
10 000 permutations. In contrast, all rejections by the anytime-valid BC procedure were made at time
328 such that the entire process was stopped at that time. Basically, this is because for a fixed level
α the rejections made by the anytime-valid BC procedure are not obtained in a sequential manner,
but we can just reject all hypotheses with Ktα ď h ´ 1, where tα “ rh{αs ´ 1 (see Section 2). Hence,
with the BH procedure we sample until there is a m˚ P t1, . . . , Mu such that Ktαm˚{M

ď h ´ 1 for at
least m˚ hypotheses. Since Ktαm˚{M

ď h ´ 1 for all hypotheses that have not been stopped for futility
yet, we can stop the entire process and reject all the remaining hypotheses. However, if the sampling
process is stopped before reaching the time tαm˚{M such that Ktαm˚{M

ď h ´ 1 for m˚ hypotheses
(in our example time 328), the anytime-valid BC method would not reject any hypothesis, while the
binomial mixture strategy could have already achieved a lot of rejections. Consequently, while the
anytime-valid BC method needed less permutations in total, the binomial mixture strategy would be
more useful if early reporting of the rejections is desired, since the majority of decisions is obtained
much faster. In practice, the binomial mixture strategy could be used to start interpreting the results
while keeping to generate further permutations in order to increase the total number of discoveries.
Indeed, if the data for some of the undecided hypotheses looks promising, sampling could be continued
after the first 10 000 permutations to possibly make even more rejections. In this case, one could also
consider increasing the precision of the binomial mixture strategy by choosing the parameter b closer
to 1, since a larger average number of permutations might be acceptable when the majority of decisions
is obtained fast.

6 Real data analysis
Henderson et al. [23] evaluated the neural responses in the higher visual cortex to natural scene images
using fMRI data from the Natural Scenes Dataset [1]. For each considered voxel in each of the eight
participants, resulting in a total number of more than 150 000 voxels, they modeled the voxel response
by texture statistics [31] in a ridge regression, where the regularization parameter was obtained by
cross-validation. To evaluate model accuracy, they calculated the coefficient of determination R2 on a
held-out validation set and accessed significance using a permutation test. For this, they permuted
the image labels in the training and validation data and performed the entire fitting and evaluation
process for each of these permuted datasets. The final decisions were obtained by applying the BH
procedure to the classical permutation p-values at level α “ 0.01.

Due to the large number of hypotheses and refitting step for each permutation, this problem requires
an enormous computational effort. Henderson et al. [23] drew 1000 permutations for each hypothesis
and made the resulting R2 publicly available at https://osf.io/8fsnx/, which we also use in our
analysis. Note that 1000 permutations is very low for testing such a large number of hypotheses
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Figure 2: Distribution of the rejection times obtained by the anytime-valid BC and the binomial mixture
strategy in a standard simulation run according to Section 5.1. All discoveries by the anytime-valid
BC method were made at time 328, while the binomial mixture strategy made more than 75% of the
rejections after less than 180 permutations but needed more time on average.

at level α “ 0.01, but it worked out since there were many very small p-values. The proportion of
rejections and average number of permutations per hypothesis obtained by the different strategies are
illustrated in Table 1. We applied the anytime-valid BC method and the binomial mixture strategy
with parameters h “ 3 and b “ 0.6, respectively, to keep the number of permutations low and stopped
at the latest when all 1000 permutations were drawn. For the AMT algorithm [41] we changed δ to
0.001 due to the lower α in this case.

Table 1: Proportion of rejected hypotheses and average number of permutations per hypothesis
obtained by different methods applied on fMRI data.

Method Proportion of rejections (%) Number of permutations
Permutation p-value 62.8 1000
Anytime-valid BC 62.7 411
Aggressive strategy 61.9 138

Binomial mixture strategy 62.2 245
AMT algorithm [41] 62.3 687

The results show that, although Henderson et al. [23] have already chosen a rather low number
of permutations, our sequential methods were able to further reduce it significantly while rejecting
a similar amount of hypotheses. Also note that the binomial mixture strategy could have continued
sampling for hypotheses where the data looks promising after generating the first 1000 permutations to
possibly obtain further rejections. Moreover, Henderson et al. [23] were lucky that their risky approach
of sampling just 1000 permutations worked out and the brain regions showed the expected response. If
the proportion of low p-values was smaller, e.g., if less than 10% of the p-values were smaller than
α, then no hypothesis could have been rejected no matter how strong the evidence was. In contrast,
our sequential strategies with parameters h “ 3 and b “ 0.6 would still have reasonable power, but
might have sampled more than 1000 permutations. Note that in this case the AMT algorithm (for a
maximum number of B “ 1000 permutations) would be powerless as well.
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7 Conclusion
There are several advantages of using the proposed sequential permutation p-values in large-scale
multiple testing problems:

1. They automatically adapt the number of permutations to the number of rejections and thus the
proportion of false hypotheses and strengths of the alternatives. For this reason, there is no need
to adapt the parameter choice to the unknown data generating process. We found h “ 10 for
the anytime-valid BC method and b “ 0.9 for the binomial mixture strategy to be universally
applicable. Depending on whether the main focus lies in increasing precision or reducing the
number of permutations, h and b could also be chosen larger or smaller, respectively.

2. Due to their ability to adapt to the actual significance level obtained by the multiple testing
procedure and stopping early as soon as a decision can be made, they reduce the required number
of permutations by orders of magnitude. In particular, simulations showed that there is no
fixed number of permutations such that the classical permutation p-value performs similar as
the sequential permutation p-values. The anytime-valid version of the Besag-Clifford method
performed best in terms of power and required number of permutations.

3. They allow to report decisions early such that one can start with writing a paper or identifying
follow up work before the entire testing process is finished. In particular, the binomial mixture
strategy was found to be useful for such a proceeding.

4. During computing times of several months or more, the initial goals and ideas might change
based on external information or the data observed so far. The sequential permutation tests
allow to adapt the stopping time and even the betting strategy interactively based on the data.
It should be noted that the betting strategy can only be changed for the upcoming permutations
and not for the permutations that have already been observed.

In this paper, we showed how anytime-valid permutation tests can be used with p-value based
multiple testing procedures. Another type of multiple testing procedures does not rely on individual
p-values and explicitly uses the permutation tests to adapt to the unknown dependence structure of
the data. This includes the famous MaxT approach for FWER control by Westfall & Young [40],
which is particularly powerful when there is a large positive correlation between the test statistics.
In Appendix A, we derive sequential versions of such permutation based multiple testing procedures
for FWER and simultaneous FDP control. These permutation based multiple testing procedures are
based on the closure principle [29] and therefore only consist of tests at level α, which reduces the
need for sequential permutation tests. Still, we believe that these can be useful in certain applications.
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A Sequential permutation based multiple testing procedures
We consider the same setting as in Section 3. However, instead of defining the p-values as in (13), we
construct a level-α permutation test ϕI for each intersection hypothesis HI

0 “
Ş

iPi Hi
0, I Ď t1, . . . , Mu,

and then use the closure principle to obtain decisions for individual hypotheses. There are two versions
of the closure principle. The initial version was proposed by Marcus et al. [29] who showed that the
rejection set defined by

R “ ti P t1, . . . , Mu : ϕI “ 1 for all I with i P Iu (17)

controls the FWER. However, Goeman and Solari [17] showed that the closure principle can also be
used for simultaneous true discovery control. In particular, they proved that

PpdpSq ď |S X I1| for all S Ď t1, . . . , Muq ě 1 ´ α,

where dpSq :“ mint|SzI| : I Ď N, ϕI “ 0u and I1 “ t1, . . . , MuzI0. In an earlier paper, Genovese and
Wasserman [16] proposed an equivalent approach without using the closure principle.

Most permutation based multiple testing procedures are based on choosing some combination
function CI for each I Ď M , defining the intersection tests ϕI by the classical permutation p-value
applied on CIppY i

0 qiPIq, CIppY i
1 qiPIq, . . . , CIppY i

BqiPIq and then applying the closure principle with the
intersection tests ϕI . To make sure that the ϕI are indeed level-α tests such that this yields a valid
procedure, the following assumption is usually made.

Assumption 1. The vectors of test statistics corresponding to true hypotheses pY i
0 qiPI0 , pY i

1 qiPI0 , . . . ,
are jointly exchangeable.

This general approach encompasses many existing permutation based multiple testing methods.
For example, the MaxT approach for FWER control [40] is obtained by CIppY i

j qiPIq “ maxiPI Y i
j .

Vesely et al. [39] focus on procedures providing true discovery control with CIppY i
j qiPIq “

ř

iPI Y i
j .

Furthermore, the method by Hemerik and Goeman [22], which uniformly improves the popular
significance analysis of microarrays (SAM) procedure [38], is obtained by CIppY i

j qiPIq “ #ti P I : Y i
j P

Diu for some prespecified sets Di.
It is straightforward to derive sequential versions of these multiple testing methods by replacing

the classical permutation tests ϕI by the anytime-valid ones introduced in Section 2. We summarized
this general approach in Algorithm 2.

For a large number of hypotheses M this general approach is computationally infeasible. For this
reason, short cuts have been proposed for specific choices of the combination function CI [40, 22, 39].
In case of the MaxT approach, the entire closed test can be performed with a maximum number of M
intersection tests [40]. It might be the case that using these short cuts only works for specific betting
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Algorithm 2 Sequential permutation based multiple testing with the closure principle
Input: Combination functions CI , I Ď N, and sequences of test statistics Y i

0 , Y i
1 , . . ., i P t1, . . . , Mu.

Optional output: Rejection set R for FWER control or function d for simultaneous FDP control.
1: for I Ď t1, . . . , Mu do
2: Test HI

0 by applying a level-α anytime-valid permutation test ϕI to CIppY i
0 qiPIq, CIppY i

1 qiPIq, . . . .
3: end for
4: R “ ti P t1, . . . , Mu : ϕI “ 1 for all I with i P Iu

5: dpSq “ mint|SzI| : I Ď t1, . . . , Mu, ϕI “ 0u for all S Ď t1, . . . , Mu

6: return R, d

strategies. For example, the MaxT short cut can be used with all betting strategies with nonincreasing
wealth for an increasing number of losses. The detailed procedure for applying the MaxT approach
with the binomial mixture strategy is provided in Algorithm 3.

B Omitted proofs
Lemma B.1. Let Y , Z and X be real valued random variables on pΩ, A, Pq. If Y is weakly PRDS on
X, Z strongly PRDS on Y , and Z and X independent conditional on Y , then Z is weakly PRDS on
X.

Proof. Let D be an increasing set and x˚ ě x, then

PpZ P D | X ď xq “ EY |XďxrPpZ P D | Y, X ď xqs

“ EY |XďxrPpZ P D | Y qs

“

ż

Ω
PpZ P D | Y “ yqdFY |Xďxpyq

ď

ż

Ω
PpZ P D | Y “ yqdFY |Xďx˚ pyq

“ PpZ P D | X ď x˚q,

where the inequality follows from the fact that P pZ P D | Y “ yq is increasing in y and FY |Xďx˚ pyq ď

FY |Xďxpyq for all y.

Proof of Proposition 4.3. Let x, x˚ P r0, 1s with x˚ ě x, D Ď r0, 1sM be an increasing set and i P I0 be
arbitrary but fixed. In the following, we just write p and pi instead of pavBC and pavBC,i, respectively.
We want to show that

Ppp´i
γphq

P D | pi
γiphq ď xq ď Ppp´i

γphq
P D | pi

γiphq ď x˚q,

where p´i
γphq

“ pp1
γ1phq

, . . . , pi´1
γi´1phq

, pi`1
γi`1phq

, . . . , pM
γM phq

q. The proof mainly consists of showing the
following two claims.

1. pi
lim is weakly PRDS on pi

γiphq
.

2. p´i
γphq

is strongly PRDS on plim.

Since we assumed that plim is strongly PRDS on I0, the first claim and Lemma B.1 imply that plim
is weakly PRDS on pi

γiphq
. Together with the second claim and the fact that p´i

γphq
is independent of

pi
γiphq

conditional on plim (since we sample independently for all hypotheses), the final proposition
follows by Lemma B.1.

19



We start with proving the first claim. Note that pi
γiphq

ď x iff Ktx
ď h ´ 1, where tx “ rh{xs ´ 1.

With this and the fact that Ki
tx

|pi
lim “ p follows a binomial distribution with size parameter tx and

probability p, we obtain

Pppi
lim ď p˚ | pi

γiphq ď xq “

şp˚

0 Pppi
γiphq

ď x | pi
lim “ pq dp

ş1
0 Pppi

γiphq
ď x | pi

lim “ pq dp

“

řh´1
k“0

`

tx

k

˘ şp˚

0 pkp1 ´ pqtx´k dp
řh´1

k“0
`

tx

k

˘ ş1
0 pkp1 ´ pqtx´k dp

“

řh´1
k“0p1 ´ Binpk; tx ` 1, p˚qq

h
,

where Binpk; tx `1, p˚q is the CDF of a binomial distribution with size parameter tx `1 and probability
p˚. Since tx is decreasing in x, Pppi

lim ď p˚ | pi
γiphq

ď xq is decreasing in x as well.
For the second claim, note that pj

γj phq
is independent of p´j

lim and p´j
γphq

conditional on pj
lim for

all j P t1, . . . , Mu. Therefore, it only remains to show that pj
γj phq

is strongly PRDS on pj
lim. Since

Kj
tu

|pj
lim “ p follows a binomial distribution with probability p, it is immediately implied by the fact

that the CDF of a binomial distribution is decreasing in its probability parameter.

C Detailed algorithms
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Algorithm 3 Sequential MaxT approach with the binomial mixture strategy
Input: Significance level α P p0, 1q, parameter c P p0, αq for the binomial mixture strategy with

uniform prior uc, ordered test statistics Y 1
0 ě ... ě Y M

0 and sequences of generated test statistics
Y 1

1 , Y 1
2 , . . ., Y 2

1 , Y 2
2 , . . ., . . ., Y M

1 , Y M
2 , . . . .

Output: Stopping times τ1, . . . , τM and index set of rejections R Ď t1, . . . , Mu.
1: τ i “ 8 for all i P t1, . . . , Mu

2: ki “ 0 for all i P t1, . . . , Mu

3: R “ H

4: A “ t1, . . . , Mu

5: for t “ 1, 2, ... do
6: for i P A do
7: if maxtY j

t : j P ti, . . . , Muu ě maxtY j
0 : j P ti, . . . , Muu then

8: ki “ ki ` 1
9: if p1 ´ Binpki; t ` 1, cqq{c ă α then

10: τi “ minpτi, tq

11:
...

12: τM “ minpτM , tq
13: A “ Azti, . . . , Mu

14: R “ Rzti, . . . , Mu

15: end if
16: else if p1 ´ Binpki; t ` 1, cqq{c ě 1{α then
17: τi “ t
18: R “ R Y tiu
19: A “ Aztiu
20: end if
21: end for
22: if A “ H then
23: return τ , R
24: end if
25: end for
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Algorithm 4 Sequential BH procedure based on the binomial mixture strategy
Input: Significance level α P p0, 1q, parameter b P p0, 1q for the binomial mixture strategy and

sequences of generated test statistics Y 1
0 , Y 1

1 , . . ., Y 2
0 , Y 2

1 , . . ., . . ., Y M
0 , Y M

1 , . . . .
Output: Stopping times τ1, . . . , τM and index set of rejections R Ď t1, . . . , Mu.

1: m˚ “ 0
2: ri,j “ 0 for all i, j P t1, . . . , Mu

3: ki “ 0 for all i P t1, . . . , Mu

4: criti “ 0 for all i P t1, . . . , Mu

5: A “ t1, . . . , Mu

6: for t “ 1, 2, ... do
7: for j “ 1, . . . , M do
8: critj “ pBinq´1p1 ´ b; t ` 1, bαj{Mq ´ 1
9: end for

10: for i P A do
11: if Y i

t ě Y i
0 then

12: ki “ ki ` 1
13: end if
14: for j “ 1, . . . , M do
15: if ki ď critj then
16: ri,j “ 1
17: end if
18: end for
19: end for
20: m˚ “ maxtm P t1, . . . , Mu :

řm
i“1 ri,m ě mu

21: for i P A do
22: if ri,m˚ “ 1 then
23: R “ R Y tiu
24: τi “ t
25: A “ Aztiu
26: end if
27: if 1 ´ Binpki; t ` 1, bαp|A| ` m˚q{Mq ă brαp|A| ` m˚q{M s2 then
28: τi “ t
29: A “ Aztiu
30: end if
31: end for
32: if A “ H then
33: return τ1, . . . , τM , R
34: end if
35: end for
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