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TORIC WEDGE INDUCTION AND TORIC LIFTING PROPERTY FOR

PIECEWISE LINEAR SPHERES WITH A FEW VERTICES

SUYOUNG CHOI, HYEONTAE JANG, AND MATHIEU VALLÉE

Abstract. Let K be an (n− 1)-dimensional piecewise linear sphere on [m], where m ≤ n+ 4.
There are a canonical action of m-dimensional torus Tm on the moment-angle complex ZK , and
a canonical action of Zm

2 on the real moment-angle complex RZK , where Z2 is the additive group
with two elements. We prove that any subgroup of Zm

2 acting freely on RZK is induced by a
subtorus of Tm acting freely on ZK . The proof primarily utilizes a suitably modified method of
toric wedge induction and the combinatorial structure of a specific binary matroid of rank 4.

Contents

1. Introduction 1
2. The case r ≤ 3 3
3. The case r = 4 : Preliminaries 3
3.1. Characteristic and dual characteristic maps 3
3.2. Wedge operations 5
4. Toric wedge induction 7
4.1. Toric wedge induction and its modification 7
4.2. Modified Toric wedge induction in terms of dual characteristic maps 9
5. Proof of the main theorem 11
6. The basis step 12
References 15

1. Introduction

Let K be a simplicial complex on the set [m] = {1, . . . ,m}. We define the polyhedral product
(X,Y )K of K with respect to a pair (X,Y ) of topological spaces as follows:

(X,Y )K :=
⋃

σ∈K

{(x1, . . . , xm) ∈ Xm | xi ∈ Y when i /∈ σ} .

Here, Dd represents the d-dimensional disk, defined as Dd = {x ∈ Rd | ‖x‖ ≤ 1}, and Sd−1

denotes its boundary sphere of dimension d − 1. The moment-angle complex ZK of K is then
defined as (D2, S1)K , and the real moment-angle complex RZK of K is (D1, S0)K . We observe
that the T 1-action on the pair (D2, S1) leads to the canonical action of the m-dimensional torus
Tm = (S1)m on ZK . Additionally, there is an S0-action on the pair (D1, S0). For clarity
and consistency in our terminology throughout this paper, we treat S0 as the additive group
Z2 = Z/2Z with two elements {0, 1}. This, then, yields the canonical Zm

2 -action on RZK .
It is noteworthy that when an r-dimensional subtorus H of Tm acts freely on ZK , the resulting

quotient space ZK/H admits a well-behaved torus action Tm/H ∼= Tm−r with an orbit space that
exhibits a reverse face structure isomorphic to K. Such spaces are commonly referred to as toric
spaces or (partial) quotients, and are fundamental in the study of toric topology. Consequently,
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understanding which subtori H of Tm can act freely on ZK is of significant importance. The
Buchstaber number s(K) is the maximal integer r for which there exists a subtorus of rank r
acting freely on ZK . Similarly, taking a subgroup H of Zm

2 freely acting on RZK yields the
quotient space RZK/H which is referred to as a real toric space or a real (partial) quotient. The
real Buchstaber number sR(K) is similarly defined by the existence of a subgroup acting freely on
RZK . The determination of (real) Buchstaber numbers is challenging. We refer to the following
publications for details: [4], [17], [15], [2], and [20].

It is known that the real moment-angle complex RZK is the fixed point set by the involution
on ZK induced by the complex conjugation on D2 ⊂ C. This implies that a Tm-action on ZK

induces a Zm
2 -action on RZK , and then d-dimensional subtorus of Tm acting freely on ZK induces

a rank d subgroup of Zm
2 acting freely on RZK. Thus, we obtain the inequality s(K) ≤ sR(K),

and Ayzenberg [1] noted that the equality does not generally hold; specifically, there exists a
simplicial complex whose real Buchstaber number is strictly bigger than its Buchstaber number.

From now on, we zero in on the case when K is a PL sphere, since in this case, all toric spaces
over K are PL manifolds [5]. IfK is (n−1)-dimensional, we have the inequalities s(K) ≤ sR(K) ≤
m− n. Given the condition s(K) = m− n, which is a special case often encountered in various
fields of mathematics, the manifold ZK/H for a maximal subtorus H ⊂ Tm freely acting on ZK

is termed a topological toric manifold [19] when K is star-shaped. If K is polytopal, the manifold
is referred to as a quasitoric manifold [13]1. Similarly, given the condition sR(K) = m − n, the
manifold RZK/H for a maximal subgroup H freely acting on RZK is called a real topological
toric manifold when K is star-shaped, and it is called a small cover when K is polytopal. These
are real analogs of topological toric and quasitoric manifolds, respectively.

In the class of PL spheres, no examples have been known where s(K) < sR(K). In light of this
observation, one may ask whether s(K) = sR(K) for a PL sphere K, and the following stronger
question can be considered.

Problem 1.1. Let K be a PL sphere on [m]. Given a subgroup of Zm
2 acting freely on RZK, is

this action induced by a subtorus of Tm freely acting on ZK?

In particular, when sR(K) = m − n, Problem 1.1 is equivalent to the (toric) lifting problem
(Problem 3.6). In other words, this asks whether every small cover (or real topological toric
manifold) is induced from some quasitoric manifold (or topological toric manifold, respectively).
The lifting problem was initially proposed by Zhi Lü at the toric topology conference held in
Osaka in 2011, as documented in [8], and remains an open problem in toric topology, attracting
considerable research attention. However, significant advances in resolving this problem have
been elusive. This paper aims to make a contribution by providing meaningful results to the
lifting problem, and more broadly to Problem 1.1, in the case m ≤ n+ 4.

Theorem 1.2. Let K be an (n− 1)-dimensional PL sphere with m ≤ n+ 4 vertices. Then, any
subgroup of Zm

2 freely acting on RZK is induced by a subtorus of Tm freely acting on ZK .

Let H be a subgroup of Zm
2 of rank r, freely acting on RZK . Then, 0 ≤ r ≤ min(sR(K),m −

n) ≤ 4. To address this question, we categorize our approach into two distinct cases: the case
where r ≤ 3 and the case where r = sR(K) = m − n = 4. In Section 2, we give a positive
answer to Problem 1.1 under the condition that for r ≤ 3 without the necessity of m = n+ 4. It
demonstrates that Theorem 1.2 holds for the case where m ≤ n + 3, or the case m = n + 4 and
r ≤ 3.

Subsequent sections will focus on the case r = 4 under the specific conditionm−n = sR(K) = 4.
Here, we establish the theorem for this case employing a method we call toric wedge induction.
This method was firstly introduced by Choi and Park in [8], and it can be effectively used
to demonstrate properties of toric varieties for certain Picard numbers. In our proof, we will
introduce a more powerful version of toric wedge induction. Additionally, the combinatorial
structure of a binary matroid of rank 4 will be crucially used for the basis step of the induction.

1A quasitoric manifold was originally called a toric manifold in [13], and was renamed in [4] to avoid confusion
with a smooth compact toric variety.
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2. The case r ≤ 3

Let K be an (n−1)-dimensional simplicial complex on [m] = {1, 2, . . . ,m}, H ⊂ Tm a subtorus
of dimension r ≤ m− n. After choosing a basis, it can be written as

(2.1) H = {(e2πi(s11φ1+···+s1rφr), . . . , e2πi(sm1φ1+···+smrφr)) ∈ Tm | φj ∈ R, j = 1, ..., r},

where sij ∈ Z. We define an m× r integer matrix S = (sij). Additionally, the (m−n)× r matrix
Sî1,...,̂in

is defined as the submatrix of S obtained by excluding the rows corresponding to entries

ij for j = 1, . . . , n. The following proposition was proved for polytopal simplicial complexes in
[4], but it can be also proved by a similar argument for general ones.

Proposition 2.1. Let K be a simplicial complex. Then the subtorus (2.1) acts freely on ZK if
and only if for any facet {i1, . . . , in} of K, the matrix Sî1,...,̂in

defined above gives a monomorphism

Zr −→ Zm−n to a direct summand.

The latter condition is equivalent to Sî1,...,̂in
having an r × r submatrix whose determinant is

±1. A similar argument holds for Zm
2 -action on RZK . Then the mod 2 reduction of the matrix

S representing a freely acting subtorus of Tm on ZK represents a freely acting subgroup of Zm
2

on RZK .

Theorem 2.2. Let K be an (n − 1)-dimensional simplicial complex on [m], and r ≤ 3 a non-
negative integer. Then any rank r subgroup of Zm

2 acting freely on RZK is induced by an r-
dimensional subtorus of Tm freely acting on ZK .

Proof. Assume an m× r matrix S over Z2 represents the freely acting subgroup of Zm
2 on RZK.

Define the m×r matrix S̃ over Z all of whose entries s̃ij are in {0, 1} and such that S ≡ S̃ mod 2.
For any facet {i1, . . . , in} of K, S

î1,...,̂in
has an r × r submatrix R whose determinant is 1 ∈ Z2.

Then the corresponding submatrix R̃ of S̃
î1,...,̂in

has an odd determinant. Since the absolute value

of every square {0, 1}-matrix of size r ≤ 3 is less than r, the determinant of R̃ is indeed ±1 ∈ Z.

Hence S̃ defines an r-dimensional subtorus of Tm acting freely on ZK . �

3. The case r = 4 : Preliminaries

3.1. Characteristic and dual characteristic maps. Let A be an n × m matrix over Z for
positive integers n ≤ m, and I an n-subset of [m]. Let AI denote the submatrix of A formed
by selecting columns indexed with i ∈ I, and AI the submatrix of A formed by selecting rows
indexed with i ∈ I. Furthermore, A represents a matrix whose columns form a basis of the kernel
of A. Note that A depends on the choice of a basis of the kernel of A. We introduce one important
proposition, known as the linear Gale duality :

Proposition 3.1. Let A be an n×m matrix over Z for positive integers n ≤ m. For any n-subset

I of [m], det(AI) = ±1 if and only if det(A
Ic

) = ±1

Let K be an (n − 1)-dimensional PL sphere on [m], and H an r-dimensional subtorus of Tm

freely acting on ZK as in (2.1). If r = m− n, then H is completely described as follows. Let us
consider a map λ : [m] → Zn, called a characteristic map over K, such that {λ(i1), . . . , λ(ik)} is
a unimodular set for any simplex {i1, . . . , ik} in K. For convenience, we often represent this map
by an n ×m matrix λ =

[
λ(1) · · · λ(m)

]
with elements in Z. This matrix can be interpreted

as a linear map Zm → Zn, and concurrently, as an element in Hom(Tm, T n). In addition, we
call λ : [m] → Zm−n a dual characteristic map over K. Similarly, we define mod 2 characteristic

maps λR : [m] → Zn
2 over K and mod 2 dual characteristic maps λ

R
: [m] → Zm−n

2 over K. In
particular, an injective mod 2 dual characteristic map is simply called an IDCM.

For an n × m matrix λ, λ defines a subtorus H of Tm similar to that described in (2.1).
By Propositions 2.1 and 3.1, λ is a characteristic map over K if and only if the corresponding
subtorus H of λ acts on ZK freely.

When considering the toric space ZK/H, the kernel of λ itself is essential whereas the choice
of a basis of the kernel is not important. In this context, we consider the concepts of Davis-
Januszkiewicz equivalence, or simply D-J equivalence, for characteristic maps and dual charac-
teristic maps. Two characteristic maps are said to be D-J equivalent, if one is obtained by row
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operations from the other. Two dual characteristic maps are said to be D-J equivalent if one is
obtained by column operations from the other. This also removes the ambiguity arising from the
definition of λ.

Observe that the mod 2 reduction of a characteristic map λ overK is a mod 2 characteristic map
over K. Conversely, given a mod 2 characteristic map λR : [m]→ Zn

2 over K and a characteristic
map λ : [m]→ Zn over K, if λR coincides with the composition of λ and the modulo 2 reduction
map Zn → Zn

2 , then λ is called a lift of λR:

Zn

[m] Zn
2 .

λR

∃λ mod 2

Moreover, it is called the {0, 1}-lift of λR when λ sends [m] to {0, 1}-vectors. Similarly, it is
called a {0,±1}-lift when it sends [m] to {0,±1}-vectors. Note that the number of {0,±1}-lifts
of a given mod 2 characteristic map is finite.

Example 3.2. Let K be the join ∂∆n1 ∗ ∂∆n2 ∗ · · · ∗ ∂∆np of the boundaries of p simplices. We
denote its set of vertices as

{ij | 1 ≤ i ≤ p, 1 ≤ j ≤ ni + 1},

where i1, i2, . . ., ini+1 comes from the vertices of ∂∆ni . Let F i
j = {i1, i2, . . . , inj+1} \ {ij}. The

set of facets of K is
{∪pi=1F

i
ji
| 1 ≤ ji ≤ ni + 1}.

By [7], up to D-J equivalence and vertex relabeling, a mod 2 characteristic map over K is of
the form

λR =




λR
1

∗ λR
2

...
∗

. . .
... λR

p−1

∗ ∗ ∗ λR
p



,

where λR
i is a mod 2 characteristic map over ∆ni and the empty spaces display zeros. Up to D-J

equivalence and vertex relabeling,

λR
i =




i1 ··· ini
ini+1

Ini

1
...
1


.

Let λ̃R be the {0, 1}-matrix over Z such that λ̃R ≡ λR mod 2. We denote by λ̃R
i (F

i
j ) the submatrix

obtained by removing the column indexed by ij . Note that det(λ̃R
i (F

i
j )) = ±1. Then for a facet

σ = ∪pi=1F
i
ji
of K, the determinant of the submatrix consisting of the columns of λ̃R corresponding

to σ is det(λ̃R
i (F

1
j1
))×· · ·×det(λ̃R

i (F
p
jp
)|) = ±1. Hence λ̃R is the {0, 1}-lift of λR, and it shows that

every mod 2 characteristic map over the join of the boundaries of simplices has the {0, 1}-lift.

Lemma 3.3. [8] Let A be an n × n matrix over Z whose determinant is odd. Then there is an
n× n matrix B over Z such that det(B) = ±1 and A ≡ B mod 2.

Proposition 3.4. The existence of a lift is a property of the D-J class.

Proof. Let λR and µR be two D-J equivalent mod 2 characteristic maps over K. There is an

invertible matrix A over Z2 such that AλR = µR. Suppose that λ̃R is a lift of λR. There is an

integer matrix Ã such that Ã ≡ A mod 2 and the determinant of Ã is odd. Lemma 3.3 ensures
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that there is an invertible integer matrix B such that Bλ̃R ≡ Ãλ̃R ≡ µR mod 2, that is, Bλ̃R is a
lift of µR as well. �

For the sake of convenience, we define the dual complex K of K as the simplicial complex
whose facets are the cofacets of K. Also, we regard λ as a map from [m] to Zm−n such that λ(i)
is the ith row of λ, as we did for characteristic maps. Then by the linear Gale duality, λ is a
characteristic map over K.

Lemma 3.5. Let K be a simplicial complex. A mod 2 characteristic map λR over K has a lift if

and only if λR has a lift as a mod 2 characteristic map over K.

Proof. Suppose that λR has a lift λ̃R. Then λ̃R is a characteristic map over K. From the mod 2

reduction of the equation λ̃R × λ̃R = O, the mod 2 reduction of the columns of λ̃R is a basis of

ker λR. Hence up to D-J equivalence, λR ≡ λ̃R mod 2, that is, λ̃R is a lift of λR.
The other direction is essentially the same. �

Problem 3.6 ((toric) Lifting problem). Let K be a PL sphere. Does any mod 2 characteristic
map over K have a lift? Equivalently, does any mod 2 dual characteristic map over K have a lift
as a mod 2 characteristic map over K.

3.2. Wedge operations. Let K be a simplicial complex on the vertex set V and σ a simplex in
K. The link of σ in K is the simplicial complex defined by

LkK(σ) := {τ ∈ K | σ ∪ τ ∈ K,σ ∩ τ = ∅},

and the deletion of σ in K is the simplicial complex defined by

K \ σ := {τ ∈ K | σ 6⊂ τ}.

For a singleton face {v} of K, its link and deletion are denoted simply by LkK(v) and K \ v,
respectively.

For another simplicial complex L on a disjoint vertex set from K, the join K ∗ L of K and L
is defined as the simplicial complex

K ∗ L := {σ ∪ τ | σ ∈ K, τ ∈ L}.

The suspension of K is given by

Σ(K)∂I ∗K,

where I is a 1-simplex with two new vertices v1 and v2, and ∂I is its boundary complex. In Σ(K),
the pair {v1, v2} is referred to as a suspended pair, and each vertex in it is called a suspended
vertex.

The wedge of K at a vertex v of K is defined as

Wedv(K) := (I ∗ LkK(v)) ∪ (∂I ∗ (K \ v)),

where I is a 1-simplex comprising two new vertices. It is evident that the link of a new vertex
added after applying a wedge to K is isomorphic to K. In that sense, we often use v1 and v2 to
refer to the two copies of v in Wedv(K). Consequently, Wedv(K) has vertex set (V \{v})∪{v1, v2}.
Here, two vertices v1 and v2 are referred to as wedged vertices of v, and the edge connecting them
as the wedged edge of v. Notably, Σ(K) can be viewed as a wedge at a ghost vertex of K.

The wedge operation can be defined equivalently as an easy combinatorial operation on the
minimal non-faces of K: we duplicate the vertex v in each minimal non-face of K it appears in.
More precisely, let η ⊂ V be a subset of the vertex set of K.

(1) If η contains v, then η is a minimal non-face of K if and only if η \ {v} ∪ {v1, v2} is a
minimal non-face of Wedv(K).

(2) If η does not contain v, then η is a minimal non-face of K if and only if η is a minimal
non-face of Wedv(K).
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As for suspensions, one can easily prove that the minimal non-faces of K1 ∗K2 is the union of
the minimal non-faces of K1 and K2. Then the minimal non-faces of ∂I ∗K is obtained by adding
I in the minimal non-faces of K. we can add a ghost vertex to K which becomes a minimal
non-face of K. With this perspective, two consecutive wedge operations and join operations,
including suspension, are associative and commutative with appropriate vertex identification.

Conversely, suppose that there are two vertices v1 and v2 such that for any minimal non-face
η of K, {v1, v2} ⊂ η or {v1, v2} ∩ η = ∅. If σ is a facet of K containing neither {v1} nor {v2},
then {v1}∪σ is a non-face, so there is a minimal non-face η of K containing v1. This contradicts
to the assumption. Hence every facet of K contains v1 or v2. By the following lemma, if {v1, v2}
is not a minimal non-face of K, then it is a wedged edge of K, and otherwise, it is a suspended
pair of K.

Lemma 3.7. [10] Let K be a PL sphere, and v1 and v2 be two vertices of K. If every facet of K
contains v1 or v2, then K equals to either Σ(L) with a suspended pair {v1, v2}, or Wedv(L) with
wedged edge {v1, v2} for some lower dimensional PL sphere L.

Corollary 3.8. If a mod 2 dual characteristic map λR over a PL sphere K satisfies λR(v1) =

λR(v2) for some vertices v1 and v2 of K, then {v1, v2} is a suspended pair or a wedged edge of K.

Proof. By the non-singularity of λR, every facet of K contains v1 or v2. Then apply the previous
lemma. �

Consider the vertex set ofK to be [m] = {1, . . . ,m}. In light of the associative and commutative
nature of wedge operations, we introduce the notation K(J), termed a J-construction of K in
[3], for a positive integer m-tuple J = (j1, j2, . . . , jm). This represents the simplicial complex
obtained by applying multiple wedge operations to K; for each i ∈ [m], wedge operations are
applied ji − 1 times to K at i or its copied vertices. We will often denote the copied vertices of i
by i1, i2, . . . , iji . For the sake of convenience, even when ji = 1, we treat i as i1, and we say ik is
a wedged vertex of i for each k ≥ 1.

In addition, due to the commutativity and associativity of the operations involved, we have
the relationship:

(3.1) (∂I ∗K)(j1, j2, . . . , jm+2) = ∂I(j1, j2) ∗K(j3, . . . , jm+2),

where I is the 1-simplex on {1, 2}. This leads to two characterizations regarding the suspension
and wedge operations.

Proposition 3.9. Let K be a simplicial complex, I a 1-simplex, v a vertex of K. Then:

(1) K is a suspension if and only if so is Wedv(K) for any non-suspended vertex v of K,
(2) K is a wedge if and only if so is Σ(K).

We define the Picard number of K as m − n. One can observe that the wedge operation
preserves the Picard number of K whereas the suspension increases the Picard number of K
by 1. It is known that the link, wedge, and suspension operations are closed within the class of
PL spheres, see [6] for details.

A PL sphere not isomorphic to some wedge of another PL sphere is termed a seed. It should
be noted that any PL sphere K of Picard number p can be written as L(J), where L is a seed of
the same Picard number p. In addition, one can easily see that L is uniquely determined up to
isomorphism, whereas J can be different.

For our purpose, we are interested in PL spheres of dimension n−1 on [m] whose real Buchstaber
number coincides with their Picard number m−n. Such a PL sphere is said to be (Zn

2 -)colorable.
Ewald [16] observed that all colorable PL spheres are obtained by colorable seeds, and Choi and
Park [10] proved that the number of colorable seeds with given Picard number is finite. Although
obtaining the list of colorable seeds of given Picard number is a difficult problem in itself, the list
up to Picard number 4 has been established in [6].

Theorem 3.10. [6] The number of colorable seeds with Picard number at most 4 up to isomor-
phism is as follows:
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p\n 1 2 3 4 5 6 7 8 9 10 11 > 11 total

1 1 1
2 1 1
3 1 1 1 3
4 1 4 21 142 733 1190 776 243 39 4 3153

with the empty slots displaying zero.

4. Toric wedge induction

4.1. Toric wedge induction and its modification. LetK be an (n−1)-dimensional PL sphere
on [m]. There are operations on mod 2 characteristic maps over K corresponding to wedge and
link operations onK. Let ΛR be a mod 2 characteristic map over Wedv(K). Up to D-J equivalence
and vertex relabeling, we may assume that

(4.1) ΛR =




v1 v2

1 0
O

a

0 1 b

O In−1 A


,

where the column indexes v1 and v2 stand for the associated wedged vertices, a and b are row
vectors of size m − n, In−1 is the identity matrix of size n − 1, and A is a Z2-matrix of size
(n− 1)× (m− n). The projection of ΛR with respect to a face σ of Wedv(K) is a map from the

vertex set of LkK(σ) to Z
n−|σ|
2 defined by

(4.2) Projσ(Λ
R)(w) = [ΛR(w)] ∈ Zn

2�
〈
ΛR(v) | v ∈ σ

〉 ∼= Z
n−|σ|
2

for each vertex w of LkK(σ). If we fix a basis of Z
n−|σ|
2 , we can see that Projσ(Λ

R) is a mod 2
characteristic map over LkK(σ). We call Projσ(Λ

R) the projection onto LkK(σ).
The links LkWedv(K)(v1) and LkWedv(K)(v2) are isomorphic to K by identifying v2 and v1 with

v, respectively, and the projections of ΛR with respect to v1 and v2 are written as

λR
1 = Projv1(Λ

R) =

[ v2

1 O b

O In−1 A

]
, and

λR
2 = Projv2(Λ

R) =

[ v1

1 O a

O In−1 A

]
.

If we consider the first column of each matrix corresponds to the vertex v, then two matrices
λR
1 and λR

2 are mod 2 characteristic maps over K. Hence, ΛR corresponds to a choice of two
mod 2 characteristic maps over K whose first n columns form an identity matrix such that
their submatrices formed by deleting the first row and the first column are identical up to D-J
equivalence.

Conversely, one may construct at most one ΛR over Wedv(K) from an ordered pair of mod 2
characteristic maps λR

1 and λR
2 over K as in (4.1). We denote ΛR = λR

1 ∧v λR
2 if it exists. If

λR
1 = λR

2 = λR, then λR ∧v λ
R always exists for any v, and it is called the canonical extension of

λR at v.
It should be noted that we can represent each characteristic map over K(J) by a combination

of characteristic maps over K. From this viewpoint, we shall introduce one powerful inductive
tool to demonstrate some properties on real toric spaces, for example the existence of a lift of ΛR

as in this paper.
For a PL sphere K, let X be a collection of pairs (L, λR) such that every L is expressed as

K(J) for some J , and λR is a mod 2 characteristic map over L. Then X is called a wedge-stable
set based on K if (Wedv(L), λ

R
1 ∧ λR

2 ) ∈ X whenever both (L, λR
1 ) and (L, λR

2 ) are in X .
We present the concept of toric wedge induction which is a method employed to demonstrate

the validity of a given property across X .
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Proposition 4.1 (Toric wedge induction). For a PL sphere K, let X be a wedge-stable set based
on K, and P a property. Suppose that the following holds;

(1) Basis step: All (K,λR) ∈ X satisfies P .
(2) Inductive step: If (L, λR

1 ), (L, λ
R
2 ) ∈ X satisfy P, then so does (Wedv(L), λ

R
1 ∧v λ

R
2 ) for

any vertex v of L.

Then P holds on X .

The credit of original idea of toric wedge induction should be given to Choi and Park [8]. They
used it for showing the projectivity of certain toric manifolds in [8] or [9]. Later, the authors of
this paper used it for classifying toric manifolds satisfying equality within an inequality regarding
the number of minimal components in their rational curve space [6].

However, it is sometimes challenging to perform the inductive step. In that situation, we can
relax it by strengthening the basis step. In this paper, we introduce a new, easier version of this
method that helps with the toric lifting property we want to show.

In order to do it, we briefly review the notions and properties, following [10], where the reader
may find a much more details about the relations between characteristic maps over K(J) and
puzzles explained below.

The pre-diagram D′(K) of K is an edge-colored non-simple graph such that

(1) the node set of D′(K) is the set of D-J classes of the mod 2 characteristic maps over K,
(2) for a vertex v of K and two mod 2 characteristic maps λR

1 and λR
2 over K, a pair

({λR
1 , λ

R
2 }, v) is a colored edge of D′(K) if and only if there is a mod 2 characteristic

map over Wedv(K) whose two projections onto K are λR
1 and λR

2 .

We denote G(J) the 1-skeleton of the simple polytope P (J) := ∆j1−1 ×∆j2−1 × · · · ×∆jm−1.
Each edge ǫ of G(J) is uniquely written as

ǫ = α1 × α2 × · · · × αv−1 × ǫv × αv+1 × · · · × αm,

where αi is a vertex of ∆ji−1, 1 ≤ i ≤ m, i 6= v, and ǫv is an edge of ∆jv−1. Then color ǫ by v.
Then, a mod 2 characteristic map λR over K(J) can be expressed by an edge-colored graph

homomorphism φ : G(J)→ D′(K); When α is a vertex of G(J), we can write

α = α1 × α2 × · · · × αm,

where 1 ≤ αi ≤ ji is a vertex of ∆ji−1 for 1 ≤ i ≤ m. Observe that

F(α) := {11, 12, . . . , 1j1 , . . . ,m1,m2, . . . ,mjm} \ {1α1
, 2α2

, . . . ,mαm}

does not contain any minimal non-face of K(J), so it is a face of K(J). Since each vertex
ijk (jk 6= αi) in F(α) is a wedged vertex of iαi

, LkK(J)(F(α)) is isomorphic to K, and the

projection ProjF(α)(λ
R) is a mod 2 characteristic map over K by the natural bijection between

{1, 2, . . . ,m} and {1α1
, 2α2

, . . . ,mαm}. Define φ by φ(α) = ProjF(α)(λ
R) for each vertex α of

G(J). Let ǫ be an edge of G(J). Up to relabeling the vertices of K, ǫ consists of two vertices
α and α′ := α′

1 × α2 × · · · × αm. Then φ(ǫ) = {ProjF(α)(λ
R),ProjF(α′)(λ

R)}. By the following

proposition, ProjF(α)(λ
R) and ProjF(α′)(λ

R) are same except their first rows. Hence φ is an
edge-colored graph homomorphism.

Remark 4.2. In the above situation, it is worthy to note that if λR(1α1
) = λR(1α′

1
), then φ is

not irreducible.

Proposition 4.3. Let K be a PL sphere, and σ a face of K such that the Picard numbers of K
and LkK(σ) are same. Up to D-J equivalence, the dual of the projection of a mod 2 characteristic

map λR with respect to a face σ of K is obtained by removing rows corresponding to σ in λR.

Proof. It is sufficient to prove the result for a vertex σ = {v}. To project λR with respect to {v},
let us left multiply λR by an invertible matrix g so that the vector gλR(v) has a single nonzero
entry, say at index k. From (4.2), if we delete the vth column and kth row of gλR, then we obtain

the projection Projv(λ
R). Let µR be the matrix obtained by removing vth row in λR. Then, any

column of µR is an element of the kernel of Projv(λ
R) since every component of the vth column
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of λR except the kth one is 0. Note that µR remains of full rank since there must exist a cofacet
of K that does not contain v. �

However, not all edge-colored graph homomorphism φ is obtained from a mod 2 characteristic
map over K(J). If it is, φ is called a (realizable) puzzle over K(J) (or, over K, if there is no
confusion), and λR

φ denotes the corresponding mod 2 characteristic map over K(J). In partic-
ular, a puzzle which does not contain any edge corresponding to a canonical extension is called
irreducible.

Consider a realizable puzzle φ over K(J). In G(J), two edges

ǫ = α1 × α2 × · · · × αv−1 × ǫv × αv+1 × · · · × αm,

ǫ
′ = α′

1 × α′
2 × · · · × α′

v−1 × ǫ′v × α′
v+1 × · · · × α′

m

are called parallel if ǫv = ǫ′v. By [10, Corollary 4.4], if there is an edge ǫ of φ corresponding to a
canonical extension, then so does every parallel edge to ǫ. Therefore, every puzzle is obtainable
from an irreducible puzzle by a sequence of canonical extensions.

Proposition 4.4 (Modified toric wedge induction). For a PL sphere K, let X be a wedge-stable
set based on K, and P a property. Suppose that the following holds;

(1) Basis step: For any positive integer tuple J and any irreducible realizable puzzle φ over
K(J), (K(J), λR

φ ) satisfies P.

(2) Inductive step: If (L, λR) ∈ X satisfies P, then so does the pair consisting of the wedge
of L at v and the canonical extension of λR at v for any vertex v of L.

Then P holds on X .

It should be noted that the basis step consists of finitely many cases as the lemma below.

Lemma 4.5. For a simplicial complex K, there are finitely many irreducible puzzles over K.

Proof. Let J = (j1, j2, . . . , jm). Fix a vertex α = α1 × α2 × · · · × αm of P (J). For each jv, α is
also a vertex of the simplex α1 × α2 × · · · × αv−1 ×∆jv−1 × αv+1 × · · · × αm. Because any two
vertices of ∆jv−1 forms an edge, the number jv can not exceed the number of mod 2 characteristic
maps over K. �

Remark 4.6. The concept of wedge of characteristic maps and puzzle is not only described for
mod 2 characteristic maps, but also for characteristic maps. See [10] for details. This means that
we can apply toric wedge induction to a collection of toric spaces. In addition, the number of
PL spheres which admit a characteristic map is less than or equal to the number of PL spheres
which admit a mod 2 characteristic map, so it is finite. However, the number of characteristic maps
over a seed is not finite. Hence the basis step may not be implemented by direct computations
in finite steps.

4.2. Modified Toric wedge induction in terms of dual characteristic maps. Even if
the modified version (Proposition 4.4) of the toric wedge induction has an easier inductive step
than the original version (Proposition 4.1), there still remains a challenging part to deal with:
constructing (irreducible) puzzles. In this subsection, we characterize irreducible puzzles in terms
of dual characteristic maps over seeds, and restate the modified toric wedge induction based on
a seed using dual characteristic maps instead of irreducible puzzles.

Let K be a colorable seed of dimension n − 1 on [m], λR a mod 2 characteristic map over K.

Assume that there are two vertices of K such that λR(v) = λR(w). By Remark 3.8, K has to be a
suspension, and then by Proposition 3.9, K is the suspension of a seed. Let us call a seed that is
a suspension a suspended seed. Hence if K is a non-suspended seed, then every dual characteristic
map over K is injective. An IDCM denotes an injective mod 2 dual characteristic map. By the
following lemma, every irreducible puzzle over a non-suspended seed corresponds to an IDCM.

Lemma 4.7. Let φ be an irreducible puzzle over K(J) for a PL sphere K on [m] and a positive

integer m-tuple J . Then λR
φ is injective if and only if φ(α) is injective for any vertex α of G(J).
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Proof. Assume that λR
φ is injective. By Proposition 4.3, each projection φ(α) of λR

φ has no

repeated rows, so it is injective.

Conversely, suppose that λR
φ(v) = λR

φ (w) for some vertices v, w of K(J). By Remark 4.2 and

the irreducibility of φ, {v,w} cannot be copies of one vertex of K by wedge operations. Hence
there is a vertex α of G(J) such that v = kαk

and w = lαl
for some αk ≤ jk, αl ≤ jl, and

distinct vertices k, l ∈ [m] and . This yields ProjF(α)(λ
R
φ)(v) = ProjF(α)(λ

R
φ)(w), so φ(α) is not

injective. �

In general, a seed K is of the form ∂I1 ∗ · · · ∗ ∂Iq ∗ L, where Ik is the 1-simplex with vertices
2k − 1 and 2k for each k ≤ q, and L is a non-suspended seed. By (3.1),

(4.3) K(J) = ∂I1(J1) ∗ · · · ∗ ∂Iq(Jq) ∗ L(Jq+1).

Before studying mod 2 characteristic maps over K(J), we need the following analysis of mod 2
characteristic maps over the join of two simplicial complexes. Research on (integral) characteristic
maps over the join K ∗ L is well-established in references such as [11] and [14], and it can be
converted well to mod 2 characteristic maps. Refer to these for further information. Consider
the join of simplicial complexes K1 of dimension n1 − 1 with m1 vertices and K2 of dimension
n2 − 1 with m2 vertices. One can observe that any (mod 2) characteristic map λR over K1 ∗K2

has the following form;

λR =

[
λR
11 λR

12

λR
21 λR

22

]
,

where λR
11, λ

R
22 are mod 2 characteristic maps over K1, K2 respectively, see [11, Lemma 3.1] for

instance. Moreover, we can assume that the first n1 columns of λR
11, and the first n2 columns of

λR
22 form identity matrices by D-J equivalence and vertex relabeling. Then, up to D-J equivalence,

(4.4) λR =

[
In1

A O B
O C In2

D

]
and λR =




A B
Im1−n1

O

C D
O Im2−n2


 .

We call this form of λR the joining representative of λR. It should be noted that

[
A

Im1−n1

]
and

[
D

Im2−n1

]
are mod 2 dual characteristic maps over K1 and K2, respectively.

Lemma 4.8. Let K be a seed and φ an irreducible puzzle over its J-construction (4.3). Suppose

that there are two vertices v and w of K(J) such that λR
φ(v) = λR

φ(w). Then there exists a

suspended pair {2k − 1, 2k} of K such that v = (2k − 1)s, w = (2k)t for some s ≤ j2k−1 and
t ≤ j2k.

Proof. By Remark 3.8, {v,w} is a suspended pair or a wedged edge of K(J). In the former case,
we are done.

Let {v,w} be a wedged edge of K(J). As written in the proof of Lemma 4.7, there are two
distinct vertices l and l′ of K such that v = ls, w = l′t for some s ≤ jl and t ≤ jl′ . By
commutativity of wedge and join operations, {v,w} is a wedged edge of L(Jq+1) or ∂Ik(Jk) for
some k. If l and l′ are contained in some ∂Ik(Jk), then they form a suspended pair since they are
distinct vertices.

Assume that l and l′ are contained in L. Let α be a vertex of G(J) such that its lth and
l′th components are s and t, respectively. Then φ(α) is a mod 2 characteristic map over K such

that φ(α)(l) = φ(α)(l′). Consider the joining representative (4.4) of φ(α) over K by setting

K1 = ∂I1 ∗ · · · ∗ ∂Iq and K2 = L. Then the mod 2 dual characteristic map

[
D

Im2−n2

]
over the

non-suspended seed L has repeated two rows at l and l′, which contradicts that a non-suspended
seed only admits IDCMs. �



TORIC WEDGE INDUCTION AND TORIC LIFTING PROPERTY 11

Suppose that φ is an irreducible puzzle over K(J), and there are two vertices v and w of K(J)

such that λR
φ(v) = λR

φ(w). By Lemma 4.8, there is a suspended pair of {2k − 1, 2k} of K such

that v = (2k − 1)s and w = (2k)t. If {v,w} is not a suspended pair, that is Jk 6= (1, 1), then
it is a wedged edge of K(J) by Corollary 3.8. Without loss of generality, we can assume that

j2k−1 ≥ 2. The irreducibility of φ ensures λR
φ((2k − 1)1) 6= λR

φ ((2k − 1)2).

Consider a positive integer tuple J ′ = (j′1, . . . , j
′
m) such that j′2k−1 = 1, j′2k = j2k−1 + j2k − 1,

and j′i = ji for i 6= 2k − 1, 2k. Define a simplicial map f : K(J)→ K(J ′) by

(4.5) f(x) =

{
(2k)j2k+l−1, if x = (2k − 1)l for l > 1

x, otherwise.

Since any J-constructions of ∂Ik is a simplex, f is an isomorphism. Then λR
φ ◦ f

−1 is a mod 2

characteristic map over K(J ′). Note that this does not correspond to an irreducible puzzle over
K(J ′). Hence we obtain the following theorem.

Theorem 4.9. Let K be a seed, and φ an irreducible puzzle over K(J). Suppose that there are

two vertices v and w of K(J) such that λR
φ(v) = λR

φ(w). If {v,w} is not a suspended pair, then

there exists an isomorphism f : K(J ′)→ K(J) for a positive integer tuple J ′ such that λφ ◦f does
not correspond to an irreducible puzzle over K(J ′).

We call λR quasi-injective if λR(v) = λR(w) implies that {v,w} is a suspended pair of K. From
the above theorem, we can restate the modified toric wedge induction based on a seed as the
following.

Proposition 4.10. Let K be a colorable seed, and

XK = {(L, λR) | L = K(J) for some J, λR is a mod 2 characteristic map over L}.

For a property P, suppose that the following holds;

(1) Basis step: For any positive integer tuple J and any quasi-IDCM λR over K(J),
(K(J), λR) satisfies P.

(2) Inductive step: If (L, λR) ∈ XK satisfies P, then so does the pair consisting of the wedge
of L at v and the canonical extension of λR at v for any vertex v of L.

Then P holds on XK .

Even though Lemma 4.5 ensures that the basis step of modified toric wedge induction is a finite
problem, we can see directly that in this form. The number of suspended pairs can not exceed
the Picard number, so the number of rows of a quasi-IDCM can not exceed p+ 2p − 1.

Remark 4.11. In particular, (modified) toric wedge induction is useful when we want to see
a property for all real toric spaces over PL spheres of Picard number p. By the injectivity of
mod 2 dual characteristic maps over non-suspended seeds, if K is a non-suspended seed, then
we have m ≤ 2p − 1, so there are finitely many non-suspended seeds of Picard number p. Since
suspended seeds of Picard number p are suspensions of non-suspended and suspended seeds of
Picard number p− 1, there are finitely many suspended seeds of Picard number p as well. Hence,
Lemma 4.5 guarantees that the basis steps of (modified) toric wedge induction based on all seeds
of Picard number p can be also solved in finite time.

5. Proof of the main theorem

For the reader’s convenience, we recall the statement of the main theorem.

Theorem 1.2. Let K be an (n− 1)-dimensional PL sphere with m ≤ n+ 4 vertices. Then, any
subgroup of Zm

2 freely acting on RZK is induced by a subtorus of Tm freely acting on ZK .

Proof. Let r be the rank of a subgroup acting freely on RZK. For the case r ≤ 3, the statement
is verified by Theorem 2.2. Hence, it is enough to consider the case when m = n + 4, and
r = m− n = 4.
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We apply the modified version of toric wedge induction with P as in Proposition 4.10. Let K
be a seed. For a positive integer tuple J and a mod 2 characteristic map λR over K(J), we say
the pair (K(J), λR) satisfies P if and only if the mod 2 characteristic map λR has a lift. The
basis step of any seed of Picard number 4 will be accomplished in Section 6. The inductive step
follows from Lemma 5.1 below. Therefore, by Proposition 4.10, P holds on the set of all real toric
spaces of Picard number 4. �

Lemma 5.1 (Inductive Step). For a PL sphere K, if a mod 2 characteristic map λR over K has
a lift, then the canonical extension of λR at v has a lift for any vertex v of K.

Proof. Let K be an (n − 1)-dimensional PL sphere on [m]. By relabeling the vertices and D-J

equivalence, we may assume that the first n columns of λR and the last m−n columns of λ
R
are

of form the identity matrix, and the wedge operation is performed at v = 1 ∈ [m]. Let λ = λ̃R

be a lift of λR. By Proposition 3.4, up to D-J equivalence, we can also assume that its first n
columns form the n× n identity matrix.

Set λR =



In

λR(1)

λR(2)
...

λR(n)


 and its lift λ =



In

λ(1)

λ(2)
...

λ(n)


. Then,

ΛR =




In+1

λR(1)

λR(1)

λR(2)
...

λR(n)




and Λ =



In+1

λ(1)

λ(1)

λ(2)
...

λ(n)




are the canonical extension of λR at 1 and its lift, respectively. �

6. The basis step

In this section, we prove that every quasi-IDCM over a PL sphere K of Picard number 4 has a
lift as a mod 2 characteristic map over K. Then the basis step of Proposition 4.10 is accomplished
by Lemma 3.5.

Let K be an n − 1 dimensional PL sphere of Picard number 4. Suppose that K admits a
quasi-IDCM λR that is not an IDCM. Then if K = L(J) for some seed L, then by Theorem 3.10,
L is one of the following:

(1) L1 = ∂I ∗ ∂P5,
(2) L2 = ∂I1 ∗ ∂I2 ∗ ∂I3 ∗ ∂I4,
(3) L3 = ∂I ∗ ∂C4(7),

where P5 is a pentagon, and C4(7) is a 4-dimensional cyclic polytope with 7 vertices. By Ex-
ample 3.2, if K = L2(J), then every mod 2 characteristic map over K has a lift, so assume that
L 6= L2 in addition. Since there is no seed of Picard number 2 with n = 1 and 3 by Theorem 3.10,
we can see that ∂P5 and ∂C4(7) are non-suspended seeds. Hence λR has exactly one pair of
vertices with row repetition.

For convenience, let L′ = ∂P5 or ∂C4(7). By (3.1), we can write K = L(J) = ∂I ∗ L′(J2).
With setting K1 = ∂I and K2 = L′(J2), λ

R is of the form by (4.4):

λR =

[
1 1 O

O ∗ µR

]
,

where µR is a mod 2 characteristic map over L′(J2). By the definition of the join, a subset σ of
the vertex set of K is facet of K if and only if σ = {v} ∪ τ for a vertex v of ∂I and a facet τ of

L′(J2). By Theorem 2.2, there is a lift µ̃R of µR. Then
[
1 1 O

O ∗ µ̃R

]
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is a lift of λR.
In the rest of the section, let us focus only on IDCMs.

Theorem 6.1. Let K be a PL sphere with less than 168 facets. Then every injective mod 2 dual
characteristic map over K has a lift as a mod 2 characteristic map over K.

Proof. Let A be a 4×15 matrix over Z consisting of only 0, 1 entries with neither repeated columns
nor the zero column. Consider the binary matroidM representing the mod 2 linear independence
relations between the columns of A. More explicitly, it is the simplicial complex whose facets are
the set of the indices of 4 columns with an odd determinant in Z. Through direct computation,
we know that it has |GL(4,Z2)|/4! = 840 facets, where GL(4,Z2) is the general linear group of
degree 4 over Z2. Among them, 835 correspond to sets of 4 vectors with determinants ±1, and
the other 5 correspond to the following sets of 4 vectors with determinants ±3:

A1 =








1
1
0
0


 ,




1
0
1
0


 ,




1
0
0
1


 ,




0
1
1
1







, A2 =








1
1
0
0


 ,




0
1
1
0


 ,




0
1
0
1


 ,




1
0
1
1







, A3 =








1
0
1
0


 ,




0
1
1
0


 ,




0
0
1
1


 ,




1
1
0
1







,

A4 =








1
0
0
1


 ,




0
1
0
1


 ,




0
0
1
1


 ,




1
1
1
0







, and A5 =








1
1
1
0


 ,




1
1
0
1


 ,




1
0
1
1


 ,




0
1
1
1







.

Let a1 =




1
1
0
0


, a2 =




1
0
1
0


, a3 =




1
0
0
1


, and a4 =




0
1
1
1


 be the four vectors in A1. In mod 2, we can

observe that

A2 = {a1, a1 + a2, a1 + a3, a1 + a4},

A3 = {a1 + a2, a2, a2 + a3, a2 + a4},

A4 = {a1 + a3, a2 + a3, a3, a3 + a4}, and

A5 = {a1 + a4, a2 + a4, a3 + a4, a4}.

Notice that this combinatorial structure does not depend on the choice of Ai’s and aj ’s.
Define indA(Ai) = the set of indices of vectors in Ai in A. For an element g of GL(4,Z2), gA

is obtained by a column permutation of A, so the five sets appear again with some other column in-
dices. Suppose that {indA(A1), indA(A1), . . . , indA(A5)}∩{indgA(A1), indgA(A2), . . . , indgA(A5)} 6=
∅, that is they contain a common element indA(Ai) = indgA(Aj). This means that g(Ai) = Aj.
Then by the property we discussed above, g maps the collection of the five sets Ai on itself. Hence
for any g ∈ GL(4,Z2), there are only two possibilities:

• {indA(A1), indA(A2), . . . , indA(A5)} ∩ {indgA(A1), indgA(A2), . . . , indgA(A5)} = ∅ or
• {indA(A1), indA(A2), . . . , indA(A5)} = {indgA(A1), indgA(A2), . . . , indgA(A5)}.

Since every subset of column vectors of A consisting of 4 vectors with determinant 3 or −3 can
be transformed into A1 in mod 2 by multiplying with a suitable g ∈ GL(4,Z2), this yields a
partition A = {{indgA(A1), indgA(A2), . . . , indgA(A5)} | g ∈ GL(4,Z2)} of the set of facets ofM
with |A| = 840/5 = 168. In this partition, only one among the 168 sets contains the set of vectors
of determinant ±3 in Z.

Now, let λR be an IDCM over K. Then, there is an embedding of K in M according to

the index of λR(i) in A for each vertex i. If K has less than 168 facets, then there exists an
element of A which does not intersect the set of the facets of the embedding of K by the reverse
pigeonhole principle. This means that there exists g ∈ GL(4,Z2) such that for any facet σ of K,

the determinant of the matrix consisting of the 4 vectors in λRg(σ) is 1 or −1 when we see the
matrix as an integer {0, 1}-matrix. Hence, it provides a lift, as desired. �
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n 10 11

K 11 10

seeds 11 4
non-seeds 0 6

(K,λR) 11 85

seeds 11 5
non-seeds 0 80

Table 1. The numbers of PL sphere K supporting an IDCM and having ≥ 168
facets (above) and the total number of IDCMs over them (below).

Let K be a seed of Picard number 4. In turn, let us consider the case where K is an (n − 1)-
dimensional PL sphere that has more than or exactly 168 facets and that supports an IDCM.
By using the list of colorable seeds of Picard number 4 (as in Theorem 3.10), one can see that
if n < 10, then any colorable PL sphere has less than 168 facets, and, hence, n ≥ 10. On the
other hand, the condition of supporting an IDCM implies that m ≤ 15, so n ≤ 11. In addition,
we can check whether there is an IDCM over a given K with 10 ≤ n ≤ 11 by the Garrison-Scott
algorithm [18] for finding all mod 2 characteristic maps over K(J) or a modified algorithm, which
is faster with small Picard numbers, for finding only IDCMs introduced in [12].

Algorithm 6.2.

• Input: a seed K.
• Initialization:

J ← {(1, . . . , 1)},
J1 ← ∅,
J2 ← ∅,
R← ∅.

• Output: the list of J such that K(J) admits an IDCM and has ≥ 168 facets.
• Procedure:

(1) Set J ← the first element J [1] of J , and remove it from J .
(2) If there is no IDCM over K(J), then add J to J1, and go to (1).
(3) Add J to J2.
(4) If K(J) has ≥ 168 facets, then add J to R.
(5) If J 6= ∅, then go to (1).
(6) If dim(K(J)) = 10, then return R.
(7) For i = 1, 2, set J ′

i ← the set of J ′ such that J ′ is equal to J for some J in Ji except
kth component for some k, and kth component of J ′ is 1 larger than the one of J .

(8) Set J1 ← J
′
1, J2 ← ∅, and J ← J ′

2 \ J
′
1, and go to (1).

After all these refining by Algorithm 6.2, there only remain twenty-one PL spheres that have
more than or exactly 168 facets and ninety-six IDCMs over them. Table 1 shows that the number
of such PL spheres and IDCMs over them.

Two IDCMs ΛR
1 and ΛR

2 over a non-seed K are said to be symmetric if they can be expressed by
ΛR
1 = λR

1 ∧v λ
R
2 and ΛR

2 = λR
2 ∧v λ

R
1 for some IDCMs λR

1 and λR
2 . Although they are distinguished

as IDCMs, the existence of their lifts are equivalent. Therefore, it is enough to consider all IDCMs
up to symmetry.

Reducing symmetries, there is only one IDCM over each non-seed K of Table 1. See Table 2.
The final step is to check whether all twenty-two pairs (K,λR) have {0,±1}-lifts by the following

simple algorithm.



TORIC WEDGE INDUCTION AND TORIC LIFTING PROPERTY 15

n 10 11

(K,λR) 11 11

seeds 11 5
non-seeds 0 6

Table 2. The number of IDCMs up to symmetry over the PL spheres K having
≥ 168 facets.

Algorithm 6.3.

• Input: the cofacets CF of K and a mod 2 dual characteristic map λR over K
• Initialization:

I ← the list of the indices of nonzero entries in λR,
i← 0.

• Output: a {0,±1}-lift of λR if it exists and 0 otherwise.
• Procedure:

(1) If i = |I|, then return 0.
(2) Set S ← the list of all i-subsets of I.
(3) If S = ∅, then set i← i+ 1, and go to (1).
(4) Set s← the first element S[1] of S, and remove it from S.

(5) Replace 1’s in λR with indices in s by −1’s.
(6) If there is a cofacet cf ∈ CF such that the determinant of the matrix consisting of

the rows of λR corresponding to cf is not ±1, then go to (3).

(7) Return λR.

In conclusion, we have the following theorem.

Theorem 6.4. For a PL sphere of Picard number 4, any quasi-injective mod 2 dual characteristic
map over K has a lift as a mod 2 characteristic map over K.

The database containing the PL spheres of Picard number 4 admitting an IDCM are available
on the second author’s Github repository:

https://github.com/Hyeontae1112/TWI

References

1. Anton Ayzenberg, A connection between Bukhshtaber invariants and generalized chromatic numbers, Dal'nevost.
Mat. Zh. 11 (2011), no. 2, 113–139. MR 2869842

2. , Buchstaber invariant, minimal non-simplices and related, Osaka J. Math. 53 (2016), no. 2, 377–395.
MR 3492804

3. A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, Operations on polyhedral products and a new topological

construction of infinite families of toric manifolds, Homology Homotopy Appl. 17 (2015), no. 2, 137–160.
MR 3426378

4. Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics,
University Lecture Series, vol. 24, American Mathematical Society, Providence, RI, 2002. MR 1897064

5. Li Cai, On products in a real moment-angle manifold, Journal of the Mathematical Society of Japan 69 (2017),
no. 2.

6. Suyoung Choi, Hyeontae Jang, and Mathieu Vallée, The characterization of (n− 1)-spheres with n+4 vertices

having maximal Buchstaber number, to appear in J. Reine Angew. Math.
7. Suyoung Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka

J. Math. 47 (2010), no. 1, 109–129. MR 2666127
8. Suyoung Choi and Hanchul Park, Wedge operations and torus symmetries, Tohoku Math. J. (2) 68 (2016),

no. 1, 91–138. MR 3476138
9. , Wedge operations and a new family of projective toric manifolds, Israel J. Math. 219 (2017), no. 1,

353–377. MR 3642025
10. , Wedge Operations and Torus Symmetries II, Canad. J. Math. 69 (2017), no. 4, 767–789. MR 3679694
11. Suyoung Choi and Seonjeong Park, Projective bundles over toric surfaces, Internat. J. Math. 27 (2016), no. 4,

1650032, 30. MR 3491049

https://github.com/Hyeontae1112/TWI


16 SUYOUNG CHOI, HYEONTAE JANG, AND MATHIEU VALLÉE
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