2404.15602v1 [cs.RO] 24 Apr 2024

arxXiv

Decentralized Multi-Agent Trajectory Planning in Dynamic
Environments with Spatiotemporal Occupancy Grid Maps

Siyuan Wu, Gang Chen, Moji Shi, and Javier Alonso-Mora

Abstract—This paper proposes a decentralized trajectory
planning framework for the collision avoidance problem of mul-
tiple micro aerial vehicles (MAVs) in environments with static
and dynamic obstacles. The framework utilizes spatiotemporal
occupancy grid maps (SOGM), which forecast the occupancy
status of neighboring space in the near future, as the environ-
ment representation. Based on this representation, we extend
the kinodynamic A* and the corridor-constrained trajectory
optimization algorithms to efficiently tackle static and dynamic
obstacles with arbitrary shapes. Collision avoidance between
communicating robots is integrated by sharing planned tra-
jectories and projecting them onto the SOGM. The simulation
results show that our method achieves competitive performance
against state-of-the-art methods in dynamic environments with
different numbers and shapes of obstacles. Finally, the proposed
method is validated in real experiments.

I. INTRODUCTION

Decentralized multi-agent trajectory planning (MATP)
problem in dynamic environments remains a challenging
problem for years. To solve this problem, the robot must
avoid collisions with static and dynamic obstacles during
planning, as well as with other MAVs. A common approach
to planning in dynamic environments inherits the pipeline
used in static environments with modifications to account
for dynamic obstacles [1], [2]. These methods rely on an
Occupancy Grid Map (OGM) to represent static obstacles
and generate a collision-free trajectory for each MAV [3].
The trajectory is then further optimized to avoid dynamic
obstacles and other robots, which are tracked and represented
separately with fixed-shape models, e.g., ellipsoids [3], [4],
columns [5] and axis-aligned bounding boxes [6].

However, those methods require distinct pipelines for
static and dynamic obstacles and other robots, often leading
to trajectories that avoid dynamic obstacles but conflict with
static ones or other robots. To address this issue, we use
Spatiotemporal Occupancy Grid Maps (SOGM) [7], [8] to
capture both the current and future occupancy status of
arbitrary-shaped static and dynamic obstacles in the environ-
ment. Moreover, we incorporate the occupied space of other
robots within the same time window to achieve a unified
representation of both obstacles and other robots. Based on

All authors are with the Department of Cognitive Robotics (CoR), Delft
University of Technology, 2628CD Delft, The Netherlands. {s .wu—-14;
m.shi-5}@student.tudelft.nl; {g.chen-5;
j.alonsomora}@tudelft.nl This work is funded in part
by the European Union (ERC, INTERACT, 101041863). Views and
opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research
Council Executive Agency. Neither the European Union nor the granting
authority can be held responsible for them.

2130 b \
S \:jy@ @ ﬁ(‘f Yg
N W _/‘ >

i
t=0s - < t=1s T \

° **\'m}% 4
"L-?‘l g:!j& -
o> o \y

t=10s (/‘\

Fig. 1: 4 robots navigate in a dynamic environment with
20 columns and 20 circles. All robots perform independent
planning and coordinate with trajectory sharing. The spatio-
temporal corridors are indicated in blue, and obstacle veloc-
ities are marked by red arrows.

this representation, we employ spatio-temporal safety corri-
dors to identify areas free from obstacles and other robots,
effectively solving the MATP in dynamic environments.

In this work, we assume that the SOGM of each robot
is given, and extend a corridor-based trajectory optimiza-
tion method to MATP in dynamic environments. First, a
kinodynamically feasible path is searched within the map,
and spatio-temporal corridors are generated to maximize
the free space. Next, trajectories are generated by solving
a minimum jerk trajectory optimization problem with the
spatio-temporal corridors as constraints. To prevent collisions
between robots, other robots are treated as moving obstacles
with known shapes, and their trajectories are shared via a
communication network and represented simultaneously in
the SOGM. For dynamic obstacles, such as robots that do
not communicate, we employ a constant velocity prediction.
Compared to existing MATP methods, our planner is capable
of safely navigating multiple MAVs in complex environments
with arbitrarily shaped static and dynamic obstacles. Our
contributions are summarized as:

1) A decentralized multi-robot collision avoidance frame-
work that extends the corridor-based methods used in
static environments to dynamic environments.

2) An efficient planning approach that generates safe
trajectories in the SOGM and is capable of avoiding
static and dynamic obstacles with arbitrary shapes.

3) A paradigm that integrates shared trajectories into

Obstacles @0 SOGM(Top-down view) to tr Ref. Path Corridor * Trajectory ~—~—_— MAV 3
E &SIOGM : Proposed Planner
E o E ™ SOGM with embedded _; o Ein;dy_nal;icﬁatisarc_hing - _| T Eo;id;r-(?ons_tr;nea - _|
: a | Multi-MAV traiectories \ | | J Trajectory Optimization
: : 1 [N\ T - | pr—— |
' @ * L | Primitives | | Fast Iterative i
... =_______ ! | | + Generation | | H i Polyhedron Inflation !

| N o . SR
Rttt N P e L S |
* Shared Traj. ,‘ ; l \ *® - i Collision | | ® Bézier-Spline-Based
:K’\: | \ = l | : Check l | Trajectory Optimization l
N T T S B Ee &L:EEEjEEEEEE'

7 Y
Wireless Communication Network Controller

Fig. 2: Overview of the proposed framework for decentralized multi-robot trajectory planning.

occupancy grids to build corridors free from obstacles
and other robots.

We will release our code for the community’s reference.

II. RELATED WORK
A. MAV Planning in Dynamic Environment

MAV trajectory planning methods in dynamic environ-
ments can be divided into two categories, depending on
whether they consider static and dynamic obstacles sep-
arately or jointly. The first category [3], [5], [9] usually
employs an OGM [10], [11] to model static obstacles, taking
advantage of its ability to represent arbitrary 3D shapes [12].
However, dynamic obstacles are separately represented using
a fixed-shape model with predicted trajectories, including
ellipsoids [13], [4], [5], spheres [14], or bounding boxes [6].
Their future trajectories are normally predicted by polyno-
mial fitting methods [15] or the constant velocity model [16].
This representation of dynamic obstacles narrows the free
space and increases the difficulty of trajectory generation
by introducing non-convex collision avoidance constraints.
Static and dynamic obstacles can be represented jointly. [17],
[2] represents static and dynamic obstacles with a particle-
based occupancy map [8] and uses a sampling-based method
to find a trajectory that encounters fewer particles. Further
in [18], risk-aware spatio-temporal corridors are generated
on the map for trajectory optimization. The trajectory gen-
eration method in [18] is limited to cubic corridors, which
can be overly conservative, especially in environments with
arbitrarily shaped obstacles. Inspired by [18], this work aims
to extend these corridor-based methods to solve the MATP
problem by addressing the aforementioned limitations.

B. Decentralized Multi-Agent Trajectory Planning

Multi-agent trajectory planning in complex environments
is a challenging task in aerial robotics. A few methods
have been proposed to solve this problem in a decentral-
ized manner for scalability and robustness [19], [20]. In
these methods, robots usually coordinate with each other by

sharing their current states or planned trajectories. With the
shared states, collision-free trajectories can be generated by
constructing Buffered Voronoi Cells [20] or distributed MPC
[21], which provide better safety guarantees but inhibit flight
speed. When using shared trajectories, it becomes possible
to plan more agile routes. For example, MADER [6] and
Robust-MADER [22] broadcast planned trajectories through
a communication network, and propose a check-recheck
paradigm to avoid collisions with other robots. EGO-Swarm
[3] uses a reciprocal barrier cost to generate collision-free
trajectories by solving unconstrained optimization problems.
In [23], shared trajectories are used to generate linear relative
safety corridors as hard constraints. In this work, we depict
the shared trajectories in SOGM, facilitating simultaneous
collision avoidance for robots and obstacles with the spatio-
temporal safety corridors.

III. METHODOLOGY

This section first briefly introduces how we use the SOGM
in the MATP problem and describes the paradigm that
integrates shared trajectories into SOGM (Sec. III-A). Then a
kinodynamic path searching method designed for the SOGM
is presented (Sec. III-B). Finally, we describe the method that
generates corridors from the reference path and introduce
the trajectory optimization method to generate collision-free
trajectories within these corridors (Sec. III-C).

A. SOGM with Shared Trajectories Embedded

Various methods have been proposed to construct SOGMs
from the point cloud, such as filtering-based methods [8] and
learning-based methods [7], [24]. The resulting SOGM is a
4D OGM with spatial resolution r¢ and temporal resolution
r-. In this work, we assume that the local SOGM denoted
by My, in the frame of robot k € {1,2,..., K} with T-step
predictions, which is generated by the perception algorithm
in real-time (Fig. 2a). M () denotes the i-th frame of the
SOGM M, which is an OGM between ¢, _; and t;.

In the MATP problem, collision avoidance between non-
cooperative obstacles and other cooperative robots is chal-
lenging. The difficulty primarily arises from the distinct rep-
resentations of the two types of obstacles: Non-cooperative
obstacles are represented by the SOGM, while cooperative
robots are characterized by their trajectories. It requires two
independent pipelines to achieve collision avoidance, which
is inefficient and sometimes intractable because a collision-
free trajectory optimized in one pipeline might be infeasible
in another pipeline. Therefore, the published trajectories of
cooperative robots are projected in the SOGM by accounting
for the occupied grids of the robots from one time step to the
next. Assume that robot k receives shared trajectories p(t)x
and occupancy Oy from other robots &’ € {1,2,..., K} \k.
Then the occupancy of robot k' traveled from ¢;_; to ¢; is
represented as

123
Ok [tio1,ti] = / O @ p(t)g dt @))
ti—1

which the corresponding 3D spaces occupied in the SOGM
M, as Oy moves along trajectory p(t)x in the local frame
of robot k, as shown in Fig. 2a. Therefore, the SOGM
considering cooperative robots can be represented as

O [ti—1,ti] | UM (). (2)

M (i) = U

ke{1,2,.. KNk

M(i) will be updated applying the recent p(¢);r once
M () is updated. For the initial robot, M (i) = M (¢) for
all i € {1,2,...,T} since no other trajectories are published.

B. Kinodynamic Path Searching in SOGMs

We develop a path-searching method based on the kinody-
namic algorithm A* [25] to find a kinodynamically feasible
reference path (as shown in Fig. 2b). Similar to [25], we
select the double integrator as the approximate model and
generate a set of primitives by discretizing the control inputs
of the robot. The primitive duration is set to the temporal
resolution r, of the SOGM. The cost function is defined as
the cumulative square of control inputs over the time horizon.
The heuristic function is computed by applying Pontryagin’s
minimum principle [25] which yields the optimal control
input to reach the goal state. Since this function is both
admissible and consistent, optimality is guaranteed. In many
path-searching methods, obstacles are pre-inflated by the
robot radius to facilitate feasibility checks. Due to the high
dimension of the SOGM, inflating the obstacles with the
robot radius directly on the map is not efficient. Instead, we
first inflate the primitive with the shape of the robot and then
check if the inflated primitive collides with obstacles in the
corresponding temporal frame M(i).

C. Corridor Constrained Trajectory Generation

We develop a trajectory optimization method for the
MATP problem to generate collision-free trajectories con-
strained by spatio-temporal corridors inspired by [18].

1) Spatiotemporal Corridor Generation: Upon determin-
ing a collision-free reference path in the SOGM, our ob-
jective is to delineate the obstacle-free region along this
path before proceeding with trajectory generation. Due to the
dynamic nature of the environment, the safety region of the
path may change with time, so the static corridor introduced
in [26] is no longer applicable. A natural approach is to
locate the safety region at each temporal frame M, (i) of the
SOGM. In this work, the spatio-temporal corridor is defined
as a convex polyhedron P = {z € R"|Apxz < bp} that
encloses the safety region with the time window [t;_1,%;].
The time duration of each corridor is determined by the time
resolution r, of the SOGM.

The problem of finding the obstacle-free convex corridor
constraints for robot Ry, at temporal frame My (4) is formu-
lated as the following optimization problem:

II;ag(P VOI(P), s.t. R C P, Ok:}i C Mk(l) \ P, 3)
To efficiently solve the optimization problem, we apply Fast
Iterative Region Inflation (FIRI) [27]. FIRI approximates the
maximum volume polyhedron P by iteratively and mono-
tonically increasing the volume of its inscribed ellipsoid. It
formulates the problem as an equivalent second-order conic
programming (SOCP) problem to decrease the dimension of
the problem and reduce the computational cost. Thanks to
its efficiency, we can generate a sequence of feasible spatio-
temporal corridors at My, in less than Sms.

Given that the corridor produced by FIRI solely encom-
passes the obstacle-free region without accounting for the
robot’s size, it is essential to shrink the corridor’s size to
guarantee that the robot can navigate through. This reduction
is achieved by inwardly adjusting all the corridor edges by
the robot’s radius, d. Following this adjustment, a linear pro-
gramming check is employed to confirm the corridor remains
feasible and that consecutive corridors are interconnected.

2) Minimum Jerk Trajectory Optimization: We employ
the Bézier spline to parametrize the trajectory. A Bézier
spline is a n-th order piecewise polynomial defined as:

Zc bl (t 1),

where cj denotes the i-th control point at the j-th piece
of Bézier spline. b’ (t) = (})¢*(1 — t)"~" is the Bernstein
basis. The Bézier spline carries an important property: the
convex hull property, which guarantees that the trajectory
is entirely inside the convex hull of the control points.
Therefore, we can confine the j-th piece of trajectory p;(¢)
within the spatio-temporal corridors P; by constraining the
corresponding control points {c? cj, 7,.-' , ¢} as follows:

26{0517“'7]\]}5 (5)

By taking the above properties, we can formulate a minimum
jerk trajectory optimization problem with spatiotemporal
corridor constraints as follows:

mmz /

tefti—,tj), “4)

A'Pj c_j S b'Pjv

2

d3
P " 4 (62)

dt3

s.t. p(to) =po, p(tr)=pr (6b)

p;(t) € P;,Vt € [tj_1,t;], j=1,2,---,T (6¢)
p;i(t;) =pj+(t;), j=1,2,---,T (6d)
PV () < pll., P (1) <2, VEE [to,tr], (Ge)

in which pg and pr denote the initial and terminal position
of the trajectory, and p&fw and pg?m give the upper bound
of the velocity and acceleration. Note this is a quadratic
programming (QP) problem with linear constraints, which
can be solved efficiently by modern QP solvers, e.g. OSQP.

In our method, the time allocation for trajectories is estab-
lished during the path search phase, as opposed to emerging
from the backend optimization. This strategy is crucial to
ensure the safety of the generated trajectories. As a result,
our backend optimization prioritizes spatial optimization
with the temporal allocation fixed. We intentionally avoid
a comprehensive spatio-temporal optimization to avoid the
computational burden of solving a non-convex optimization
problem. By employing this approach, we not only address
the collision avoidance requirements but also achieve a more
lightweight backend optimization.

D. Multi-Agent Deconfliction

The deconfliction is considered to trigger the replanning of
each agent. Due to the Bézier spline’s convex hull property,
we check the linear separability between the control points
of the optimized trajectory and those of the broadcasted
trajectory. Specifically, if the check step identifies a potential
collision, the agent will update the SOGM and re-optimize
a new trajectory; Conversely, if no collision is detected, the
agent will broadcast and execute the current trajectory.

IV. RESULTS

We compared the performance of the proposed method
with MADER [6] and EGO-Swarm [3] in simulations of
4 MAVs varying in dynamic obstacles’ density and shape.
We then conducted real-world experiments with 2 MAVs
in a complex environment with static obstacles and moving
pedestrians to demonstrate the effectiveness of our approach.

A. Simulation Experiment

The 3D simulation experiment was conducted on a laptop
equipped with an AMD R7-5800H CPU. The simulation
environment is a 16mx16mx4m 3D space with randomly
generated moving columns and circles, implemented based
on a quadrotor simulator in [25]. Dynamic obstacles are
modeled as columns and circles of random sizes, initial
positions, and velocities. The widths of the columns and the
radius of the circles are uniformly sampled from 0.5 to 1.0 m
and 0.7 to 2.5 m, respectively. The height of all the columns
is 4.0 m, and the width of the circles is fixed at 0.1 m. The
velocities of the obstacles are randomly sampled from 0 to
1.0 m/s, and the directions are uniformly sampled from O to
2. Obstacles move with constant velocities and directions,
and they rebound when they reach the boundary of the map
space. All MAVs are initialized in the hovering state at a

height of 1.0 m, outside the obstacle space. Their objectives
are reaching their individual goals without any collision.

The experiments are divided into two types of environ-
ments with varying difficulty. The first type is a mixed
environment with columns and circles (Fig. 3d-3f), while
the second type is a pure column environment (Fig. 3g—
3i) similar to that used in MADER [6]. Fig. 3a—3c presents
a bird-eye view of these settings in a mixed environment
with 20 columns and 20 circles. This setup aims to create
a more cluttered environment by breaking the convexity and
isotropy of the obstacles. Robots can choose either side to
avoid columns; however, for circles, they must plan a 3D
trajectory to avoid the edges. Note that robots are allowed
to pass through circles from center to center. To quantify the
difficulty, Table I compares the average obstacle density in
both environments that varies in the number of obstacles. The
obstacle density is defined as the ratio of the total volume
occupied by obstacles to the volume of the space.

We compare our proposed method against two state-of-the-
art baselines, MADER [6] and EGO-Swarm [3], across three
distinct position swap tasks: bilateral (Fig. 3a), unilateral
(Fig. 3b), and cross (Fig. 3c and Fig. 5). Unlike MADER
and EGO-Swarm, which necessitate precise shapes and exact
trajectories of obstacles, our method employs SOGMs. To
ensure a fair comparison, all methods are confined to using
local obstacle information, namely the ground truth positions
and velocities within a 5.0 m radius over a time horizon of
2.0 s. SOGMs are specifically generated for our approach.
The maximum velocity and acceleration are set to 2.0 m/s
and 6.0 m/s?, respectively. We assume the perfect tracking
control in simulation. More than 50 trials are conducted in
each setting. Average results are reported in Fig. 3.

The performance is compared in terms of the failure rate
and average time to complete the task. As shown in Fig. 3d-
3i, the proposed planner presents 95.3% and 88.5% average
success rates in the mixed and pure environments when the
number of obstacles is less than 30. This result is comparable
to the 87.3% and 90.8% success rates of EGO-Swarm, and
better than the 87.5% and 84.8% success rates of MADER. In
mixed environments with more than 30 obstacles, our method
achieves a success rate of 73.0% between all tasks compared
to 45.2% and 21.0% for EGO-Swarm and MADER, respec-
tively. However, in pure environments with more obstacles,
our method performs worse than both baselines in success
rate and flight time.

To better understand the reason for the failure, we distin-
guish failures into two different types: collision and dead-
lock. Collision only occurs when the agent is following
a planned trajectory. Deadlock is defined as a situation
where a dynamic obstacle hits an agent after the agent has
stopped due to the inability to find a feasible trajectory. It
reflects the inability to find a feasible trajectory when the

Num. of Obstacles 10 20 30 40 50
Pure column environment (%) 1.73 345 5.18 7.00 8.62
Mixed environment (%) 0.86 1.73 371 453 5.76

TABLE I: Average obstacle density in different environments

(a) Task 1: Bilateral swap

(b) Task 2: Unilateral swap

(c) Task 3: Cross swap

40 1.0 40 1.0 . 40
~HWProposed Deadlogk Collision ~ E WProposed fon -l WProposed Deadloc!

0.87 ~HNEEGO-Swarm N nnn 300 0.81 ~HEEGO-Swarm N 30 © 0.87 ~NEEGO-Swarm N nnn 300
2 ~BEMADER E g ~HBEMADER g 2 ~BEMADER £
& T 206 & Zos =
g E g zo[g’ g 20§
= . =04 . =04 .

oy = ep S)
= z " 0z 10%
0.2 0.2
0.0 10 20 30 40 50 0 0.0 10 20 30 40 50 0 0.0 10 20 30 40 50 0

(d) Bilateral swap in mixed environments

(e) Unilateral swap in mixed environments

(f) Cross swap in mixed environments

1.0 40 1.0 40 1.0 40
-~ N WProposed Deadlock Collision =N WProposed Deadlock Collision - WProposed Deadlock Collision

0.87 ~HEEGO-Swarm W N annn 30 @ 0.81 ~HEEGO-Swarm N N nnn 30 © 0.81 ~HNEEGO-Swarm W N nnn 30 @
2 ~HEMADER E 3 ~HEMADER £ 2 ~HEMADER £
& 0.6 = gos6 5 206 =
g 20§ g 20[§ g 20[§
=04 =04 . 504 .

a0 on a0

= <>: |5 :: = 10 E

0.2 10 0.2 10 0.2

0.0 10 20 30 40 50 0 0.0 10 20 30 40 50 0 0.0 10 20 30 40 50 0

(g) Bilateral swap in pure environments

(h) Unilateral swap in pure environments

(i) Cross swap in pure environments

Fig. 3: Performance comparison between our proposed method (Ours), and two baselines (MADER and EGO-Swarm) in 3
different tasks (Fig. 3a—3c) and 2 different obstacle settings: mixed environments with both columns and circles (Fig. 3d-3f),

and pure column environments (Fig. 3g-3i). In Fig. 3a-3c,

trajectories for each MAV are displayed with distinct colors.

Fig. 3d-3i evaluate the average flight time to the goal and failure rate with different numbers of obstacles, distinguishing

failure types between deadlock and collisions.

search space is exhausted. In many real-world scenarios,
dynamic obstacles such as pedestrians may avoid the robots
in a “deadlock” situation. As shown in Fig. 3d to Fig. 3f,
deadlock accounts for almost all failures in our method.
In contrast, EGO-Swarm hardly encounters deadlock, but it
has a higher collision rate than other methods. Safety arises
because our method confines the planned trajectory within
the corridors. Furthermore, our method performs better in
mixed environments than in pure environments. As depicted
in Fig. 3d-3g, a significant decrease in the failure rate can
be seen in environments with more obstacles. These results
reveal that the ability of the SOGM to represent obstacles
with arbitrary shapes allows for greater flexibility in finding
feasible paths in such environments. Although it is feasible
to dissect these obstacles into smaller elements and represent
them using AABB or ellipsoidal costs, doing so increases the

computational burden, making it challenging to achieve real-
time performance. Therefore, our method is more suitable for
such environments.

The run time of each step is evaluated on a laptop with
an AMD R7-5800H CPU in mixed environments, shown in
Fig. 4. The overall execution time of our method is 17.19
ms on average, which is significantly faster than MADER
[6] (31.04 ms). The average run time of the kinodynamic
path searching step is 1.93 ms, increasing with the number
of obstacles. This is because kinodynamic A* algorithm will
traverse more nodes to find a feasible path as the obstacle
density increases as in Table 1. The corridor generation step
takes 3.47 ms on average. The trajectory optimization step
takes an average of 11.79 ms, which is time-consuming due
to the large number of polygon planes as corridor constraints.

. —— Path Search —— Corridor Gen. —— Traj. Opt.
E20
Q
=
=
g 10
3
O

0

0 10 20 30 40 50

Num. Obstacle

Fig. 4: The computation time of each step in our method
under different obstacle settings.

B

‘ Ref. Path

Corridor

Trajectory ——————

Fig. 5: (a) Composite image of two MAVs flying in an
indoor dynamic environment. (b) The SOGM at ¢t = 2.5s
is displayed, showing the predicted future occupancies with
a gradient transition from green to blue.

B. Real-World Experiment

We conducted real-world experiments in a 10mx 10mx4m
indoor environment to validate the efficiency of the proposed
method, shown in Fig. 6. Each robot is equipped with an
NVIDIA Jetson Xavier NX for onboard computation. Com-
munication between robots is achieved via a WiFi network.
Considering the limited onboard computational resources,
we rely on the OptiTrack system to provide ground-truth
information on dynamic obstacles to build the local SOGM.
The robot localization is provided by the OptiTrack as well,
due to the limited accuracy and robustness of the onboard
localization algorithm in dynamic scenes. The maximum
velocity and acceleration of the robot are set to 1.0 m/s and
4.0 m/s%. The planner runs at 10 Hz. Experiment settings
and the planning results are visualized in Fig. 5 and Fig. 6.
For more details, please refer to the supplementary video.

V. CONCLUSION

This paper presents a decentralized multi-agent trajectory
planning framework that is able to handle environments
with arbitrarily shaped static and dynamic obstacles. Our

Fig. 6: Snapshot of two MAVs flying in a dynamic environ-
ment with two pedestrians. Images on the right visualize the
SOGM, safety corridors, and planned trajectories.

planner adopts the kinodynamic A* path-searching algorithm
on the SOGM, allowing the robots to find a feasible path
in such environments. The corridor generation and trajec-
tory optimization methods efficiently help generate safe and
dynamically feasible trajectories. Simulation results show
that our method achieves more than 88.5% success rate in
dynamic environments with less than 20 obstacles, which
is comparable to both baselines. In dynamic environments
where obstacles cannot be represented by AABB or ellip-
soids, our method outperforms the baselines by achieving
a 51.9% and 27.7% lower failure rate than MADER and
EGO-Swarm, respectively. By classifying the failure cases
into collision and deadlock, we find that the majority of our
failures are due to deadlock cases. Real-world experiments
further validate the effectiveness of the proposed method.
However, in environments dense with obstacles or when there
are numerous robots, this method is susceptible to significant
deadlock issues. This can be attributed to the absence of
global guidance and the loss of topological homotopy un-
der frequent replanning. In future research, we will focus
on multi-agent path finding with topological homotopy to
mitigate these deadlock issues.

[1]

[2]

[3

=

[4]

[5]

[6

=

[7]

[8

=

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

Y. Wang, J. Ji, Q. Wang, C. Xu, and F. Gao, “Autonomous Flights
in Dynamic Environments with Onboard Vision,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 1966-1973.

G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active
sense and avoid system for flying robots in dynamic environments,”
IEEE/ASME Transactions on Mechatronics, vol. 26, no. 2, pp. 668—
678, 2021.

X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu, and F. Gao, “Swarm of micro flying robots in the
wild,” Science Robotics, vol. 7, no. 66, p. eabm5954, 2022/05/11.

H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoid-
ance for MAVs in Dynamic Environments,” IEEE Robot. Autom. Lett.
(RA-L), vol. 4, no. 2, pp. 776-783, 2019-04.

Z. Xu, D. Deng, Y. Dong, and K. Shimada, “DPMPC-Planner: A
real-time UAV trajectory planning framework for complex static envi-
ronments with dynamic obstacles,” in 2022 Int. Conf. Robot. Autom.
ICRA, 2022, pp. 250-256.

J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent
and dynamic environments,” /EEE Trans. Robot. (T-RO), vol. 38, no. 1,
pp. 463476, 2022.

H. Thomas, M. G. de Saint Aurin, J. Zhang, and T. D. Barfoot,
“Learning spatiotemporal occupancy grid maps for lifelong navigation
in dynamic scenes,” in 2022 Intl. Conf. on Robot. and Autom. (ICRA),
2022, pp. 484-490.

G. Chen, W. Dong, P. Peng, J. Alonso-Mora, and X. Zhu, “Continuous
occupancy mapping in dynamic environments using particles,” arXiv
preprint arXiv:2202.06273, 2022.

J. Hou, X. Zhou, Z. Gan, and F. Gao, “Enhanced decentralized
autonomous aerial robot teams with group planning,” IEEE Robot.
Autom. Lett. (RA-L), vol. 7, no. 4, pp. 9240-9247, 2022.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189-206, 2013.
B. L’Espérance and K. Gupta, “Safety hierarchy for planning with time
constraints in unknown dynamic environments,” /EEE Transactions on
Robotics, vol. 30, no. 6, pp. 1398-1411, 2014.

S. M. LaValle, Planning Algorithms. ~Cambridge University Press,
2006.

J. Lin, H. Zhu, and J. Alonso-Mora, “Robust Vision-based Obstacle
Avoidance for Micro Aerial Vehicles in Dynamic Environments,” in
2020 Intl. Conf. on Robot. and Autom. (ICRA), 2020, pp. 2682-2688.
M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust
collision avoidance for multiple micro aerial vehicles using nonlinear
model predictive control,” in 2017 IEEE/RSJ Intl. Conf. on Intell.
Robots and Syst. (IROS), 2017, pp. 236-243.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

F. Gao and S. Shen, “Quadrotor trajectory generation in dynamic
environments using semi-definite relaxation on nonconvex QCQP,” in
2017 Intl. Conf. on Robot. and Autom. (ICRA), 2017-05, pp. 6354—
6361.

H. Chen and P. Lu, “Real-time identification and avoidance of si-
multaneous static and dynamic obstacles on point cloud for UAVs
navigation,” Robotics and Autonomous Systems, vol. 154, p. 104124,
2022.

G. Chen, P. Peng, P. Zhang, and W. Dong, “Risk-aware trajectory
sampling for quadrotor obstacle avoidance in dynamic environments,”
IEEE Transactions on Industrial Electronics, pp. 1-10, 2023.

G. Chen, S. Wu, M. Shi, W. Dong, H. Zhu, and J. Alonso-Mora,
“RAST: Risk-Aware Spatio-Temporal Safety Corridors for MAV Navi-
gation in Dynamic Uncertain Environments,” IEEE Robot. Autom. Lett.
(RA-L), vol. 8, no. 2, pp. 808-815, 2023.

W. Honig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and
N. Ayanian, “Trajectory Planning for Quadrotor Swarms,” IEEE Trans.
Robot. (T-RO), vol. 34, no. 4, pp. 856-869, 2018-08.

H. Zhu and J. Alonso-Mora, “B-UAVC: Buffered Uncertainty-Aware
Voronoi Cells for Probabilistic Multi-Robot Collision Avoidance,”
in 2019 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), 2019, pp. 162-168.

C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online Trajectory
Generation With Distributed Model Predictive Control for Multi-Robot
Motion Planning,” IEEE Robot. Autom. Lett. (RA-L), vol. 5, no. 2, pp.
604-611, 2020.

K. Kondo, J. Tordesillas, R. Figueroa, J. Rached, J. Merkel, P. C.
Lusk, and J. P. How, “Robust mader: Decentralized and asynchronous
multiagent trajectory planner robust to communication delay,” in 2023
IEEE Intl. Conf. on Robot. and Autom. (ICRA), 2023, pp. 1687-1693.
J. Park and H. J. Kim, “Online Trajectory Planning for Multiple
Quadrotors in Dynamic Environments Using Relative Safe Flight
Corridor,” IEEE Robot. Autom. Lett. (RA-L), vol. 6, no. 2, pp. 659-666,
2021.

K. S. Mann, A. Tomy, A. Paigwar, A. Renzaglia, and C. Laugier,
“Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning,” 2022.

B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and Efficient
Quadrotor Trajectory Generation for Fast Autonomous Flight,” IEEE
Robot. Autom. Lett. (RA-L), vol. 4, no. 4, pp. 3529-3536, 2019-10.
S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning Dynamically Feasible Trajectories
for Quadrotors Using Safe Flight Corridors in 3-D Complex Environ-
ments,” IEEE Robot. Autom. Lett. (RA-L), vol. 2, no. 3, pp. 1688-1695,
2017.

Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically Constrained
Trajectory Optimization for Multicopters,” IEEE Trans. Robot. (T-RO),
pp. 1-10, 2022.

	Introduction
	Related Work
	MAV Planning in Dynamic Environment
	Decentralized Multi-Agent Trajectory Planning

	Methodology
	SOGM with Shared Trajectories Embedded
	Kinodynamic Path Searching in SOGMs
	Corridor Constrained Trajectory Generation
	Spatiotemporal Corridor Generation
	Minimum Jerk Trajectory Optimization

	Multi-Agent Deconfliction

	Results
	Simulation Experiment
	Real-World Experiment

	Conclusion
	References

