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There have been numerous studies on topological superconductivity in magnetic atomic chains
deposited on s-wave superconductors. Most of these investigations have focused on spin-orbit inter-
actions or helical spin orders. In this paper, we propose a new model for achieving one-dimensional
topological superconductivity in a magnetic atomic ring. This model utilizes a magnetic field and an
antiferromagnetic/ferromagnetic order, under the condition that the magnetic field is perpendicular
to the moments of the magnetic order. On a quasi-one-dimensional substrate surface, where the
half-filled ring favors an antiferromagnetic configuration, we demonstrate that either the magnetic
field itself or a Rashba spin-orbit coupling guarantees the perpendicularity. On a two-dimensional
surface, where the ring favors ferromagnetic orders, the perpendicularity is achieved by introducing
a minor Rashba spin-orbit coupling.

I. INTRODUCTION

The exploration of topological superconductors, which
are theoretically predicted to host Majorana zero
modes[1–15], has emerged as a burgeoning field of re-
search over the past decade, wherein magnetism plays
crucial roles. Typically, an s-wave superconductor ex-
hibits antagonistic relationships between magnetism and
superconductivity. However, carefully engineered artifi-
cial structures enable the coexistence of magnetism and
superconductivity at the magnet-superconductor inter-
faces through the proximity effect[16]. Recent years have
witnessed extensive research on realizing topological su-
perconductivity by employing the proximity effect. Nu-
merous studies have focused on one-dimensional mag-
netic atomic chains accompanied by helical[17–26], an-
tiferromagnetic (AFM)[27–33], and ferromagnetic (FM)
orders[34]. Notably, compared to other magnetic orders,
an AFM order does not lift Kramer’s degeneracy between
opposite spins, rendering it more compatible with spin-
singlet superconductivity[35–39], thus more suitable for
engineering topological superconducting states.

For a long time, considerable research endeavors have
been devoted to AFM materials, which possess interest-
ing features such as robustness against magnetic pertur-
bations, absence of stray fields and exhibition of ultrafast
dynamics[39–46]. Numerous methods have been explored
and developed to achieve AFM ordering in materials. In
low dimensional systems, a prevalent method is to utilize
the proximity effect, wherein the AFM order is induced
in magnetic atoms when they are deposited on the sur-
face of strong AFM materials such as Mn2C, NiPS3,
FeB, or MnB[47–49]. Scanning tunneling microscope
(STM) offers an alternative option to obtain AFM orders
as it can manipulate atoms one by one. Various mag-
netic orders have been achieved on superconductor sub-
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strates through artificial construction of magnetic atoms
via STM[17, 50–53]. In the last decade, an intriguing
method has been proposed for quasi-one-dimensional sys-
tems, where a magnetic atomic chain can self-organize
into a helical order with the pitch angle equal to 2kFa by
employing the Ruderman-Kittel-Kasuya-Yosida (RKKY)
mechanism[18–20]. As a consequence, the magnetic chain
exhibits AFM ordering when the system is half-filled.

Recently, a novel method has been developed to ex-
plore topological superconducting states in quasi-one-
dimensional systems by exploiting a magnetic flux. When
the flux threads through the loop of an Aharonov-Bohm
interferometer[54–59] or the core of a nanotube[60–62], a
topological superconducting state can be induced in the
presence of a spin-orbit coupling (SOC). Nevertheless,
the majority of existing routes toward realizing topolog-
ical superconductivity in quasi-one-dimensional systems
rely on two basic ingredients: strong spin-orbit couplings
or helical magnetic orders. In this paper, we propose a
topological superconducting model consisting of a one-
dimensional AFM atomic ring deposited on the surface
of an s-wave superconductor, in the absence of SOCs.
The ring exhibits superconductivity due to the proxim-
ity effect from the substrate. We find that topological
superconductivity emerges when a magnetic flux threads
through the ring and when the AFM moments are per-
pendicular to the external magnetic field. Further studies
reveal that the perpendicularity is guaranteed by either
the external magnetic field or a Rashba SOC. Therefore,
the proposed model serves as a promising platform for
realizing topological superconductivity.

The paper is organized as follows: In Sec. II, we intro-
duce the model of the antiferromagnetic ring and discuss
its topological properties. In Secs. III and IV, we exam-
ine the influences of the Rashba spin-orbit coupling and
magnetic field, respectively. Sec. V discusses the mag-
netic order when both the Rashba spin-orbit coupling
and magnetic field coexist with superconducting pairing.
In Sec. VI, we extend the study to a ring deposited on a
two-dimensional surface, where the system favors a fer-
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romagnetic order. Staggered arrangements of magnetic
atoms restore topological superconductivity, and the ori-
entation of the magnetic moments is determined by in-
troducing a minor Rashba spin-orbit coupling. Finally,
in Sec. VII, we provide a brief summary and discussion
of the results.

II. MODEL OF ANTIFERROMAGNET RING
ADOPT ON S-WAVE SUPERCONDUCTOR

We consider a ring of antiferromagnetically ordered
magnetic atoms deposited on the top surface of a hol-
low cylinder s-wave superconductor, as illustrated in Fig.
1(a). The underlying superconductor induces super-
conductivity in the magnetic ring due to the proximity
effect[18]. When a perpendicular magnetic field is ap-
plied on the surface, it creates both a Zeeman field V
on the ring and a flux ϕ0 through the ring. Suppose the
surface is in the x-y plane, as the magnetic moments lie
in the surface, the effective Hamiltonian of the ring can
be expressed as

H0 =
∑
j

te−iϕc†jcj+1 + J(−1)jc†jSj · σcj

+ µc†jcj + V c†jσzcj +∆c†j↑c
†
j↓ + h.c. (1)

The first term is hopping term with a phase factor
ϕ = ϕ0/L, where t is the itinerant electrons’ hopping am-
plitude between nearest neighboring sites and L is the to-

tal number of sites in the ring. Here, c†j = (c†j↑, c
†
j↓) with

c†jσ the electron creation operators on site j. The second
term accounts for the in-plane AFM arranged magnetic
atoms with Sj = S(cosφ, sinφ, 0), where φ is a random
angle. J stands for the exchange coupling constant be-
tween itinerant electrons and the onsite magnetic mo-
ment and σ = (σx, σy, σz) is the vector of spin Pauli ma-
trices. The third and fourth terms represent the chemical
potential and external Zeeman field, respectively. The
last term is the pairing term due to proximity effect, and
∆ the induced pairing parameter which is assumed to be
uniform. All the energies are in units of t in the entire
paper.

The Hamiltonian can be expressed in momentum space

as H0 =
∑

k Ψ
†
kH0(k)Ψk, where the basis spinor is

Ψk = [fA, fB ]
T with fδ = [cδk↑, cδk↓, c

†
δ−k↓,−c†δ−k↑].

Here, cδkα =
√

2
L

∑
j e

−ikRjδcδjα, where α labels spins

and δ = A/B represents the sublattice sites.

H0(k) = [ξ0(k)τz + η0(k)]Γk/2 +∆τx + V σz

+ µτz + (Jsxσx + Jsyσy)Γz, (2)

where ξ0(k) = 2t cosϕ cos k
2 , η0(k) = 2t sinϕ sin k

2 , sx =
S cosφ and sy = S sinφ. τ are pauli matrices acting

on particle-hole space. Γk/2 = cos k
2Γx − sin k

2Γy with
Γx,y,z being three pauli matrices acting on the sublattice
space. The normal-state energy dispersions are given
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FIG. 1: (a) depicts a schematic representation of an
AFM ring with a flux threading through it. (b) and (c)
illustrate the normal-state bands of the AFM ring when

the chemical potential µ = 0. In (b), the phase ϕ
(= ϕ0/L, where L is the number of sites in the ring) is
0, while in (c), ϕ is 0.06π. The magnetic Zeeman field
V splits the bands of different spins by an energy δV .

The phase ϕ induces a shift of the bands along the wave
vector k. (d) shows the bands of Hamitonian (2) with

µ = µ0 = 0.1, ∆ = 0.3 and ϕ = 0.06π. The other
parameters in (b)-(d) are JS = 0.2 and V = 0.4.

by ε±1,2(k) = µ ±
√
[ξ0(k) + η0(k)∓ V ]2 + J2S2, which

are illustrated in Figs. 1(b) and 1(c). The presence
of the Zeeman field causes a splitting of the bands for
different spins. The flux ϕ0 induces a shift of the dis-
persions by 2ϕ along the wave vector k, leading to an
odd number of Fermi-level crossings on each side of the
first Brillouin zone when the chemical potential µ satis-
fies JS < |µ| < µ1 or µ2 < |µ| < µ2 + δV . According to
Kitaev’s criterion[63], the system becomes topologically
nontrivial when a weak superconducting pairing is in-
troduced in these regions. However, as illustrated in Fig.
1(d), the bands exhibit asymmetric behavior between the
two sides of the first Brillouin zone. Consequently, the
condition |µ| < JS becomes a prerequisite for the system
to be gapped, contradicting the aforementioned Kitaev’s
criterion. This observation suggests that the topological
criterion cannot be met in a gapped system. Interest-
ingly, when considering the superconducting pairing, the
bands exhibit a twisting behavior near the Fermi level,
indicating that the system may become nontrivial if the
pairing strength exceeds the energy gap. Fig. 2(a) illus-
trates the open boundary energy spectrum with varying
pairing strength ∆. Zero energy modes (denoted by red
solid lines) emerge when the pairing strength surpasses
the gap, suggesting the possible presence of topologically
nontrivial states.

To determine the exact topological properties of
Hamiltonian (2), a topological invariant needs to be in-
troduced. Due to the breaking of time-reversal sym-
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FIG. 2: (a) shows the open boundary spectrum of the
AFM ring with 200 sites as a function of the

superconducting pairing strength ∆. (b)-(d) show the
topological phase diagrams for the ring. In (a)-(c), the
phase ϕ is set to 0.06π. In (a)(b)(d) V = 0.4 and in

(a)(c)(d) µ = 0.1, JS = 0.2. The blue regions represent
topologically nontrivial phases. The red dashed line in
(c) marks the scanning trajectory of the open boundary

spectrum shown in (a).

metry by the magnetic field, the system possesses only
particle-hole symmetry C = τyσyK (K denotes the com-
plex conjugate operator), rendering it a one-dimensional
Class D superconductor[64], which is characterized by a
Z2 topological invariant associated with the particle-hole
symmetry operator. The invariant, initially proposed by
Kitaev[63], is given by the sign of the Pfaffian of the
Hamiltonian matrix expressed in the Majorana fermion
representation. In this model, the Z2 invariant is written
as

M = Sgn
∏

k=K0

{[C(k) + V ]2 + J2S2 −∆2 − µ2}, (3)

with C(k) = 2t sinϕ cos k and K0 = 0, π. A detailed
derivation process is presented in Appendix A. The con-
dition M < 0(M > 0) indicates the existence of topo-
logically nontrivial (trivial) states. We show the phase
diagrams in Figs. 2(b)-(d). Therefore, we confirm that
the zero modes observed in Fig. 2(a) are indeed Majo-
rana zero modes, as they manifest within the topologi-
cally nontrivial regime denoted by the red dashed line in
Fig. 2(c).

III. THE INFLUENCE OF SPIN-ORBIT
INTERACTION

The aforementioned model relies on the presence of
AFM order, wherein the magnetic field must be oriented
perpendicularly to the AFM moments. As elucidated

in the introduction, there exist various means to attain
AFM order. We concentrate on the RKKY mechanism
and employ a classic spin approximation for the mag-
netic atoms, treating them as local magnetic fields, since
many experimental results have closely matched theoret-
ical calculations well under the approximation[27, 31, 65–
70]. Prior research has indicated that when a magnetic
atomic chain is formed on an s-wave superconductor, the
magnetic atoms self-organize into a helical magnetic mo-
ment structure, where the pitch angle is commensurate
with the Fermi wave vector at 2kFa[18–20]. Neverthe-
less, the moments of an AFM order established via this
method exhibit a random orientation. To fix the orien-
tation, it is imperative to consider additional effects.
First, we consider the Rashba SOC induced in a mag-

netic atomic chain by breaking the inversion symmetry
along the z-direction (assuming the substrate surface is
in the x-y plane) when the chain is deposited on a sub-
strate. The Rashba SOC takes the form αR(k × σ)z,
which breaks the system’s spin-rotation symmetry from
SU(2) down to U(1), thereby providing a means to adjust
the orientation of the AFM moments. Since our focus is
not on discussing the topologically nontrivial supercon-
ductivity induced by a strong SOC in this model, we
minimize the influence of the SOC on topological prop-
erties by assuming a negligible Rashba SOC with a tiny
αR. When the chain is oriented along the y-direction,
the SOC becomes (αRk, 0, 0), requiring the moments of
the AFM order to be either parallel to the x-axis, lying
in the y-z plane, or canted along x-axis relative to the
y-z plane.

In our model, the AFM order is achieved by setting
chemical potential to µ = 0. Under periodic boundary
conditions, the normal-state Hamiltonian with Rashba
SOC can be expressed in k-space as

Hα(k) = (2t cos
k

2
+ 2αR sin

k

2
σx)Γk/2 + JsxσxΓi

+ (Jsyσy + Jszσz)Γz, (4)

with k ∈ (−π, π). Γi represents either Γz or the identity
matrix, denoted as Γ0. The possible orientations of AFM
moments are described by selecting different Γi. When
Γi = Γz, the Hamiltonian describes a perfect AFM order
with moments aligned along a random orientation, and
the energy dispersions are given by

ϵ±12(k) = ±
√
A2 +B2 ∓ 2

√
B2(A2 − J2s2x), (5)

with A2 = 4t2 cos2 k
2 + J2S2 and B = 2αR sin k

2 .

For the energy dispersions of the form ϵ±1,2(k) =

±
√

f ∓ 2
√
g, the two lower bands are given by ϵ−1,2(k) =

−
√
f ∓ 2

√
g. Since the system is half-filled, the two

lower bands are completely occupied. At T = 0K,
the free energy of the system can be expressed as
G =

∑
k F (k) , where F (k) = ϵ−1 (k) + ϵ−2 (k) =

−
√
[ϵ−1 (k) + ϵ−2 (k)]

2 = −
√
2
√
f +

√
f2 − 4g. Here,
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Fα
1 (k) = −

√
2A2 + 2B2 + 2

√
(A2 −B2)2 + 4B2J2s2x.

Evidently, with respect to sx, the minimum value of
Fα
1 (k) occurs at sx = ±S for every k.
When Γi = Γ0, the Hamiltonian contains a canted

AFM order. The energy dispersions are

ϵ±1 (k) = ±
√
A2 − 2aJsx −B, (6)

ϵ±2 (k) = ±
√
A2 + 2aJsx +B,

with a = 2t cos k
2 > 0 for k ∈ (−π, π). The sum of the two

lower bands can take two forms. One is Fα
2 (k) = −2|B|,

which is discarded since it is larger than Fα
1 (k) for all

values of k. The other form is Fα
2 (k) = ϵ−1 (k) + ϵ−2 (k) =

−
√
2A2 + 2

√
A4 − 4a2J2s2x, whose minimum value oc-

curs at sx = 0 for each k.
We find Fα

1min(k) = Fα
1 (k)|sx=±S <

Fα
2 (k)|sx=0=Fα

2min(k), indicating Fα
1min(k) < Fα

2min(k)
and the free energy Gα

1min < Gα
2min. Therefore, the

system favors an AFM order with the maximum |sx| = S
and minimum |sy| = |sz| = 0, implying that the AFM
moments align with the x-direction (noting that the
chain is oriented along the y-direction). Obviously, if
the chain is instead oriented along the x-direction with
the SOC taking the form (0, αRk, 0), the AFM moments
will preferentially align with the y-direction. These
results indicate that the Rashba SOC can fix the AFM
moments to be confined within the surface plane and
perpendicular to the ring, as illustrated in Fig. 1(a).

IV. THE EFFECT OF MAGNETIC FIELD

An external magnetic field also breaks the SU(2) spin-
rotation symmetry down to U(1) spin-rotation symmetry.
The perpendicular magnetic field applied on the surface
requires the AFM moments to be either parallel to the
z-axis, confined within the x-y plane, or canted along the
z-axis relative to the x-y plane. The normal-state Hamil-
tonian containing these three scenarios can be written as

HM (k) = 2t cos
k

2
Γk/2 + V σz

+ (Jsxσx + Jsyσy)Γz + JszσzΓi. (7)

When Γi = Γz, the Hamiltonian describes the
AFM orders encompassing the first and second sce-
narios. Sum of the two lower bands gives FM

1 (k) =

−
√
2(A2 + V 2) + 2

√
(A2 + V 2)2 − 4V 2(a2 + J2s2z). For

each value of k, FM
1 (k) is minimized when sz = 0,

implying that the minimum value of the free energy
(GM

1 =
∑

k F
M
1 (k)) occurs at sz = 0.

When Γi = Γ0, the system exhibits a FM order
with the moments aligned with the direction of the
magnetic Zeeman field V . The corresponding Hamil-
tonian describes the third scenario, with FM

2 (k) =

−
√
2f2 + 2

√
f2
2 − 4g2, where f2 = A2+V 2+2V Jsz and
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FIG. 3: (a) depicts an AFM ring on an s-wave
superconductor canted under a magnetic field V applied
perpendicular to the ring plane. φ represents a random
angle. (b) shows the canted AFM moments, with the
AFM components along the x direction and the FM
components along the z direction. (c) shows the FM
moments along the z direction, twisted from an initial
AFM order by a large V . (d) shows the cosine of the
canted angle as a function of V for different SOC

strengths with JS = 0.2.

g2 = a2(Jsz + V )2. When V > a, FM
2 (k) monotonically

decreases in the interval [−S, S]. When V < a, FM
2 (k)

monotonically decreases in the interval [−S, sz0], with

sz0 = JS2V
a2−V 2 > 0. The minimum value of FM

2 (k) occurs
at sz = sz0 when sz0 < S, and sz = S when sz0 > S.
Thus, for both V > a and V < a, a positive sz is required
for the minimum value of FM

2 (k). As a consequence, the
minimum value of the free energy, GM

2 =
∑

k F
M
2 (k),

must occur at a positive s′z. Since the preceding discus-
sion does not have any limitation on sx and sy, if the
condition s′z < S is satisfied, where S2 = s2x + s2y + s′2z ,
nonzero values for sx and sy are required. A detailed
derivation is provided in Appendix B.
It is obvious that GM

1min = GM
1 |sz=0 = GM

2 |sz=0 >
GM

2 |s′z = GM
2min, indicating that the system favors a

canted AFM order, whose moments’ out-of-plane compo-
nents in z direction are ferromagnetically ordered and the
in-plane components in x-y plane remain antiferromag-
netically ordered, as shown in Fig. 3(a). Continuously
increasing the strength of the magnetic field, the AFM
order will eventually transition into a fully FM order, as
illustrated in Fig. 3(c).

V. MAGNETISM UNDER SPIN-ORBIT
COUPLING, MAGNETIC FIELD AND

SUPERCONDUCTIVE PAIRING

When both the Rashba SOC and perpendicular mag-
netic field are present simultaneously, they naturally
compete due to their adherence to different U(1) spin-
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rotation symmetries. This competition yields a unilateral
outcome, as the U(1) symmetry of the SOC is disrupted,
while the U(1) symmetry of the magnetic field remains
intact. Consequently, the magnetic field induces FM or-
der, thereby breaking the U(1) symmetry of the SOC.
The subsequent proof will substantiate this claim.

The Hamiltonian, which encompasses both a perpen-
dicular magnetic field and in-plane Rashba SOC, is
derived by incorporating 2αR sin k

2σxΓk/2 into Hamil-
tonian (7). When Γi = Γz, F1(k) yields F1(k) =

−
√
2f1 + 2

√
f2
1 − 4g1, where f1 = A2 + B2 + V 2 and

g1 = B2(A2 − J2s2x) + V 2(a2 + J2s2z). The minimum
value of F1(k) coincides with the minimum of g1, neces-
sitating sx = ±S, and sz = sy = 0.

When Γi = Γ0, equation F2(k) =

−
√
2f2 + 2

√
f2
2 − 4g2 holds, with f2 = A2 + V 2 +

B2 + 2V Jsz and g2 = B2(a2 + J2s2y) + a2(Jsz + V )2.
It is evident that to obtain the minimum value of
F2(k), sy = 0 is required. When V > aT , where

T = Jsz+V√
B2+(Jsz+V )2

, F2(k) monotonically decreases

within the interval [−S, S]. When V < aT , F2(k) ex-
hibits monotonic decrease in the interval [−S, sz0], with

sz0 = V
D−2(a2−V 2)+

√
D2+4B2(a2−V 2)

2J(a2−V 2) > V B2+J2S2

2J(a2−V 2) > 0

and D = a2 − V 2 + B2 + J2S2. The minimum value of
F2(k) occurs at sz = sz0 when sz0 < S, and at sz = S
when sz0 > S. These results closely resemble those
obtained when considering only the perpendicular mag-
netic field, as discussed in Sec. IV. The minimum value
of F2(k) requires a positive sz under both conditions
V > aT and V < aT . Hence, G2min is located at a
positive s′z. For a more comprehensive derivation, refer
to Appendix C.

It is observed that G1min = G1|sz=0 = G2|sz=0 >
G2|sz=s′z

= G2min, indicting a preference for canted an-
tiferromagnetically ordered moments with induced FM
components aligned parallel to the magnetic field V . Fur-
thermore, the SOC continues to influence the orientation
of the AFM components, as depicted in Fig. 3(b), rather
than allowing random orientations, which is indicated by
the requirement of sy = 0 for G2min. Fig. 3(d) presents
the numerically self-consistently solved results of the in-
duced FM orders under varying strengths of SOC and
magnetic field within a 160-site ring. It appears that
the SOC not only influences the orientation of the AFM
components, but also plays a role of compensating for
the effects of the magnetic fields.

When introducing a flux ϕ0 into the system, the wave
vector k is replaced with k±2ϕ (where ϕ = ϕ0/L), while
the structure of F (k) remains unchanged. The flux solely
shifts the bands along the k direction without elevating or
lowering any band and has no impact on the free energy.

When the AFM ring is deposited on an s-wave su-
perconductor, the canted magnetic moments persist as
AFM in the x-y plane and FM along the z direction.

3 0 0 3 2 0 3 4 0

- 0 . 2

0 . 0

0 . 2

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 ∆=0.6

s i/S

 s z
 s x
 s y

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 ∆=0.4

s i/S

 s z
 s x
 s y

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 ∆=0.1

s i/S

 s z
 s x
 s y

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 00 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 ∆ = 0
 ∆ = 0 . 1
 ∆ = 0 . 2
 ∆ = 0 . 4
 ∆ = 0 . 6
 ∆ = 0 . 8

co
sθ

( a ) ( b )

VV

E

LD
OS

S i t e

( f )( e )

( d )( c )

N

FIG. 4: Self-consistently solved magnetic orders and the
corresponding zero modes in real space for a system

with 160 sites are presented. (a) shows the FM moment
components induced by a magnetic field, while (b)(c)
illustrate both the induced FM and the in-plane AFM
components along the x-y directions under different

superconducting pairing strengths. The parameters are
set as follows: αR = 0.05, JS = 0.2, ϕ = 0.06π and
µ = 0. (e) and (f) show the open boundary energy
levels of the ring and LDOS of one zero mode,

respectively. The magnetic configuration is selected
from (c) and marked by open circles for ∆ = 0.4 and

V = 0.44. The ‘N’ in (e) denotes the energy level index.

We self-consistently solve the real-space Bogoliubov-de
Gennes (BdG) equation for the modified Hamiltonian
(1), where J(−1)jSj is substituted with JSj and Sj =
S(sin θj cosφj , sin θj sinφj , cos θj). We select a ring con-
sisting of 160 sites and initialize the process with random
values of θj and φj at each site. Throughout this process,
we exclusively perform self-consistent calculations to de-
termine the orientation of each magnetic moment with a
fixed pairing strength ∆. Fig. 4(a) presents numerical
results of the induced FM components of the magnetic
moments for varying pairing strengths, while more de-
tailed results, including AFM components, are depicted
in Figs. 4(b) and (c). Our results indicate that a weak
pairing, such as ∆ = 0.1, does not disrupt the magnetic
orders present in the normal state (∆ = 0), as illustrated
in Fig. 4(a). When the pairing strength increases, orders
deviate from the normal state. This deviation generates
not only in the induced FM components but also in the
AFM components. For example, when ∆ = 0.4, the AFM
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components no longer align along the x-axis but can po-
tentially exist along any direction within the x-y plane.
With a larger ∆, such as ∆ = 0.6, the AFM components
are completely oriented along the y-axis. These devia-
tions occur due to the significant Cooper pairing strongly
distorting the band structure, leading to adjustments in
the free energy and magnetic order. Nevertheless, as long
as the AFM components are confined to the x-y plane,
Hamiltonian (1) can be realized by modifying Jsx(y) to
Jsx(y) sin θ and V to V + JS cos θ. Figs. 4(e) and (f)
display the Majorana zero modes and one example of
their local density of states (LDOS) in a scenario where
the AFM components deviate from the x direction. The
magnetic structure, selected from Fig. 4(c), is marked by
open circles with fixed ∆ = 0.4 and V = 0.44.

VI. MAGNETIC ORDER ON 2D SURFACE

If the substrate superconductor surface is sufficiently
large to be treated as two-dimensional, the magnetic
atoms exhibit a preference for FM order[23]. We
find that topological superconductivity is reconstructable
by adopting the magnetic atoms on the next-nearest-
neighbor lattice sites. When a vertical magnetic field
is applied to the surface and the substrate’s influence is
integrated out[18], the 1D effective Hamiltonian can be
expressed in k-space as

Ĥ(k) = [ξ0(k)τz + η0(k)]Γk/2 +∆τx + V σz

+J(sxσx + syσy)(Γz + Γ0)/2. (8)

The system remains a one-dimensional Class D supercon-
ductor, and the Z2 invariant can be determined by calcu-
lating the Pfaffian of the Hamiltonian matrix in the Ma-
jorana fermion representation. The calculation method
is detailed in Appendix A, and the corresponding topo-
logical phase diagram is presented in Fig. 5(a).

Contrary to AFM orders, the SOC or magnetic field do
not ensure the perpendicularity between the ferromag-
netically ordered moments and the magnetic field, which
is crucial for the system to exhibt topological nontrivi-
ality. The U(1) spin-rotation symmetry of the Rashba
SOC promotes FM order with in-plane moments, but it
is disrupted by the perpendicular magnetic field, favor-
ing FM order with moments parallel to the field. When
both the magnetic field and SOC are present simultane-
ously, the FM moments are likely to align parallel to the
magnetic field. However, previous studies have shown
that in the presence of SOC, magnetic atoms favor a he-
lical magnetic order with a pitch angle of 2kRa, where
kR = m∗αR[20, 23], and m∗ represents the effective mass
of electrons. When the magnetic field exceeds the critical
value associated with the SOC energy scale αRkF , a ho-
mogeneous magnetization parallel to B is induced, and
the helical components become perpendicular to B[20].
In the subsequent discussion, we aim to briefly explore
the potential for achieving topological superconducting
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FIG. 5: (a)-(d) show the topologically nontrivial phases
(blue regions) in the parameter space with different
patch angles φ. (e) shows the open boundary energy
spectrum with the scanning trajectory denoted by red
dash line in (b). (f) shows the LDOS of the zero mode
marked in (e) by the open circle. In (a)-(f) , αR = 0,

ϕ = 0.04π and ∆ = 0.5. Other parameters in (a)-(d) are
φ = 0, 0.01π, 0.1π and 0.2π, respectively. In (e)(f),

φ = 0.01π, JS = 0.2 and in (f), V = 0.4.

states in this helically ordered ring. For simplicity, we
exclude the SOC term in the Hamiltonian and disregard
the induced homogeneous magnetization along B. This
decision is justified by the minor influence of the tiny
SOC on the topological properties, resulting solely in a
small pitch angle for the helical order. Moreover, the in-
duced homogeneous magnetization is relatively small in
comparison to the external field, and its magnitude varies
with different strengths of B. After considering the neg-
ligible SOC and the resulting small pitch angle, denoted
as φ, we apply the transformation dj↑ = cj↑e

ijφ/4 and

dj↓ = cj↓e
−ijφ/4 to the Hamiltonian, yielding the ex-

pression of the Hamiltonian in k-space as

Ĥ ′(k) = [ξk/2τz + ηk/2]Γk/2 +∆τx + V σz

+JSσx(Γz + Γ0)/2, (9)

with ξk/2 = 2t cosϕ cos φ
4 cos k

2 + 2t sinϕ sin φ
4 cos k

2 τzσz,

ηk/2 = 2t sinϕ cos φ
4 sin k

2 −2t cosϕ sin φ
4 sin k

2 τzσz. It can
be anticipated that if the pitch angle is small, the sys-
tem’s topological properties closely resemble those of a
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ring with in-plane FM moments (φ = 0). In Fig. 5(b),
we present the topological phase diagram of the Hamil-
tonian (9) with a small pitch angle of φ = 0.01π. The
topologically nontrivial area is almost the same as that
of the FM order. To test the stability of the topolog-
ical phases against the helical orders, we examine the
effects of different pitch angles and present the results in
Figs. 5(b)-(d). The comparisons confirm that the topo-
logical phases are robust despite variations in the pitch
angles. Since a half-filled ring with a helical order gen-
erally does not exhibit topologically nontrivial supercon-
ductivity, these nontrivial phases are induced by the flux
ϕ0. Finally, we show the open boundary spectrum of the
ring with 160 sites in Fig. 5(e), along with the LDOS
of a zero mode in Fig. 5(f). This zero mode is localized
at the ends of the ring and identified as a Majorana zero
mode.

VII. SUMMARY AND DISCUSSION

We present a one-dimensional topological supercon-
ductor model with an AFM ordered ring on an s-wave su-
perconductor. The model requires a perpendicular mag-
netic field imposing on the ring, providing both a Zeeman
field normal to the AFM moments and a magnetic flux
through the ring. We first analyze the effects of a in-
plane Rashba SOC and the perpendicular magnetic field
in the normal states. Both of them reduce the symme-
try of the system, leading to distinct orientations of the
magnetic moments. The Rashba SOC favors in-plane and
chain-perpendicular AFMmoments, while the perpendic-
ular magnetic field cants the in-plane AFM moments by
inducing FM components parallel to the field and main-
taining the in-plane AFM components with a random di-
rection. When both the in-plane Rashba SOC and per-
pendicular magnetic field are present, the competition
between their influences is one-sided. The magnetic field
tends to induce the FM components along its direction,
while the SOC reinforces the effect of the magnetic field
and governs the orientation of the in-plane AFM com-
ponents by ensuring that they are perpendicular to the
chain.

Secondly, we investigate the influence of the supercon-
ducting pairing which distorts the bands near the Fermi
level. The pairing primarily impacts the canted AFM
order by twisting the orientation of the in-plane moment
components, which appears to change from being per-
pendicular to the ring to being parallel as the pairing
strength increases. Such a twist does not hinder the real-
ization of one-dimensional topological superconductivity.

Thirdly, on the two-dimensional surface, the RKKY ef-
fect favors FM magnetic order, whose moments can not
be oriented normal to the external magnetic field. We in-
troduce a minimal Rashba SOC to construct a helical mg-

netic order with a small pitch angle. The helical magnetic
order’s moments can be oriented in-plane by applying a
perpendicular magnetic field. With this magnetic order,
if magnetic atoms are deposited on next-nearest-neighbor
lattice sites of an s-wave superconductor, a magnetic flux
can induce topological superconducting states.

To achieve topological nontriviality in our model,
J2S2 − µ2 and ∆2 must be on the same order of mag-
nitude, as illustrated in Fig. 2(b). In experiments, the
exchange coupling strengths are expected to be on the
order of electronvolts, while the superconducting order
parameters ∆ are on the order of millielectronvolts when
depositing transition metal atoms onto conventional su-
perconductors. It is a big challenge to find high ∆ super-
conductors, while increasing the chemical potentials and
reducing the strengths of exchange couplings are feasible
solutions. There are reports of achieving small J when
depositing Fe atoms onto the surface of superconduct-
ing Ta(100)− (3× 3)O[71], and also reports of reducing
J through the hydrogenation of adatoms[72] or replac-
ing the magnetic atoms with paramagnetic metal-organic
molecules, where the molecular ligand with inert organic
groups separates the central magnetic ion from its con-
ducting environment[73].

Recent studies have investigated the impact of quan-
tum many-body effects on the topological properties of
dilutely deposited magnetic chains, where the spins of the
magnetic atoms are treated quantum mechanically[74,
75]. It is a challenge to stabilize the magnetic structure
under this effect. However, the actual spin structure of
a magnetic chain is influenced by various effects, such
as the RKKY effect, Dzyaloshinskii-Moriya interaction,
SOC, and the Kondo effect. The dominant interaction
depends on the substrate material, adatom species, dis-
tances between magnetic atoms, and exchange coupling
strengths. Nevertheless, the classical approximation re-
mains a valuable tool, given its success in explaining nu-
merous experimental observations[27, 31, 65–70]. Our
proposal presents a potential approach to engineer the
magnetic spin structure and achieve topological super-
conductivity. We believe this manuscript may provide
valuable insights for experimental investigations in this
field.
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APPENDIX A: CALCULATION OF THE INVARIANT M

Here we present two approaches to calculate the Z2 invariant M of Hamiltonian (1). The first approach involves
transforming the Hamiltonian directly into the Majorana fermion representation. We choose the basis [rA,j , rB,j ]

T ,

where rδ,j = [aδ,2j−1,↑, aδ,2j,↑, aδ,2j−1,↓, aδ,2j,↓] and cδ,j,α = 1√
2
(aδ,2j−1,α + iaδ,2j,α), c

†
δ,j,α = 1√

2
(aδ,2j−1,α − iaδ,2j,α),

with δ = A/B representing the sublattice sites. Subsequently, we perform a Fourier transformation to express the
Hamiltonian in the Majorana fermion representation in k-space,

Ĥ0(k) = (2t sinϕ sin
k

2
− 2t cosϕ cos

k

2
σy)Γk/2 − µσy − V τzσy +∆τyσx − (Jsxτxσy − Jsyτy)Γz.

The Z2 invariant is expressed as

M = Sgn
∏

k=K0

{Pf [Ĥ0(k)]} = SgnP (0)P (π),

with Pf denoting the Pfaffian and K0 = 0 or π, P (0) = (4t2 cos2 ϕ+∆2+J2S2−µ2−V 2)2− 4(J2S2−µ2)(∆2−V 2)
and P (π) = (4t2 sin2 ϕ−∆2 + J2S2 − µ2 − V 2)2 − 4V 2(∆2 − J2S2 + µ2).
Employing the second approach, we initially perform a unitary transformation on the Hamiltonian (1), such that

cj↑ = ei
φj
2 dj↑, cj↓ = e−i

φj
2 dj↓. Here φj+1 − φj = π represents the different angle between the magnetic moments

of two neighboring atoms in the antiferromagnetically ordered magnetic system. After that, the Hamiltonian can be
written as

H ′
0 =

∑
j

ite−iϕd†jσzdj+1 + Jd†jS · σdj + µd†jdj + V d†jσzdj +∆d†j↑d
†
j↓ + h.c.,

with d†j = (d†j↑, d
†
j↓). Then we express the transformed Hamiltonian in the Majorana fermion representation. We

employ the basis [a2j−1,↑, a2j,↑, a2j−1,↓, a2j,↓]
T the transformations dj,α = 1√

2
(a2j−1,α+ia2j,α) and d†j,α = 1√

2
(a2j−1,α−

ia2j,α) to express H ′
0 in the Majorana fermion representation and then express it in k-space. We have

Ĥ ′
0(k) = 2t cosϕ sin kτz − (2t sinϕ cos k + V )τzσy − µσy +∆τyσx − Jsxτxσy + Jsyτy.

The Z2 invariant is written as

M = Sgn
∏

k=K0

{Pf [Ĥ ′
0(k)]} = Sgn

∏
k=K0

{[C(k) + V ]2 + J2S2 −∆2 − µ2},

with C(k) = 2t sinϕ cos k and K0 = 0, π.
We have confirmed the consistency of the results obtained by the two methods by comparing the phase diagrams

calculated using each method.

APPENDIX B: DERIVATION OF THE INFLUENCE OF MAGNETIC FIELD

When Γi = Γz, the energy dispersions of Hamiltonian (7) are given by

ε±1,2(k) = ±
√

A2 + V 2 ∓ 2
√
(a2 + J2s2z)V

2.

We have FM
1 (k) = −

√
2(A2 + V 2) + 2

√
(A2 + V 2)2 − 4V 2(a2 + J2s2z). FM

1 (k) attains its minimum value for all

values of k when sz = 0. Thus the free energy GM
1 =

∑
k F

M
1 (k) is minimized when sz = 0.

When Γi = Γ0, the energy dispersions become

ε±1,2 = ±
√

A2 + V 2 + 2JszV ∓ 2a(Jsz + V )

and FM
2 (k) = ε−1 + ε−2 . The extremum of FM

2 (k) can be determined by differentiating FM
2 (k) with respect to sz.

∂FM
2 /∂sz = J

(V−a)ε−2 +(V+a)ε−1
ε−1 ε−2

. When a < V , ∂FM
2 /∂sz < 0, FM

2 monotonically decreases. The minimum value of
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FM
2 occurs at sz = S. When a > V , FM

2 has only one extremum value, which exists at sz0 = JS2V
a2−V 2 > 0, indicating

that FM
2 is monotonic in both sides of the extremum value. We can judge whether it monotonically decreases or

increases through checking the sign of differentiating FM
2 (k) at any arbitrary sz. For convenient, we choose sz = −S.

We find when JS < a+V , ∂FM
2 /∂sz|−S = − 2aJ2S

ε−1 ε−2
< 0, and when JS > a+V , ∂FM

2 /∂Jsz|−S = −2J JSV+a2−V 2

ε−1 ε−2
< 0.

FM
2 monotonically decreases from −S to sz0. If sz0 < S, the minimum value of FM

2 occurs at sz = Sz0. If sz0 > S,
the minimum value occurs at S. Since sz0 is dependent on k, the precise value of the induced FM order cannot be
readily determined. However, it can be affirmed with certainty that the free energy GM

2 =
∑

k F
M
2 (k) possesses a

minimum value at a positive value of s′z.

APPENDIX C: DERIVATION OF THE INFLUENCE WHEN MAGNETIC FIELD AND SOC COEXISTED

In Sec. V, when Γi = Γz, the dispersions become

ε±1,2 = ±
√
A2 +B2 + V 2 ∓ 2

√
B2(A2 − J2s2x) + V 2(a2 + J2s2z).

F1(k) = −
√

2f1 + 2
√
f2
1 − 4g1 with f1 = A2 + B2 + V 2 and g1 = B2(A2 − Js2x) + V 2(a2 + J2s2z). When |sx| = S,

sz = sy = 0, F1(k) attains its minimum value for all values of k. Consequently, the free energy G1 =
∑

k F1(k) also
possesses a minimum value when the condition sx = S is satisfied.
When Γi = Γ0, the energy dispersions are given by

ε±1,2 = ±
√
f2 ∓ 2

√
g2 = ±

√
(A2 +B2 + V 2 + 2V Jsz)∓ 2

√
B2(a2 + J2s2y) + a2J2s2z + 2a2V Jsz + a2V 2.

F2(k) = −
√
2f2 + 2

√
f2
2 − 4g2. To obtain the minimal value of F2(k), the condition sy = 0 must be satisfied.

Subsequently, the minimum value of F2(k) can be determined by differentiating it with respect to sz. ∂F2/∂sz =

J
(V−aT )ε−2 +(V+aT )ε−1

ε−1 ε−2
with T = Jsz+V√

B2+(Jsz+V )2
and |T | < 1.

When V < aT , we have Jsz + V > 0 and V < a. Let ∂F2/∂sz = 0, we get the extremum point

sz0 = V
D−2(a2−V 2)+

√
D2+4B2(a2−V 2)

2J(a2−V 2) > 0 with D = a2 − V 2 + B2 + J2S2. We figure out the monotonicity in

either side of the extremum point sz0 via comparing the values of (V − aT )ε−2 and (V + aT )ε−1 . [(V − aT )ε−2 ]
2 −

[(V + aT )ε−1 ]
2 = 1

g2
[V

√
g2 − a2(Jsz + V )]2(f2 +2

√
g2)− 1

g2
[V

√
g2 + a2(Jsz + V )]2(f2 − 2

√
g2) =

4√
g2
(C1−C2), with

C1 = V 2g2 + a4(Jsz + V )2 and C2 = a2V (Jsz + V )f2. C1−C2|sz=−S = a2JS[a2(JS − V ) + V (JS − V )2 + V B2] =
a2JS
T 2 [V (V − JS) − (aT )2] < a2JS

T 2 [V 2 − (aT )2]. Here T = T |sz=−S . We remind readers that here we are dis-

cussing the situation with 0 < V < aT . Therefore, C1 − C2 < 0 and |(V − aT )ε−2 | < |(V + aT )ε−1 |. Finally,

∂F2/∂sz|sz=−S =
(V−aT )ε−2 +(V+aT )ε−1

ε−1 ε−2
< 0. Therefore, ∂F2/∂sz < 0 in the interval [−S, sz0). F2(k) decreases from

sz = −S to sz0. The minimum value of F2(k) occurs at sz0.
When V > aT , ∂F2/∂sz < 0, indicating that F2 monotonically decreases in the interval [−S, S]. F2 attains its

minimum value when sz = S.
Therefore, either V < aT or V > aT , the minimum value of F2(k) occurs at a positive sz.
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