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Abstract

A common approach to minimizing the cost of quantum
computations is by transforming a quantum system into
a basis that can be optimally truncated. Here, we de-
rive classical equations of motion subjected to similar
unitary transformations, and propose their integration
into mixed quantum–classical dynamics, enabling this
class of methods to be applied within arbitrary bases for
both the quantum and classical coordinates. To this end,
canonical positions and momenta are combined into a
set of complex-valued classical coordinates amenable to
unitary transformations. We demonstrate the potential
of the resulting approach by means of surface hopping
calculations of an electronic carrier scattering onto a sin-
gle impurity in the presence of phonons. Appropriate
basis transformations, capturing both the localization
of the impurity and the delocalization of higher-energy
excitations, are shown to faithfully capture the dynam-
ics within a fraction of the classical and quantum basis
sets.

1 Introduction

The application of unitary basis transformations is com-
mon practice in quantum-mechanical computations,
derivations, and analyses. Computations typically re-
quire bases to be truncated, and depending on the quan-
tum system at hand, the effectiveness of such trunca-
tions varies with the transformed representation.1,2 In
addition, transformations enable one to construct pertur-
bative expansions with optimal convergence properties,
while also allowing quantum-mechanical equations to
be cast in their most intuitive form.

This is exemplified by Bloch’s theorem,3 which finds
widespread application in the modeling of materials.
Bloch’s theorem invokes a complex Fourier transform
of physical basis states over a crystal lattice in order to

yield a representation in reciprocal space.4 This repre-
sentation naturally captures the conservation of lattice
momentum, and describes phenomena in terms of quasi-
particle bands that can be included or excluded in order
to modulate the computational cost.1 Another example
is provided by Redfield theory,5 which is formulated
within the eigenbasis of a quantum system, thereby al-
lowing the nonadiabatic coupling between (adiabatic)
eigenstates to be captured perturbatively. Here, the
computational cost can be modulated by including or
excluding eigenstates.6 More generally, for a quantum
system expressed in a physical basis (also referred to as
local basis or “site” basis), an arbitrary unitary transfor-
mation takes the form

|𝜉⟩ =
∑︁
𝑛

𝑢 𝜉𝑛 |𝑛⟩ , (1)

with 𝑢 ∈ C and 𝑢†𝑢 = 1, and where 𝑛 and 𝜉 label the
physical and transformed basis states, respectively.

In classical mechanics, basis transformations take
the form of canonical transformations. For a given
set of canonical position and momentum coordinates,
denoted {𝑞𝑛} and {𝑝𝑛}, respectively, the transformed
canonical coordinates take the form 𝑞 𝜉 = 𝑞 𝜉 ({𝑞𝑛, 𝑝𝑛})
and 𝑝 𝜉 = 𝑝 𝜉 ({𝑞𝑛, 𝑝𝑛}). These transformed coordi-
nates serve the role of “position” and “momentum”
in the transformed Hamilton equations of motion, re-
spectively, although they do not necessarily correspond
to a physical position and momentum. All coordi-
nates are real valued, as is required for classical tra-
jectories. Canonical transformations offer the same
benefits to classical mechanics as unitary transforma-
tions do to quantum mechanics, yet the interconnec-
tion between canonical and unitary transformations is
somewhat opaque. Solidifying this interconnection
is of particular relevance to mixed quantum–classical
(MQC) dynamics, where electronic excitations are de-
scribed quantum-mechanically and nuclear vibrations
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(phonons) classically.
MQC dynamics (sometimes referred to as nonadia-

batic molecular dynamics) finds widespread application
to the transient modeling of excited-state phenomena in
molecular systems.7–11 Virtually all implementations of
MQC dynamics adopt a physical basis for the nuclear
coordinates. This practice is perhaps motivated by the
notion that molecular excited-state phenomena are com-
monly localized, with site-to-site energy transfer being
mediated by local vibrations. Such is indeed captured
most efficiently by a physical basis, as localization al-
lows this basis to be truncated to only the spatial regions
of interest.

In a recent work,12 henceforth referred to as Paper
I, we derived a formulation of MQC dynamics fully
within reciprocal space by subjecting both quantum and
classical coordinates to a complex Fourier transform.
This work was motivated by a surge in applications of
MQC dynamics to crystalline materials,13–22 for which
excited-state phenomena are typically delocalized and
driven by an exchange of lattice momentum between
electronic carriers and Bloch-like phonons.23 Arriving
at the reciprocal-space MQC formalism required us to
first combine classical positions and momenta within
a single complex-valued coordinate, 𝑧𝑛, amenable to
a complex Fourier transform. The transformed equa-
tions of motion were shown to yield dynamics formally-
equivalent to solutions in the physical basis. At the same
time, the reciprocal-space representation was shown to
allow for basis truncations of band-like dynamics not
possible within a physical basis representation, allowing
the computational cost to be optimally reduced. In Paper
I, reciprocal-space MQC was introduced for mean-field
dynamics (sometimes referred to as Ehrenfest dynam-
ics). In a follow-up work, henceforth referred to as
Paper II,24 we have extended reciprocal-space MQC for
the popular fewest-switches surface hopping (FSSH)
method.25 This formulation has since found application
in the modeling of the Floquet nonadiabatic dynamics
of laser-dressed solid-state materials.26

While reciprocal-space MQC is particularly effective
in describing band-like phenomena, its effectiveness de-
teriorates once the periodicity of the crystal lattice be-
comes disrupted, and lattice momentum is no longer a
good quantum number. Such disruptions may take the
form of defects, such as impurities, vacancies, and dis-
locations. In such cases, the physical basis may not
provide an effective representation either, as excited
states may retain substantial delocalization lengths. In-
stead, the optimal representation will be provided by
some other basis. More generally, for any given system,
out of all possible bases one should be able to find a

choice that most effectively captures the dynamics. In
that regard, localized molecular excitations and band-
like excitations in materials span the two Fourier-related
extremes, captured optimally by the physical and recip-
rocal bases, respectively.

In this Article, we introduce a formulation of MQC
dynamics within arbitrary basis representations for both
quantum and classical coordinates, opening the op-
portunity to transiently model excited-state phenomena
within optimized bases for any given system. As in
Paper I,12 we combine classical positions and momenta
within a complex-valued coordinate, 𝑧𝑛, which is sub-
jected to an arbitrary basis transformation, similarly to
the quantum basis states in Eq. 1. We then derive the
transformed equations of motion, which are integrated
in MQC dynamics. In order to demonstrate the utility
of this framework, we consider a model invoking an
electronic carrier scattering onto a single impurity in an
otherwise pristine lattice, under Holstein-type coupling
to phonons. For this model, fewest-switches surface
hopping (FSSH) calculations are presented, showing
the excited state dynamics to be invariant to significant
truncations of the appropriately-transformed electronic
and nuclear bases.

This Paper is organized as follows. In Sec. 2 we
introduce the transformed classical equations of motion,
their integration in MQC dynamics, and in FSSH in
particular. In Sec. 2.3, we use the resulting formalism
to re-derive the equations of motion of reciprocal-space
MQC and FSSH from Papers I12 and II.24 In Sec. 3 we
introduce the single impurity model, and present results
from transformed FSSH under basis truncations. In
Sec. 4, we present our conclusions and offer an outlook
for future directions.

2 Theory

Since unitary basis transformations of quantum systems
are trivial and well-established, we instead begin by
considering such transformations for classical systems,
before presenting the integration of the resultant classi-
cal equations of motion within MQC dynamics.

2.1 Transformed classical dynamics

The general idea behind transformed classical dynamics
is schematically depicted in Fig. 1. Here, a set of canon-
ical position and momentum coordinates is introduced,
which are described by a generic Hamiltonian function
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Figure 1: Schematic depiction of transformed classical
dynamics. The canonical position and momentum, 𝑞𝑛
and 𝑝𝑛, are combined into a complex-valued coordinate,
𝑧𝑛, following Eq. 4. The relative scaling of 𝑞𝑛 and 𝑝𝑛
along the real and imaginary axes is modulated by ℎ𝑛
(see text), such that harmonic motion is mapped onto a
perfect circle when ℎ𝑛 = 𝜔 (red solid curve) while being
mapped onto an ellipse when ℎ𝑛 ≠ 𝜔 (blue dash). Ar-
bitrary classical trajectories can be represented within
this construction (green solid curve). The resulting set
of complex-valued coordinates can then be subjected to
arbitrary unitary basis transformations, producing trans-
formed coordinates, 𝑧𝜉 .

of the form

𝐻 ({𝑞𝑛, 𝑝𝑛}) =
∑︁
𝑛

𝑝2
𝑛

2𝑚𝑛

+𝑉 ({𝑞𝑛}). (2)

Here, the first term represents kinetic energy, where
𝑚𝑛 denotes the mass of coordinate 𝑛, and the second
term represents potential energy. The time evolution
of the canonical position and momentum coordinates is
governed by the Hamilton equations of motion,

¤𝑞𝑛 =
𝜕𝐻

𝜕𝑝𝑛
=

𝑝𝑛

𝑚𝑛

, ¤𝑝𝑛 = − 𝜕𝐻

𝜕𝑞𝑛
= − 𝜕𝑉

𝜕𝑞𝑛
. (3)

As in Paper I12 and as illustrated in Fig. 1, we combine
the classical position and momentum within a single
complex-valued coordinate for each 𝑛,

𝑧𝑛 =

√︂
𝑚𝑛ℎ𝑛

2

(
𝑞𝑛 + 𝑖

𝑝𝑛

𝑚𝑛ℎ𝑛

)
. (4)

Here, we introduced a variable ℎ𝑛 whose magnitude
is arbitrary, and which modulates the scaling of the
position and momentum along the real and imaginary

axes in the complex plane, respectively. Expressed in
terms of the complex-valued coordinates, the generic
Hamiltonian function is given by

𝐻 ({𝑧𝑛}) = −
∑︁
𝑛

ℎ𝑛

4

(
𝑧2
𝑛 − 2 𝑧𝑛𝑧

∗
𝑛 + 𝑧∗2

𝑛

)
+𝑉 ({𝑧𝑛}).

(5)

The corresponding Hamilton equations take the form

¤𝑧𝑛 = −𝑖 𝜕𝐻
𝜕𝑧∗𝑛

. (6)

In Paper I,12 the classical coordinates were assumed
to represent identical harmonic modes, meaning that
𝑚𝑛 = 𝑚 and

𝑉 ({𝑞𝑛}) =
1
2
𝑚𝜔2

∑︁
𝑛

𝑞2
𝑛. (7)

The harmonic frequency 𝜔 then took the place of ℎ𝑛
in Eq. 4. This choice of ℎ𝑛 maps harmonic motion
onto a perfect circle in the complex plane, as shown in
Fig. 1. As a result, the Hamiltonian function simplifies
to 𝐻 ({𝑧𝑛}) = 𝜔

∑
𝑛 𝑧𝑛𝑧

∗
𝑛 and the associated time evo-

lution follows as ¤𝑧𝑛 = −𝑖𝜔 𝑧𝑛. In that case, 𝑧𝑛 may be
interpreted as the eigenvalue associated with the coher-
ent state of the harmonic oscillator at coordinate 𝑛.27

When ℎ𝑛 ≠ 𝜔, harmonic motion is mapped onto an
ellipse instead. In the present analysis, no assumption
is made about the modes, and by leaving ℎ𝑛 unspecified
we derive equations of motion applicable under generic
potentials, including anharmonicities.

With the positions and momenta combined into a set
of complex coordinates, arbitrary unitary basis transfor-
mations can be applied following

𝑧𝜉 =
∑︁
𝑛

𝑈𝜉𝑛𝑧𝑛, (8)

as depicted in Fig. 1. Here, 𝑈 ∈ C and 𝑈†𝑈 = 1. Eq. 8
is the classical equivalent of Eq. 1. As can be easily
verified, the Hamilton equations expressed in terms of
the transformed complex-valued coordinates follow as

¤𝑧𝜉 = −𝑖 𝜕𝐻
𝜕𝑧∗

𝜉

. (9)

The transformed Hamiltonian function, on the other
hand, takes the slightly more complicated form

𝐻 ({𝑧𝜉 }) = − 1
4

∑︁
𝜉 , 𝜉 ′

(
ℎ̃∗𝜉 𝜉 ′ 𝑧𝜉 𝑧𝜉 ′ − 2ℎ𝜉 𝜉 ′ 𝑧𝜉 𝑧

∗
𝜉 ′

+ ℎ̃𝜉 𝜉 ′ 𝑧∗𝜉 𝑧
∗
𝜉 ′
)
+𝑉 ({𝑧𝜉 }), (10)

3



where ℎ𝜉 𝜉 ′ ≡ ∑
𝑛𝑈

∗
𝜉𝑛
ℎ𝑛𝑈𝜉 ′𝑛 and ℎ̃𝜉 𝜉 ′ ≡∑

𝑛𝑈𝜉𝑛ℎ𝑛𝑈𝜉 ′𝑛.
Eq. 5 provides a generic treatment of any classical sys-

tem by appropriate construction of the potential energy
in terms of the complex-valued coordinates, 𝑉 ({𝑧𝑛}).
Eq. 10 is formally equivalent to Eq. 5, and the associated
equations of motion given by Eq. 9 allow the system’s
time evolution to be determined within an arbitrary ba-
sis. Notably, the transformed complex-valued coordi-
nates 𝑧𝜉 can be decomposed into real-valued canonical
coordinates 𝑞 𝜉 and 𝑝 𝜉 , for which the Hamilton equa-
tions of motion can be derived straightforwardly. This
establishes the connection between the unitary transfor-
mation applied in Eq. 8 and canonical transformations of
the form 𝑞 𝜉 = 𝑞 𝜉 ({𝑞𝑛, 𝑝𝑛}) and 𝑝 𝜉 = 𝑝 𝜉 ({𝑞𝑛, 𝑝𝑛}).
In the following, however, we will minimize such anal-
yses, and instead resort to the complex-valued coordi-
nates, which provide a simpler and general framework
for describing classical dynamics. This has the added
benefit of putting classical basis transformations on the
same footing as quantum-mechanical basis transforma-
tions.

2.2 Mixed quantum–classical dynamics

We now proceed to integrate the transformed classi-
cal coordinates within MQC dynamics. This is not
intended as a rigorous introduction into MQC dynam-
ics, for which we refer the interested reader to excellent
sources in the literature.7–10

MQC dynamics relies on the subdivision of a sys-
tem of interest into a quantum subsystem and a classi-
cal subsystem, where the quantum subsystem is com-
monly taken to represent the electronic states while the
classical subsystem is reserved for nuclear coordinates.
Resorting to canonical coordinates within the physical
basis, the total Hamiltonian takes the form

�̂�tot({𝑞𝑛, 𝑝𝑛}) = �̂�q + �̂�q−c({𝑞𝑛}) + 𝐻c({𝑞𝑛, 𝑝𝑛}).
(11)

Here, �̂�q is the Hamiltonian operator of the quantum
subsystem, 𝐻c({𝑞𝑛, 𝑝𝑛}) is the Hamiltonian function
of the classical subsystem, and �̂�q−c({𝑞𝑛}) is the op-
erator governing interactions between the quantum and
classical subsystems, which involves a parametric de-
pendence on the physical position coordinates. Adopt-
ing transformed coordinates, this yields

�̂�tot({𝑧𝜉 }) = �̂�q + �̂�q−c({𝑧𝜉 }) + 𝐻c({𝑧𝜉 }). (12)

The quantum–classical interaction term contributes
to the evolution of the quantum subsystem, which is

governed by the time-dependent Schrödinger equation,

𝑖ℏ | ¤Ψ⟩ =
(
�̂�q + �̂�q−c({𝑧𝜉 })

)
|Ψ⟩ , (13)

where Ψ is the quantum wavefunction. It also affects
the evolution of the classical subsystem, since the total
Hamiltonian function to be used in the Hamilton equa-
tion for the classical coordinates (Eq. 10) receives po-
tential energy contributions from the quantum–classical
interaction as well as those intrinsic to the classical sub-
system. That is,

𝑉 ({𝑧𝜉 }) = 𝑉c({𝑧𝜉 }) +𝑉q−c({𝑧𝜉 }), (14)

where the quantum–classical contribution is given
by some expectation value of the quantum–classical
Hamiltonian, 𝑉q−c({𝑧𝜉 }) = ⟨�̂�q−c({𝑧𝜉 })⟩.

Various MQC dynamical methods differ in the way
this expectation value is determined. In case of Ehren-
fest dynamics, where the quantum–classical interac-
tion is treated as a mean-field problem, the expecta-
tion value is taken with respect to the quantum wave-
function, yielding ⟨�̂�q−c({𝑧𝜉 })⟩ = ⟨Ψ|�̂�q−c({𝑧𝜉 }) |Ψ⟩.
For FSSH, on the other hand, the expectation value is
taken based on an instantaneous eigenstate 𝛼 of the total
Hamiltonian operator, satisfying(

�̂�q + �̂�q−c
)
|𝛼⟩ = 𝜖𝛼 |𝛼⟩ . (15)

That is, a single “active surface”, denoted 𝑎, is
chosen and the expectation value is determined as
⟨�̂�q−c({𝑧𝜉 })⟩ = ⟨𝑎 |�̂�q−c({𝑧𝜉 }) |𝑎⟩.

A key ingredient of FSSH is a stochastic switching
of the active surface between instantaneous eigenstates.
The switching from state 𝛼 to state 𝛽 is governed by the
probability24,25,28

𝑃𝑎:𝛼→𝛽 = 2 Re
(〈
𝛼

���� 𝜕𝛽𝜕𝑡 〉 𝐴𝛽

𝐴𝛼

)
Δ𝑡. (16)

Here, Δ𝑡 is the time increment for which the switching
probability is evaluated, and 𝐴𝛼 is the coefficient of Ψ
expanded in the instantaneous eigenbasis, i.e.,

|Ψ⟩ =
∑︁
𝛼

𝐴𝛼 |𝛼⟩ . (17)

We note that the switching probability commonly fea-
tures a product of momentum and the nonadiabatic cou-
pling vectors within the physical basis.25 By means of
the chain rule,24,28 we have replaced this product by
an inner product of 𝛼 and 𝜕𝛽/𝜕𝑡 in Eq. 16, yielding a
basis-independent form of the switching probability.

Upon a switch, the conservation of total (quantum
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plus classical) energy is reinforced by a rescaling of
the physical momenta of the classical subsystem in the
direction of the nonadiabatic coupling vector. Accord-
ingly,

𝑝′𝑛 = 𝑝𝑛 − 𝛾

〈
�̃�

���� 𝜕

𝜕𝑞𝑛

���� 𝛽〉 , (18)

where 𝑝′𝑛 and 𝑝𝑛 are the new and old momentum, re-
spectively. Here, the tilde in 𝛽 refers to the projection
of the potentially complex-valued eigenvector |𝛽⟩ onto
a real-valued vector, in order to ensure that the physical
momentum coordinate remains real-valued, and same
for �̃�. Complex values for eigenvectors may arise due
to an arbitrary global phase, complex basis transfor-
mations followed by basis truncations,24 and geometric
phase effects.29–32 In a recent work, we have proposed a
means to perform this projection onto real-valued vec-
tors while ensuring gauge-invariance.33

Within the transformed basis, the rescaling takes the
form

𝑧′𝜉 = 𝑧𝜉 − 𝑖𝛾

〈
�̃�

����� 𝜕

𝜕𝑧∗
𝜉

����� 𝛽
〉
. (19)

2.3 Reciprocal space

In Papers I12 and II,24 we derived a formulation of
MQC dynamics fully within reciprocal space, and ap-
plied the resulting method to pristine one-dimensional
lattice models involving a single electronic carrier in-
teracting with harmonic nuclear vibrations. In the fol-
lowing, we will show that the generalized equations
presented in the current work recover those from Pa-
per I12 when the unitary transformation of the classical
subsystem is taken to be a complex Fourier transforms
over the lattice, which underlies Bloch’s theorem.

Accordingly, we replace 𝜉 by the wavevector 𝑘 (which
quantifies the lattice momentum), and take

𝑈𝑘𝑛 =
1
√
𝑁

𝑒𝑖𝑘𝑛, (20)

where 𝑁 is the total number of lattice sites. The asso-
ciated classical coordinates are taken to represent iden-
tical harmonic modes, such that 𝑚𝑛 = 𝑚 and 𝑉c({𝑞𝑛})
is given by Eq. 7, with 𝜔 the mode frequency. Setting
ℎ𝑛 = 𝜔, the complex-valued classical coordinates take
the form

𝑧𝑛 =

√︂
𝑚𝜔

2

(
𝑞𝑛 + 𝑖

𝑝𝑛

𝑚𝜔

)
. (21)

Subjecting these coordinates to the transformation given

in Eq. 20, we arrive at transformed coordinates 𝑧𝑘 .
These coordinates are associated with phonons, i.e.,
nuclear vibrational quasiparticles with a well-defined
lattice momentum.

Expressed in terms of the transformed coordinates,
the purely-classical potential energy contribution is
given by

𝑉c({𝑧𝑘}) =
𝜔

4

∑︁
𝑘

(
𝑧𝑘𝑧−𝑘 + 2 𝑧𝑘𝑧

∗
𝑘 + 𝑧∗𝑘𝑧

∗
−𝑘
)
. (22)

As a result, the Hamiltonian to be used in the Hamilton
equations reduces to

𝐻 ({𝑧𝑘}) = 𝜔
∑︁
𝑘

𝑧𝑘𝑧
∗
𝑘 +𝑉q−c({𝑧𝑘}). (23)

In accordance with Eq. 9, this yields

¤𝑧𝑘 = −𝑖 𝜔𝑧𝑘 − 𝑖
𝜕𝑉q−c({𝑧𝑘})

𝜕𝑧∗
𝑘

. (24)

In Paper I,12 canonical coordinates were recon-
structed from 𝑧𝑘 following

𝑞𝑘 ≡
√︂

2
𝑚𝜔

Re{𝑧𝑘}, 𝑝𝑘 ≡
√

2𝑚𝜔 Im{𝑧𝑘}, (25)

which obeys

𝑧𝑘 =

√︂
𝑚𝜔

2

(
𝑞𝑘 + 𝑖

𝑝𝑘

𝑚𝜔

)
. (26)

Expressed in terms of such canonical coordinates, the
Hamilton equations then follow as

¤𝑞𝑘 =

√︂
2
𝑚𝜔

Re{ ¤𝑧𝑘} =
𝑝𝑘

𝑚
+
𝜕𝑉q−c

𝜕𝑝𝑘
, (27a)

¤𝑝𝑘 =
√

2𝑚𝜔 Im{ ¤𝑧𝑘} = −𝑚𝜔2𝑞𝑘 −
𝜕𝑉q−c

𝜕𝑞𝑘
, (27b)

which is indeed in agreement with Paper I.12

Notably, from the appearance of gradient contribu-
tions to both ¤𝑞𝑘 and ¤𝑝𝑘 , it can be clearly seen that while
the involved canonical coordinates play the role of “posi-
tion” and “momentum” within the Hamilton equations,
they are not to be associated with physical positions and
momenta.12 This is further reflected by the coordinate
rescaling applied upon a switch in FSSH. This rescal-
ing is obtained by taking the real and imaginary parts

5



of Eq. 19, yielding

𝑝′𝑘 = 𝑝𝑘 − 𝛾

〈
�̃�

���� 𝜕

𝜕𝑞𝑘

���� 𝛽〉 , (28a)

𝑞′𝑘 = 𝑞𝑘 + 𝛾

〈
�̃�

���� 𝜕

𝜕𝑝𝑘

���� 𝛽〉 , (28b)

in agreement with Paper II.24

In Papers I12 and II,24 application of Eq. 27 in con-
junction with a reciprocal-space description of the quan-
tum subsystem was shown to yield results in agreement
with those obtained fully within a physical basis. This is
a direct consequence of the formal equivalence between
the Hamilton equations expressed in the physical basis,
Eq. 3, and the reciprocal-space variant, Eq. 27.

For pristine lattices, electronic wavepackets tend to
localize in low-energy regions of reciprocal space, al-
lowing a reciprocal-space quantum basis to be truncated
to those regions.34,35 Moreover, since phonons act so as
to absorb or emit lattice momentum during electron–
phonon scattering events, a reciprocal-space classical
basis can be truncated to select regions in conjunction
with quantum basis truncations.12,24 Such truncations
cannot be performed in the physical basis, since elec-
tronic carriers and phonons are both delocalized over
the entire lattice. Importantly, such truncations offer
radical savings of the computational cost of simulating
the electron–phonon scattering dynamics.

3 Application to an impurity model

While the reciprocal-space treatment of pristine lattices
presented in Papers I12 and II24 provides a compelling
demonstration of the utility of transformed MQC dy-
namics, it is the generalized equations of motion pre-
sented in the present Article that allows optimal basis
transformations to be applied even when the lattice is
disrupted. In such cases, lattice momentum is no longer
a good quantum number, compromising the effective-
ness of reciprocal-space MQC dynamics and prompting
the need for alternative representations in order to en-
able effective basis truncations. To demonstrate this, we
proceed to present results for a lattice involving a single
impurity.

3.1 Model

As in Paper I,12 we consider a single electronic carrier
while representing the lattice by a tight-binding model.
The associated purely-electronic quantum Hamiltonian

Impurity Pristine

𝑖 = 1

8

7

6

5

4

3

2

× 0.5

0

Figure 2: Amplitudes of the 8 lowest purely-electronic
eigenfunctions of a pristine lattice (blue) and an im-
purity model (red). The impurity site is taken to be
�̄� = 𝑁/2, and site 𝑛 = 0 corresponds to 𝑛 = 𝑁 due to
periodic boundaries. Amplitudes are shown with arbi-
trary (but constant) scaling and are offset vertically for
visual clarity. An additional × 0.5 scaling is applied
to the 𝑖 = 1 amplitude for the impurity model. Corre-
sponding calculations invoked a total of 𝑁 = 100 lattice
sites.

is given by

�̂�q = −𝐽
∑︁
𝑛

(
𝑐
†
𝑛+1𝑐𝑛 + 𝑐†𝑛𝑐𝑛+1

)
− Δ 𝑐

†
�̄�
𝑐�̄�. (29)

Here, 𝑐†𝑛 and 𝑐𝑛 represent the annihilation and creation
operators for the electronic carrier, respectively, asso-
ciated with lattice site 𝑛, and 𝐽 is the nearest-neighbor
interaction term. Furthermore, �̄� denotes the impurity
site andΔ is the associated energetic detuning relative to
the other lattice sites. Periodic boundaries are imposed,
so that 𝑛 = 𝑁 corresponds to 𝑛 = 0. This Hamiltonian
is solved for in order to obtain the purely-electronic
eigenstates obeying,

�̂�q |𝜙𝑖⟩ = 𝐸𝑖 |𝜙𝑖⟩ . (30)

Here and throughout, 𝑖 is used to label the purely-
electronic eigenstates, which are not to be confused
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with the instantaneous eigenstates of the total quan-
tum Hamiltonian (cf. Eq. 15), which are denoted by
𝛼 instead. While the instantaneous eigenstates depend
parametrically on the classical coordinates, thereby at-
taining a time-dependence, the purely-electronic eigen-
states form a time-independent, diabatic basis. As a
convention, 𝑖 is taken to run with increasing eigenen-
ergy.

Shown in Fig. 2 are the purely-electronic eigenfunc-
tion amplitudes within the physical basis for a pristine
lattice with 𝐽 = 1.0 and Δ = 0 and for an impurity
model with the detuning was adjusted to Δ = 2.0. Here
and throughout, we take parameter values to be unitless.
We note, however, that, when taking the thermal energy
at room temperature (293 K) as a reference, a unit of
energy amounts to 25 meV. As can be seen in Fig. 2, for
the pristine lattice, the eigenstates assume the periodic
oscillatory profiles indicative of Bloch states. For the
impurity model, however, the lowest-energy eigenstate
(with 𝑖 = 1) is largely localized on the impurity site, �̄�.
All other eigenstates with odd 𝑖 values (𝑖 = 3, 5, 7, . . .)
reproduce the Bloch-like states (save for a slight and
arbitrary phase shift). For even 𝑖, the eigenstates tend
to approach the Bloch-like states with increasing values
of 𝑖, although maintaining a deviation close to �̄�. In the
course of nonadiabatic dynamics, eigenstate population
is expected to funnel from the delocalized Bloch-like
states towards the localized state at lowest energy. It
is this lowest-energy state that is challenging to resolve
within a reciprocal space basis, as a localized state in-
volves contributions from many reciprocal-space basis
states due to the underlying Fourier relationship.

In order to find an alternative basis within which to
effectively represent the nonadiabatic dynamics of the
impurity model, we first observe that the previously-
applied reciprocal-space representation12,24 effectively
invokes the purely-electronic eigenstates of the pris-
tine lattice, i.e., the eigenstates of �̂�q shown in Fig. 2.
It should be noted that the eigenstates of the pristine
lattice shown in this figure were solved for through a
real-valued eigenvalue decomposition of the real-valued
Hamiltonian �̂�q. This yields cosine and sine solutions
rather than the complex exponents commonly appear-
ing in the Bloch formalism. However, one can trivially
transform between both solutions by taking symmetric
and antisymmetric combinations of degenerate eigen-
states. Under Bloch-like solutions, truncations of the
reciprocal-space basis were previously invoked by in-
troducing a wavevector cutoff, denoted 𝑘0, such that
basis states having |𝑘 | > 𝑘0 were excluded.12,24 For the
real-valued solutions shown in Fig. 2, it is more ap-
propriate to introduce an energy cutoff, 𝐸c, such that

basis states are excluded having 𝐸𝑖 > 𝐸c. Importantly,
this effectively yields identical basis truncations, since
the Bloch-state energies increase monotonically with |𝑘 |
(provided that 𝐽 > 0).

While the reciprocal-space basis may not offer much
benefit to describing the impurity model, the notion
of using the purely-electronic eigenbasis, which differs
between the pristine lattice and the impurity model, is
an interesting choice to consider. Indeed, the purely-
electronic eigensolutions of the impurity model tend
to simultaneously capture the extendedness and local-
ization necessary to describe the nonadiabatic scatter-
ing onto the impurity, as shown in Fig. 2. More-
over, the underlying transformation also captures the
localized nature of the nuclear vibration responsible for
self-trapping at the impurity site, while simultaneously
representing the (approximately) momentum-carrying
phonons throughout the rest of the lattice. For that rea-
son, in describing the impurity model, we will resort to
the purely-electronic eigenstates as a basis for both the
quantum and classical subsystems.

We should stress that this choice of basis is heuristic,
and that superior bases are likely to exist. Moreover,
there is no need to keep with the same basis when de-
scribing the quantum and classical subsystems. Identi-
fying the theoretically-optimal bases is not a trivial task,
however, and we reserve a thorough exploration of this
topic for a follow-up study. Instead, by adopting the
purely-electronic eigenbasis, we will present a proof-
of-principles of the general applicability of transformed
MQC dynamics, and the possibilities for basis trunca-
tions it affords. Within the purely-electronic eigenbasis
representation for the impurity model, we invoke basis
truncations similarly to that applied to the real-valued
solutions of the pristine lattice, by introducing an energy
cutoff, 𝐸c.

As an initial condition of the quantum system, we
consider the single-carrier excitation with zero lattice
momentum, given by

|Ψ0⟩ = |𝑘 = 0⟩ = 1
√
𝑁

∑︁
𝑛

|𝑛⟩ . (31)

This initial condition is representative of a tightly-bound
electron–hole pair (Frenkel exciton) produced upon im-
pulsive optical excitation (under the long-wavelength
approximation).

We invoke the Holstein model in order to account for
the nuclear modes driving the nonadiabatic dynamics.
Accordingly, the classical subsystem is taken to con-
sist of identical harmonic modes, such that 𝑉c({𝑞𝑛}) is
given by Eq. 7 and 𝑧𝑛 is given by Eq. 21. The opera-
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tor governing the quantum–classical interactions is then
given by

�̂�q−c = 𝑔
√︁

2𝜔3
∑︁
𝑛

𝑐†𝑛𝑐𝑛𝑞𝑛. (32)

In what follows, we adopt the parameters from Fig. 2,
and additionally set 𝜔 = 0.2 and 𝑔 = 1.0, while adjust-
ing the total number of lattice sites to 𝑁 = 30. The
classical coordinates 𝑞𝑛 and 𝑝𝑛 are initially and inde-
pendently drawn from a Boltzmann distribution12 at a
temperature 𝑇 = 1.0. We reiterate that, when taking
the thermal energy at room temperature (293 K) as a
reference, a unit of energy amounts to 25 meV. By the
same token, a unit of time amounts to 164 fs.

3.2 Results

In the following, we will present FSSH calculations for
both the case of a pristine lattice, by setting Δ = 0, and
that of a single impurity model, by setting Δ = 2.0.
With the pristine lattice, we will be revisiting a system
that was addressed in Papers I12 and II,24 but with ad-
justed parameters. The FSSH calculations presented
were performed within the reciprocal-space basis as
well as in the purely-electronic eigenbasis. For the for-
mer, real-valued eigenvector projections (cf. Sec. 2.2),
necessary for momentum rescalings, were obtained fol-
lowing the procedure outlined in Paper II.24 For the
purely-electronic eigenbasis, all relevant eigenvectors
are real-valued by construction, and were taken as is.
Both treatments are fully consistent with our recently-
proposed gauge-invariant generalization.33

The electronic populations were evaluated by first
constructing the total electronic density matrix within
the instantaneous eigenbasis of the total Hamiltonian
operator, �̂�q + �̂�q−c. As is commonly done,36–38 the
diagonal elements of this density matrix were based on
the active surfaces, while the offdiagonal elements were
based on the electronic wavefunction coefficients, i.e.,

𝜌𝛼𝛽 = 𝛿𝛼𝛽𝛿𝛼𝑎 + (1 − 𝛿𝛼𝛽)𝐴∗
𝛼𝐴𝛽 , (33)

where 𝛿 is the Kronecker delta function. This density
matrix was then transformed24,39 to the physical ba-
sis, reciprocal-space basis, and purely-electronic eigen-
basis, respectively, after which corresponding popula-
tions were obtained through 𝑃𝑛 = 𝜌𝑛𝑛, 𝑃𝑘 = 𝜌𝑘𝑘 , and
𝑃𝑖 = 𝜌𝑖𝑖 .

Shown in Fig. 3 are results for the pristine lattice.
Here, only reciprocal-space FSSH was applied, recog-
nizing the formal equivalence with the purely-electronic
eigenbasis in this limit (as discussed in Sec. 2.2). Fig. 3

0% trunc.
25% trunc.
50% trunc.
75% trunc.

(a)

(b)

Figure 3: (a) Transient electronic populations 𝑃𝑘 cal-
culated within reciprocal-space FSSH for a pristine
(Δ = 0) lattice with 𝑁 = 30 sites, and with 𝐽 = 1.0,
𝜔 = 0.2, 𝑔 = 1.0, and 𝑇 = 1.0. (b) Dynamics of 𝑃𝑘=0
under varying truncations of the reciprocal-space basis.
Percentages of truncations shown were reached by vary-
ing 𝑘0 (see text).

(a) presents time-dependent reciprocal-space electronic
populations, 𝑃𝑘 , obtained without any basis truncation
imposed. As seen here, and as discussed in Papers I12

and II,24 a scattering of the electronic carrier out of the
𝑘 = 0 initial state is observed.

Fig. 3 (b) depicts the time-dependent zero-momentum
electronic population, 𝑃𝑘=0, resulting from untruncated
calculations, together with 𝑃𝑘=0 calculated under in-
creasing basis truncations. This population is seen to
remain invariant under truncations of up to 50% of the
reciprocal-space basis, which is consistent with the find-
ings of Paper II,24 where FSSH was applied to a pristine
lattice under Holstein-type coupling between the carrier
and the nuclear modes. This is rationalized by the car-
rier being both initiated and thermally-biased towards
𝑘 = 0, with high-momentum basis states providing only
small contributions to the nonadiabatic dynamics.

A similar analysis is presented in Fig. 4, but for the im-
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(a)

(c) (d)

(e)

(b)

Figure 4: (a) Transient electronic populations 𝑃𝑛 calculated by conventional FSSH formulated within the physical
basis for an impurity model. Parameters are as in Fig. 3, except for Δ = 2.0. (b) Schematic of the population
dynamics shown in (a), where an initial 𝑘 = 0 excitation funnels towards a state localized at the impurity site,
𝑛 = �̄�. (c) 𝑃𝑘 calculated by reciprocal-space FSSH. (d) Corresponding populations 𝑃𝑘=0 (solid, left axis) and 𝑃�̄�

(dashed, right axis) under varying truncations of the reciprocal-space basis. Curve colorings are as in Fig. 3 (b),
while percentages of truncations were reached by varying 𝑘0. (e) 𝑃𝑖 calculated by FSSH formulated within the
purely-electronic eigenbasis. (f) Same as (e), but under varying truncations of the purely-electronic eigenbasis.
Curve colorings are as in Fig. 3 (b), while percentages of truncations were reached by varying 𝐸c (see text).

purity model subjected to FSSH within reciprocal space
and within the purely-electronic eigenbasis. Shown as
a reference in Fig. 4 (a) are time-dependent populations
𝑃𝑛, obtained through FSSH in the physical basis. Here,
the 𝑘 = 0 initial state is seen to be fully delocalized,
as expected from Eq. 31, while nonadiabatic dynam-
ics funnels the carrier into the impurity with 𝑛 = �̄�.
A schematic illustration of this process is depicted in
Fig. 4 (b). Shown in Fig. 4 (c) and (e) are 𝑃𝑘 and
𝑃𝑖 , respectively, as obtained through FSSH within the

reciprocal-space basis and within the purely-electronic
eigenbasis. While the dynamics of 𝑃𝑘 appears to be
quite similar to that shown for the pristine lattice in
Fig. 3 (a), 𝑃𝑖 clearly exhibits the gradual trapping of
excitation in the lowest-energy eigenstate with 𝑖 = 1.

We will proceed to assess to what extent truncations
of the reciprocal-space basis and the purely-electronic
eigenbasis allows capturing of both the delocalization
of the initial excitation as well as the transient local-
ization at the impurity site. To this end, we evaluate
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𝑃𝑘=0 as well as 𝑃�̄�. Fig. 4 (d) and (f) show both popula-
tions as obtained through FSSH under truncations of the
reciprocal-space basis and of the purely-electronic basis,
respectively. As can be seen here, both truncated bases
perform well in describing 𝑃𝑘=0. A markedly-worse
performance is found for 𝑃�̄� under reciprocal-space ba-
sis truncations, which is a direct consequence of re-
ciprocal space providing a poor representation of local
phenomena. Due to the Fourier relationship, accounting
for the local population at site �̄� requires the complete
reciprocal-space basis to be included, and truncations
of this basis yield a proportional drop in this site popu-
lation.

The purely-electronic eigenbasis, however, is found to
perform remarkably well in describing 𝑃�̄� under trunca-
tions of up to 50%. This is the result of the lowest-energy
eigenstate capturing most of the local population at site
�̄�. As such, the truncated purely-electronic eigenbasis is
shown to outperform the truncated reciprocal-space ba-
sis in governing the funneling of electronic population
into the impurity, as we anticipated based on Fig. 2.

4 Conclusions and outlook

In summary, we have derived a formulation of MQC dy-
namics within arbitrary bases for the classical and quan-
tum coordinates. This allows any given system to be
optimally treated by finding preferred bases which can
be efficiently truncated while retaining good agreement
with untruncated calculations. Such is demonstrated by
our application of FSSH to a system involving an elec-
tronic carrier scattering onto a single impurity in an oth-
erwise pristine lattice while interacting with phonons.
The funneling from an initial, delocalized state towards
a low-energy state localized at the impurity was faith-
fully captured when transforming the quantum and clas-
sical coordinates into the purely-electronic eigenbasis,
followed by significant basis truncations. A similar level
of truncation within the reciprocal-space basis instead
yielded significant distortions of the impurity popula-
tion.

The encouraging results obtained for the impurity
model offer promising prospects for the realistic ap-
plication of MQC dynamics, and in particular FSSH,
to materials involving disruptions of the crystal lattice.
In recent years, FSSH has found applications to materi-
als involving an impurity,40 defects,41 and wrinkling,42

as well as materials where the lattice symmetry was
disrupted by nearby molecules.16 While no basis trans-
formations were invoked in these studies, our present
analysis suggest them to offer significant gains in per-
formance and scalability when combined with efficient

basis truncations.
We re-emphasize that the purely-electronic eigenbasis

adopted for the impurity model was chosen based en-
tirely on heuristic arguments and, in spite of its good per-
formance, may not be the theoretically-optimal choice.
Finding the optimal choice for a given system is non-
trivial, and as such we reserve such inquiry for future
research. Here, it should be noted that the bases adopted
for the quantum and classical subsystems need not be
the same, as was adopted in the present Article. Rather
both bases can be independently optimized, resorting to
the full special unitary group for each.33

Importantly, the transformed equations of motion pre-
sented in this Article are applicable to the full suite of
MQC methods, beyond FSSH. An example of partic-
ular interest is Ehrenfest dynamics, which is unrivaled
in terms of simplicity and computational affordability.
These favorable attributes notwithstanding, Ehrenfest
dynamics is known to suffer from over-thermalization
in the asymptotic time limit.43,44 In addition to con-
tributing to the method’s inaccuracy, this deteriorates
the effectiveness of basis truncations, as quantum exci-
tations tend to delocalize over an excess number of basis
states.24 We should emphasize that the intrinsic accu-
racy of MQC modeling is not addressed in the present
Article. In Paper II,24 we found the results generated by
FSSH for a lattice model to show good agreement with
full-quantum reference calculations, yet much remains
to be learned about the performance of FSSH in mate-
rials modeling. In that regard, a recently-proposed co-
herent generalization of FSSH is noteworthy,39,45 which
may offer particular advantages in capturing the coher-
ent dynamics prevalent in materials.

Lastly, we note that the transformed classical dynam-
ics derived in Sec. 2.1 is completely general. Its abil-
ity to incorporate mode anharmonicities, although not
taken advantage of in our current demonstration of the
impurity model, enables broad application to molecular
dynamics simulations, with or without accompanying
quantum modeling. Subjecting a given classical system
to unitary basis transformations, the same way quantum-
mechanical systems are treated, may provide a straight-
forward route to optimally representing its dynamics by
a truncated set of coordinates.
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