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An Electromagnetism-Inspired Method for Estimating
In-Grasp Torque from Visuotactile Sensors
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Abstract— Tactile sensing has become a popular sensing
modality for robot manipulators, due to the promise of pro-
viding robots with the ability to measure the rich contact
information that gets transmitted through its sense of touch.
Among the diverse range of information accessible from tactile
sensors, torques transmitted from the grasped object to the
fingers through extrinsic environmental contact may be partic-
ularly important for tasks such as object insertion. However,
tactile torque estimation has received relatively little attention
when compared to other sensing modalities, such as force,
texture, or slip identification. In this work, we introduce the
notion of the Tactile Dipole Moment, which we use to estimate
tilt torques from gel-based visuotactile sensors. This method
does not rely on deep learning, sensor-specific mechanical,
or optical modeling, and instead takes inspiration from elec-
tromechanics to analyze the vector field produced from 2D
marker displacements. Despite the simplicity of our technique,
we demonstrate its ability to provide accurate torque readings
over two different tactile sensors and three object geometries,
and highlight its practicality for the task of USB stick insertion
with a compliant robot arm. These results suggest that simple
analytical calculations based on dipole moments can sufficiently
extract physical quantities from visuotactile sensors.

I. INTRODUCTION

Tactile sensors have gained great interest in recent years
as a promising sensing modality for robotic manipulation
due to the variety of information that they can provide to
robots, ranging from binary contact, pressure distribution,
slip, vibration, texture, hardness, and among many others [1].
Of the diverse range of existing tactile sensors, visuotactile
sensors such as the Gelsight Mini [2] or the DIGIT [3] have
gained particular popularity due to their simple construction,
high resolution, and ability to leverage techniques from
computer vision, leading to wide commercial availability [4],
[5]. As a result, visuotactile sensors have demonstrated their
ability to endow robot manipulators with a wide variety of
tasks ranging from grasp stability prediction [6], touch-based
object manipulation [7], or texture recognition [8].

In this work, we are interested in the problem of using
visuotactile sensors to estimate external forces and torques
applied to grasped objects. In particular, tasks such as the
contact-rich object insertion task illustrated in Fig. [T] may
require compliant interactions between the grasped object
and the environment, as well as the ability to measure torques
transmitted from the object to the gripper that result from
this contact. However, the literature on estimating torques
from visuotactile sensors is relatively limited. This is due to
the limited ability of a typical visuotactile sensor consisting
of a single gel and camera without additional hardware to
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Fig. 1. The core contributions of this work. Left, top: Similarities
between the electric fields produced from a dipole charge distribution, and
visuotactile marker motion fields produced from tilt torques. Left, bottom:
The corresponding equation defining the tactile dipole moment used in this
work to estimate tilt torques. Right: The contact-rich USB stick insertion
alignment problem that we use to demonstrate our method.

provide information about gel displacement normal to the
gel surface (z axis as shown in Fig. [I) with the commonly
used technique of the marker displacement method [9].
Zhang et al. [10] proposed to use a technique from flow
analysis to relate patterns in the marker motion vector field,
namely the diverging, unidirectional, and rotational compo-
nents, to 3D forces and the 1D in-plane torques applied on
the tactile gel. Inspired by this, we measure the remaining
2 dimensions of torque (axes x and y in Fig. [I), called the
“tilt” torque in [4], using analysis techniques inspired by
electrodynamics [11]. The core underlying idea comes from
the observation that the marker motion displacement field
that results from tilt torques closely resembles the electric
fields produced from electric dipole moments. Therefore,
we propose to use the same calculation used to charac-
terize electric dipole moments to similarly estimate tactile
tilt torques, and demonstrate through experiments that this
simple calculation can enable successful measurement of tilt
torques without relying on deep learning or sensor-specific
analytical modeling of mechanical or optical properties.
The summary of our contributions is as follows.
¢ We introduce the Tactile Dipole Moment as a method
for estimating in-grasp tilt torques from visuotactile
sensors, and demonstrate the improvement in estimation
accuracy as compared to an existing analytical tech-
nique for tactile tilt torque estimation.
o Experiments of a USB stick insertion task with a
real robot show that our estimation can provide useful
feedback signals regarding environmental contact.



o Our method can be applied to other visuotactile sensing
hardware and grasped object shapes.

« We open source the implementation of our algorithm
and experimental apparatus design ﬁle

II. RELATED WORK
A. Marker Displacement Method

The vector field that results from tracking displacements
of markers or dense patterns on the gel surface through the
Marker Displacement Method (MDM) [9], has become a
popular data representation for visuotactile sensor outputs.
Using the terminology of [9], this method can be applied in
2D to consider only the translational motion of the markers
within the camera [2], [3], [4], [5], [12], [13], [14], or in 3D
to obtain full information about the gel surface deformation
in all spacial dimensions [15], [16].

Of the variety of visuotactile sensors that have been
developed, those that rely primarily on 2D MDM have
achieved commercial availability and wide adoption due to
its simplicity and resulting ease of fabrication. This is in
comparison to sensors containing multiple cameras [15], spe-
cial gel structures like pins [17], double layered embedded
markers [18], or mechanical structures in addition to the gel
such as springs [19], [20]. Therefore, we wish to further
develop algorithms to infer 3D data from widely available
2D sensors, despite its fundamental hardware limitations [9].

B. Estimating Torques from Marker Displacements

From the distributed forces encoded in the marker dis-
placement vector field, the force and torque wrench at
the contact point can be estimated [4]. Within the full 6-
dimensional force and torque wrench vector, the 2D shear
force and 1D in-plane torque can be readily estimated from
2D marker motion displacement [10]. More difficult to obtain
are the remaining 1D normal force and 2D tilt torques, which
require reasoning about distributed forces acting along the
gel surface normal [9].

To this end, [13] used the vector norm to estimate point-
wise normal force, and combined this with point-wise shear
force estimation via 2D marker displacement to calculate
aggregate forces and torques. However, the vector norm can-
not distinguish between marker motions exhibiting “spread-
ing” behaviors characteristic of normal forces, with that of
shear displacements. This limitation is addressed in [10],
where diverging, unidirectional, and rotational patterns are
explicitly decomposed through the natural Helmholtz-Hodge
Decomposition [21]. This method provided estimation of 3D
force and 1D torque along the gel surface normal, without 2D
tilt torques. Additional results estimating wrenches involving
normal forces include [4], [22], which performed deep learn-
ing with large network architectures and large amounts of
data, or [23], which solved a closely related problem of 3D
marker motion tracking through the inverse Finite Element
Method (FEM) informing the depth estimation [12], [24]. In
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comparison to these approaches, our method estimates tilt
torques using vector calculus approaches that do not involve
deep learning or modeling of sensor properties.

C. Tactile Sensing for Tool Manipulation

As compared to a force/torque (FT) sensor mounted
on a rigid manipulator robot, the small displacements of
objects within the compliant gel fingertip of a visuotactile
sensor provide improved measurements of extrinsic contact
information between the grasped object and the environment
that it interacts with [23], [25], [26]. This property has
demonstrated its utility for tasks involving tool use [13], [27],
insertion [25], [26], [28], [29], and for skills involving in-
hand object manipulation [3], [7], [30]. Due to the relative
simplicity of estimating in-plane torques, as discussed in the
previous section, these works primarily relied on measuring
rotation and torque about this axis. However, the ability to
measure torques in the remaining two tilt axes may extend
the capabilities of these results, and enable tasks such as the
USB stick insertion illustrated in Fig. [1]

III. METHOD
A. Problem Setting: In-Grasp Torque Estimation

We consider the setting where an object is grasped by a
parallel gripper with visuotactile sensors mounted on each
finger, and this grasped object interacts with external forces
and torques that must be sensed from the visuotactile sensors.
We assume that the gripping force is sufficient so that the
grasped object does not slip within grasp. The USB stick
insertion problem shown in Fig. |I| is an example of this
situation. Here, the torques transmitted from the object to
the gripper are of particular importance out of the 6D force
and torque wrenches due to the geometry of the moment arm
induced by the grasped object.

B. Tilt Torque Estimation via Tactile Dipole Moment

In [10], it was introduced that different loading conditions
on the tactile gel surface relate to the diverging, unidirec-
tional, and rotational components of the marker displacement
fields. Inspired by this insight, we make the additional
observation that the marker displacement field pattern that
results from tilt torques produces vector field patterns similar
to electric fields induced by an electric dipole, which is
defined as a charge distribution characterized by equal and
opposite charge distributions separated by some (possibly
infinitesimal) distance, as illustrated in Fig.

This is because, in electrodynamics, the diverging com-
ponent of the electric field relates to the charge distribution
that induces it, through Gauss’s Law

V-E= e p- (1)

€0

Here, E is the electric field, which we draw analogies to the
tactile marker displacement field, p is a position-dependent
electric charge distribution, which we relate to the normal
force distribution on the tactile gel, and ¢; is a constant
known as the permittivity of free space [11]. Analogously
to the electric dipole moment, in the mechanical system of
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the tactile gel deformation under tilt torques, there are normal
forces applied into and out of the gel surface in equal and
opposite directions with the opposing regions separated by
some distance. As per [10], normal forces are related to the
marker motion field divergence similarly to electric charge
distributions relating to electric field divergence.

Therefore, we characterize the tilt torques applied on the
gel surface using the same calculation used to characterize
electric dipoles—the dipole moment p, defined as

p:///rpd:rdydz, 2)

where r is the distance vector from some predefined point
in space to the infinitesimal volume element for integration
[11]. We can additionally substitute Gauss’s Law (]II) to
obtain the dipole moment in terms of the electric field

p:eo///r(V-E’)dxdydz. (3)

Transferring this calculation to the domain of tactile tilt
torque estimation, we define the tactile dipole moment as

LN
Prit = ; T (V . Ui) “4)
L[] (dwi)e | d(wi)y
N ; |:(rz)y:| dx dy |’ )

where we replaced the volume integral with a summation
over vectors v; representing a discretized vector field indexed
by i € [1,...,N], and 7; is the moment arm vector. Since
the dipole moment is dependent on the origin from which to
define 7; in the general case where the net charge is nonzero
[11], we take the integral from the midpoint between the
centroids of the positive and negative divergence regions to
approximate the point about which the planar gel surface
rotates in reaction to tilt torques. Specifically, we first define
the positive divergence mask function pj as having value
V -v; if it is positive, and O otherwise. Using this, the positive
divergence x axis centroid
cF — Ziv (p:r xl)

D S
can be calculated, where z; is the x-coordinate for marker <.
We can similarly calculate C;’ , €y, and Cy, using marker y
coordinates y;, and with V - v; < 0 as the condition for the
negative divergence mask function. From these, we define
the centroid midpoint

Lot oy (o — o1
m =3[ +C), (6 + )] (7)

(6)

which is used to define .
T = [(-Ti —mg), (yi — my)} : ®)

Finally, since the dipole moment points from negative
to positive charges, the torque 7y;; points in a direction
perpendicular to this dipole moment and is scaled by constant
calibration factors ¢, ¢y,

T
Tt = [Cx(ptilt)ya_cy(ptilt)x] . &)
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Fig. 2. The diverging components of the tactile field before and after
grasping an object respectively (a,b), and the field under the application
of tilt torque with and without zeroing the tactile field after grasping,
respectively (c,d). Note that the dipole field pattern only appears after
zeroing the field after grasping. The diverging vector field component is
obtained through [21].

We remark that the dipole pattern only appears in the
marker displacement fields when the vector field is zeroed
after grasp, as illustrated in Fig. In other words, the
marker displacement measurements are taken by subtracting
the post-grasp marker locations from the current marker
locations in the image plane. Without doing this, the dis-
placement field is dominated by the component caused by
the normal force, which remains relatively constant during
grasp and makes detection of the tilt torques difficult due to
its relatively small effect by comparison.

IV. EXPERIMENTS
A. Overview

We evaluate our method through a series of experiments
designed to characterize its capabilities and potential ap-
plications. In particular, we aim to 1) test the accuracy of
the estimation within ideal conditions, 2) evaluate whether
these estimates can be used for practical robot manipulation
scenarios, and 3) analyze the generalization capability of our
method across sensors and grasped object geometry. Note
that for all experiments, we used the optical flow algorithm
to generate vector fields rather than marker recognition and
tracking, which is commonly used for sensors without dense
optical patterns [9]. This was a practical design decision to
ease algorithm transfer across different sensor hardware.

B. Main Result: Calibration and Evaluation

1) Experimental Setup: Using the method outlined in
Section [[II-B] we compare tilt torques estimated by our
approach with that measured from a small and high reso-
lution FT sensor (Nippon Liniax Corp., TES12A-25), which
we use as ground truth wrench measurements. The setup is
shown in Fig. 8] Unlike the commonly used setup involving
a single visuotactile sensor with an FT sensor mounted
underneath [4], [10], [19], we are interested in measuring
torques applied to an object while it is grasped by a robotic
gripper. Therefore, the FT sensor is integrated into a plate
grasped by the Robotiq Hand-E gripper, rather than being
part of the gripper assembly. In the case of quasi-static
loading, we expect the moment between the inner plate to
the tactile gel to be equal to the moment applied from the
outer plate to the inner plate through the FT sensor. Although
only one Gelsight Mini visuotactile sensor [2] is used to



Fig. 3. The experimental setup for our main calibration and evaluation
experiments, showing the 3D printed jig to enable direct measurement of
the torques applied to a grasped object (top), and the way in which a human
manually applies the torque (bottom).

collect data, another unpowered sensor is attached to the
other finger of the gripper to provide an elastic gel surface to
enable the grasped object to displace in reaction to applied
wrenches. We found that this angular compliance was key
in reliably producing dipole field patterns, as compared to a
setup involving a rigid finger on the other side of the tactile
sensor used for measurement.

The gripper holds the plate with a fixed finger width,
so that a human can manually apply tilt torques to the
plate after zeroing the tactile field. During a single data
collection trial, torques are applied along a single axis in
alternating directions quasi-statically, with a typical torque
profile applied during a data collection trial shown in Fig. [3}
The single-axial nature of the applied wrenches is to avoid
issues relating to incipient slip during this initial experiment,
which is discussed in further detail in Section [V-Bl

This procedure is performed for several ranges of maxi-
mum torque values, producing a dataset consisting of 12,497
and 12,797 tactile sensor readings respectively for the 7,
and 7, experiments, where the asynchronous and higher
frequency data of the FT sensor, sampled at roughly 62.5Hz,
was interpolated to match the timings of the tactile sensor
outputs at roughly 19Hz to provide ground truth values for
comparison. As a baseline method that also estimates tilt
torques from 2D visuotactile data without deep learning,
the method described in [13] was employed. Rewriting with
the notational convention used here, the point-wise force
estimate in [13] is given by

fi= [Cz(vi)za Cy(vi)y7cz (Uz)% + (Uz)z] (10)

for w;, ¢z, ¢y, c. defined similarly as (3) and (J). Then, the
torque estimate is given by taking the cross product between
(T0) and the distance from the center of the tactile image [;,

N
1
Thaseline = N 5 (lz X fz) (11)
1=1

The major differences between this calculation and ours
are a) the moment arm is taken from the middle of the
image rather than being adaptive to the force distribution,
and b) the normal force f, is estimated through the vector
norm rather than the divergence, which cannot differentiate
between diverging, rotating, or translational field patterns.
2) Results: Fig. [] shows the linearity between the FT
sensor ground truth versus our estimation method, compared
to the method given in [13]. Our method demonstrates higher
estimation accuracy from the improved distributed normal
force measurement via vector divergence over the vector
norm. Note that the calibration scaling factor between the
tactile estimation and FT sensor ground truth is roughly equal
between the x and y axes, as is expected from the homo-
geneity of the gel material. We additionally observed that
this linearity was maintained whenever torques along = and y
axes were coupled, provided that the FT sensor was placed in
line with the axes of rotation, to avoid creating moment arms
causing human-applied torques to be read as forces in the FT
sensor. Fig. [5] shows the comparison between estimated and
ground truth tilt torque values plotted with respect to time
for a single data collection experiment, showing the practical
application of the calibration experiment to produce accurate
torque readings in engineering units from the tactile sensor.

C. Application for USB Stick Insertion

1) Experimental Setup: In order to demonstrate the utility
of measuring tilt torques with our method, we consider
an application of USB stick insertion alignment. The same
parallel gripper with tactile sensors used in Section [[V-B]|
is now mounted on the UFACTORY xArm6 through the
spring-loaded compliant wrist proposed in [31] to enable
safe contact interactions. We track the pose of the compliant
wrist with the VIVE Tracker motion capture device for
visualization purposes. Here, we consider the setting of a
human teleoperating the robot through a gamepad controller
rather than an automatic feedback controller, to manually
command motions to focus the evaluation on our torque
estimation method as well as to simplify the problem.

2) Alignment measurement: In the first experiment of
alignment measurement, the robot starts from a pose where
the USB stick is partially inserted into and aligned with the
hole. Then the robot arm is commanded to translate about the
z axis and rotate about the y axis according to the coordinate
definition given in Fig. [[] Due to the compliance in the
wrist, these misalignments result in tilt torques in x and y
directions respectively, transmitted from the USB stick to the
tactile fingers and estimated with our method. The results
for both USB-A and USB-C connectors are shown in the
supplemental video, as well as the snapshots given in Fig. [6]

3) Insertion: In the second experiment of insertion, the
robot starts from a state where the hole has some pose
uncertainty relative to the initial USB stick pose. The tactile
torque estimates aid in insertion through a) indicating when
the hole is “found” while dragging the USB stick along the
surface, and b) informing when the USB stick is aligned with
the hole when all torque estimates are small, indicating that
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Fig. 5. A typical time series plot of the torque applied during an experiment,
both as obtained from the FT sensor as well as the estimation obtained from
our method. This shows the quasi-static nature of the loads that we applied
for evaluation. The scaling factor for the tactile estimation curve is obtained
through the experiment illustrated in Fig. EI

a vertical motion will result in successful insertion. Since
our method provides estimates for x and y axis tilt torques,
the additional z axis in-plane torque estimates are provided
through the method proposed in [10]. The results for USB-A
and USB-C insertion are provided in the supplemental video.

D. DIGIT Sensor

Since our method is neither reliant on deep learning [4],
[22] nor sensor-specific modeling of mechanical or optical
properties [18], [24], [32], we expect our method to be
directly applicable to any visuotactile sensor providing 2D
marker displacement vector fields, with the only variation
resulting from the calibration scaling constant from fitting a
linear model to the ground truth FT sensor data. We test this
by applying our method to the DIGIT sensor [3], which we
modified to include markers through laser etching as shown
in Fig. [7] left. The results are provided in Fig. [7} right. We
observe that the gel on the DIGIT sensor is stiffer and has
a rounder surface profile compared to the Gelsight Mini,
which means that tilt torques primarily cause a change in the
contact surface to create non-uniform marker displacement
motions, rather than the uniform planar motions as with
the Gelsight Mini. Despite these hardware differences, these
result demonstrates that the method can generalize across
sensors, albeit with slightly reduced accuracy.

E. Generalization to Object Shape

The results shown in the previous sections were produced
from the tactile fingers grasping objects with uniform flat
regions. To evaluate the generalization capability of our ap-
proach to object shapes, Fig. [§] shows results for performing
the same experiments using square and round pegs (10mm
cross sectional width/diameter) rather than flat plates. We
chose peg-shaped objects since the torque estimation prob-
lem is most relevant for grasping long objects that induce
a moment arm when interacting with the environment. Due
to the non-uniformity of the contact region, the calibration
scaling factors are no longer consistent between the x and y
axes, signifying that this calibration needs to be performed
separately for every type of grasped object if a numerical
torque estimate in engineering units is desired. Nonetheless,
the linearity of data is conserved, showing the ability of our
technique to generalize across object shapes.

V. DISCUSSION AND LIMITATIONS

The results presented in this work demonstrate how our
method can be used to provide accurate tilt torque read-
ings from simple analytical calculations. In this section, we
discuss the implications and limitations of these results in
relation to the relevant existing literature.

A. Improved Analytical Estimation of Tilt Torques

When compared to existing approaches for tilt torque
estimation via analytical calculations from 2D marker dis-
placement fields [13], the results in Sectiondemonstrate
the improved measurement accuracy enabled through our
approach. Although both methods are based on the princi-
ple of integrating torque contributions from normal forces
distributed on the gel, the use of vector field divergence
for normal force estimation, and the moment arm definition
adapting to the force distribution location both serve to
improve the estimation.

B. Incipient Slip

We identify incipient slip as a fundamental challenge for
the in-grasp wrench estimation problem with visuotactile
sensors, which is likely not limited to tilt torque estimation
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Fig. 7. Experimental setup and results for the DIGIT sensor [3] transfer
experiment. Left: The DIGIT sensor that we laser-etched to have markers,
and Right: the results of comparing linearity with the FT sensor.

using our method. In particular, we observe that large and
quickly varying loads on grasped objects cause non-uniform
gel deformations, resulting in erroneous estimates. After
incipient slip occurs, the marker displacement field needs
to be re-zeroed as described in Section Bl We found
that changing the grip strength also changes the calibration
scaling constant between the tilt torque and tactile readings,
making the necessary adaptive grip strategy, such as slip
detection [1], [33], more complicated than simply increasing
grip strength for our problem setting.

C. Deep Learning

The results presented in this paper rely only on analytical
calculations without the use of deep learning. This may
be advantageous, as neural network training may require a
large amount of data to achieve satisfactory performance,
whereas simpler tactile representations can provide better
generalization performance in the low data regime [10], [26].
On the other hand, given a sufficiently large training dataset,
deep learning can be expected to outperform simple models.
As a third possibility, [5], [10] demonstrated how effective
analytical decompositions can reduce the complexity of data-
driven models, which we also expect to hold for our method.
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Fig. 8. The 3D printed jigs used to test our method on peg-shaped
objects (left), and experimental results (right). Only small torque values
were evaluated for torques along the longitudinal axis of the circular peg
(Ty), as significant slip occurred beyond the values shown here.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce the Tactile Dipole Moment as a
technique to estimate tilt torque from visuotactile sensors. We
test the efficacy of this simple method across two different
sensor models and three grasped object geometries, and
apply it to the problem of contact-rich USB stick insertion.
Our results demonstrate the effectiveness of vector calculus
techniques for analyzing visuotactile data. Future work could
involve the solution of the tactile object insertion problem
through automatic feedback control using our torque estima-
tion method as sensory inputs.
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