arXiv:2404.15639v1 [cs.CL] 24 Apr 2024

CODEIP: A Grammar-Guided Multi-Bit Watermark for Large Language
Models of Code

Yao Wan'*
Yulei Sui*

Batu Guan'

3Chongqing University

{batuguan,wanyao, zgbi, panzhou}@hust.edu.cn
y.sui@unsw.edu.au

hyzhang@cqu.edu.cn

Abstract

As Large Language Models (LLMs) are in-
creasingly used to automate code generation,
it is often desired to know if the code is Al-
generated and by which model, especially for
purposes like protecting intellectual property
(IP) in industry and preventing academic mis-
conduct in education. Incorporating water-
marks into machine-generated content is one
way to provide code provenance, but existing
solutions are restricted to a single bit or lack
flexibility. We present CODEIP, a new water-
marking technique for LLM-based code genera-
tion. CODEIP enables the insertion of multi-bit
information while preserving the semantics of
the generated code, improving the strength and
diversity of the inerseted watermark. This is
achieved by training a type predictor to predict
the subsequent grammar type of the next token
to enhance the syntactical and semantic correct-
ness of the generated code. Experiments on a
real-world dataset across five programming lan-
guages showcase the effectiveness of CODEIP.

1 Introduction

Large Language Models (LLMs), particularly those
pre-trained on code, such as CodeGen (Nijkamp
et al., 2022), Code Llama (Roziere et al., 2023),
and StarCoder (Li et al., 2023a), have demonstrated
great potential in automating software development.
Notably, tools leveraging these LLMs, such as
GitHub Copilot (Friedman, 2021), Amazon’s Code-
Whisperer (Amazon, 2023), and ChatGPT (Ope-
nAl, 2023), are revolutionizing the way developers
approaching programming by automatically gener-
ating code based on natural language intent and the
context of surrounding code.

While LLMs have demonstrated great poten-
tial in automated code generation, they also raise
challenges about safeguarding the intellectual prop-
erty (IP) of the model architectures, weights, and

*Corresponding Author.

Zhanggian Bi!
Pan Zhou'!
'Huazhong University of Science and Technology
“University of New South Wales

Zheng Wang?
Lichao Sun®
2University of Leeds
*Lehigh University
z.wang5@leeds. ac.uk
lis221@lehigh.edu

Hongyu Zhang®

training data due to the enormous cost of train-
ing a successful LLM (Li, 2024). Additionally,
there are growing concerns in educational settings
about academic integrity with the use of generative
Al (Bozkurt et al., 2023). An important measure
for protecting the LLM IP and preventing academic
misconduct is the ability to determine if a piece of
code is generated by a particular LLM.

Watermarking techniques (Kirchenbauer et al.,
2023) offer a potential solution to determine the ori-
gin of machine-generated content. This technique
is effective in safeguarding the IPs of Computer Vi-
sion (CV) and Natural Language Processing (NLP)
models. It works by inserting information within
multimedia formats (such as images and videos)
without perceptibly diminishing the original util-
ity of the content. By incorporating data such as
owner/user ID, it supports leakage tracing, owner-
ship identification, meta-data binding, and fortify-
ing against tampering.

Existing watermarking techniques for language
models can be categorized into two groups: hard
and soft watermarks. A hard watermark is typ-
ically inserted by utilizing the masked language
models (e.g., BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019)) to replace tokens in
generated content with synonyms. However, a hard
watermark exhibits consistent patterns for different
model inputs, compromising the protection perfor-
mance. On the contrary, the soft watermarks are
inserted during content generation, typically via
manipulating the sampling probability distribution
over the vocabulary during the decoding process of
LLMs (Kirchenbauer et al., 2023).

Recently, several attempts have been made to-
wards watermarking LLMs for code generation,
predominantly centered on two distinct approaches:
generating a one-bit watermark to discern the
machine-generated nature of the code (Lee et al.,
2023) or embedding a hard watermark through a
semantic-equivalent transformation of the gener-

! |# classifies the given 11st | ! Y

| | # of rumbers tnto even & odd. | | i
CodelP (wio | 1 H M
Type Predictor) | | def classify_even_odd(mums): | ! !

Watermark

even_nuns = []
odd_muns = [

of mumbers into even & odd. | | 1 L :
Codelp | |def classify_even_add(mums): | | Type Predictor: H ° ! Syntax Correct

Figure 1: CODEIP can seamlessly embed multi-bit mes-
sages into LLMs while preserving the utility of the un-
derlying code. “718084” is the ASCII value for “GPT”.

ated code (Li et al., 2023b; Sun et al., 2023). How-
ever, a one-bit message can carry little information
and is inadequate to preserve enough copyright
information like the vendor ID of an LLM. More-
over, the implementation of a hard watermark does
not offer robust protection, as the easily detectable
nature of the hard-coded watermarking pattern un-
dermines its effectiveness.

To this end, this paper puts forward a grammar-
guided multi-bit soft watermarking method, termed
CODEIP, to protect the IPs associated with LLMs
during the code generation process. Specifically,
following (Kirchenbauer et al., 2023), we first in-
sert the watermark message based on the probabil-
ity logit of LLLMs during the code generation pro-
cess. As this strategy has the potential to interfere
with code semantics throughout the code genera-
tion process, we propose to incorporate grammar
information into the process of generating water-
marked code. This is achieved by training a type
predictor to predict the subsequent grammar type
of the next token, thereby enhancing the semantic
correctness of the generated code.

Figure 1 shows an example to illustrate the ef-
fectiveness of our introduced grammar information
in comparison to the baseline model. In this ex-
ample, our objective is to insert the multi-bit mes-
sage (model name) “718084” (corresponding to the
ASCII value of “GPT”) into its generated code. It is
evident that, in the absence of grammar guidance,
the model inaccurately predicts the next token as
“:”. However, the grammar analysis indicates that
the succeeding token is expected to be a keyword.
Our CoDEIP, which incorporates grammar con-
straints into the logit of LLMs, consistently tends
to predict the correct token “in”. This capabil-
ity preserves the semantic correctness of the code
during the insertion of watermarks into LLMs.

We assess the performance of CODEIP by in-
corporating watermarks into a diverse real-world

dataset that encompasses five programming lan-
guages, namely Java, Python, Go, JavaScript, and
PHP. The experimental results validate the efficacy
of our proposed approach to watermarking, demon-
strating an average extraction rate of 0.95. Impor-
tantly, our approach maintains the utility of the gen-
erated code, exhibiting a 50% reduction in Code-
BLEU losses compared to the baseline model that
lacks grammar constraints.
This paper makes the following contributions.

e It is the first to study the problem of embedding
the soft multi-bit watermarks into LLMs of code
during the code generation process.

* It presents a new method that utilizes the gram-
matical information of programming languages
to guide the manipulation of probability logits
in LLMs, thereby preserving the utility of water-
marked code.

Data Availability. All experimental data and
source code used in this paper are available at
https://github.com/CGCL-codes/naturalcc/
tree/main/examples/codeip (Wan et al., 2022).

2 Preliminary

2.1 Code Generation

LLM-based code generation produces source code
from high-level specifications or prompts. Typ-
ically, these specifications (prompts) are con-
veyed through natural-language descriptions, sup-
plemented by partial code elements such as func-
tion annotations and declarations, which are pro-
vided by users. Formally, let p denote a prompt,
which can be tokenized into a sequence of tokens
{w1, w2, ..., wy}, where | - | denotes the length
of a sequence. Let)V denote the vocabulary used
for mapping each token to corresponding indexes.
Given a language model ppy;, the probability of
the next token, conditioned on a prompt and a se-
ries of the previous generated tokens wj.;, can be
formulated as follows.

LM = pLm(w;) = softmax (pp v (wilp, wii)) - (1)

Here, ppy(w;) denotes the probability distribution
over the entire vocabulary V, generated by the
LM. We also call the probability distribution pro-
duced by the LM as model logit. In this paper,
the LM will always be an autoregressive Trans-
former (Vaswani et al., 2017) pre-trained on source
code, akin to the models in the GPT family, in-
cluding Code Llama (Roziere et al., 2023) and

https://github.com/CGCL-codes/naturalcc/tree/main/examples/codeip
https://github.com/CGCL-codes/naturalcc/tree/main/examples/codeip

HASH

Classifies even & odd. :‘
def classify(nums): |
even_nums = [] |
odd_nums = [] i
for num |

]

<3

Type Predictor

i
]
"
i
i
i
i
!
i
WM Logits !
_____________ ! b
i
_____________ ! '|# Classifies even & odd. |,
! | | def classify(nums): |
H . even_nums = [] 3
1 | odd_nums = [] !
1 ! +
LLM Logits] ! for num | in !
1 . !
i .
e pupueget Next Token Generation
i
]
i
i
i
i
ﬂm i
)
TP Logits]
i
i

Figure 2: An overview of our proposed CODEIP.

StarCoder (Li et al., 2023a). Following this, the
subsequent token w; is sampled from pp(w;) us-
ing specific sampling strategies, such as multino-
mial sampling (Bengio et al., 2000) or greedy sam-
pling (Berger et al., 1996). In this paper, we adopt
the greedy sampling strategy. Therefore, the next
token will be sampled based on the following equa-
tion: w; = arg Igg}j{ log pLm(w).

2.2 The Problem: Watermarking the Code

In this paper, our goal is to insert a multi-bit wa-
termark message into a code snippet during the
generation process of LLMs. Typically, the wa-
termarking algorithm comprises two stages: the
watermark inserting stage and the watermark stage.

During the process of inserting a watermark into
the generated code, the initial consideration in-
volves determining the specific message m to be
inserted as the watermark. In practice, the model
provider of an LLM can formulate a message, e.g.,
owner ID, to safeguard its model copyright. It is
noteworthy that while the initial content of message
m may encompass any characters, it undergoes
conversion into a unique number before insertion.
Specifically, given the prompt p and a watermark
message m as inputs, the INSERT module pro-
duces a watermarked code C' = INSERT(p, m) .

During the watermark stage, given an input snip-
pet of code C, our expectation is that the module
EXTRACT will produce its predicted watermark
message m = EXTRACT(C).

In the context of this formulation, the primary
objectives of our watermarking for LLMs of code
are twofold: 1) to accurately insert the intent mes-
sage as a watermark, and 2) to preserve the utility
of the code without loss of semantics.

3 CObpEIP

In Figure 2, we present an overview of our pro-
posed CODEIP, which inserts a watermark into
code generated by an LLM. The CODEIP com-
prises two distinct stages: watermark insertion, and
grammar-guided watermarking. Initially, leverag-
ing the decoding mechanism of existing LLMs, we
use LM to denote the likelihood of each token
in the vocabulary V as inferred by the LLM itself.
Subsequently, during the watermark insertion stage
(cf. Sec. 3.1), we incorporate the watermark mes-
sage using a logit value Ly calculated to measure
its influence on V. Moreover, we present a novel
application of Context-Free Grammar (CFG) and
introduce a logit (denoted as Ltp), which signifies
the probability associated with the grammatical
type of the subsequent token, to guide the water-
mark insertion during the code generation process
(cf. Sec. 3.2).

3.1 Watermark Insertion

Following Kirchenbauer et al. (2023), we insert the
watermark into the generated code by modifying
the probability distribution over the entire vocab-
ulary V as the LLM generates the next token. We
first select a set of tokens from the vocabulary us-
ing a hash function. Based on the selected tokens,
we compute the watermark logits, representing the
likelihood of embedding the watermark message
within each respective token.

Vocabulary Selection. Following Kirchenbauer
et al. (2023), the insight of inserting watermarks
into code lies in selecting a set of tokens in the
vocabulary under the control of the watermark mes-
sage and enhancing their probability of generation
during the stage of LLM decoding. We employ a

hash function H to select tokens from the vocab-
ulary V. Specifically, assuming that LLM is gen-
erating the i-th token and the previous generation
is denoted as [wy, wa, - - - , w;—1], with watermark
message represented by m. For any given token
w in V, the hash function will take (w, m,w;_1)
as input and map it to either O or 1. We consider
tokens w that satisfy H(w,m,w;—1) = 1 as se-
lected tokens, and our objective is to enhance their
likelihood of being chosen by the LLM.

Watermark Logit. To augment the likelihood of
generation, we calculate an additional logit referred
to as the watermark logit Lwy and incorporate it
into the existing model logit £y y. The implemen-
tation of the watermark logit Lwy relies on the
outcomes of vocabulary partitioning. Assuming
that the current LLM generates the ¢-th token w1,
preceded by the last token w;_1, and denoting the
watermark information as m, the watermark logit
is computed as follows:

Lwm = log pwm (wi | m,wi—1)

H(w,myw;—1) =1 2)
H(w,m,wi—1) =0

Here h denotes a hash function which outputs a
binarization value O or 1. pwwm denotes the prob-
ability distribution over the entire vocabulary V),
which conveys analogous implications to that of
pLMm- By assigning a value of 1 to Ly for those se-
lected tokens whose resultant computation via the
hash function equals 1, we can effectively enhance
the likelihood of such tokens being preferentially
chosen during the decoding stage of LLM.

3.2 Grammar-Guided Watermarking

As previously mentioned, conventional watermark-
ing methods, which randomly insert a message
by perturbing the generation process for each to-
ken, often result in the disruption of the semantics
within the generated code. We posit that the gener-
ated code ought to adhere to the grammatical rules
of the programming language. Consequently, we
propose the integration of grammar constraints as
a guiding principle in the code generation process.
This inclusion is envisioned to maintain the utility
of watermarked generated code.

Context-Free Grammar (CFG). A CFG serves
as a formal system for describing the syntax of
programming languages, and possesses sufficient
expressiveness to represent the syntax of most pro-
gramming languages (Hoe et al., 1986). Typically,

Lee [+ [¢« [2 [= 1| !
I KEYWORD | NAME l PUNC. l NUMBER | PUNC. ;\II_XIZE_II_IU_M_|
KEYWORD('if') expr comp_op
Apply
Le
| q)if_stmt: KEYWORD(if) expr comp_op expr KEYWORD(':q
(@comp_op: PUNC.(<'|'>'|'=="|">="|'<="|'<>"|'l=") Rule
(3expr: atom PUNC.(*|'@'|'/'|'%|'/ /') atom @®
(@atom: NAME | NUM J

Figure 3: An example to highlight the role of CFG in
ensuring the semantic correctness of generated code.

for a segment of code, a lexer, e.g., ANTLR (Parr
and Quong, 1995), can transform it into a sequence
of lexical tokens. Subsequently, under the con-
straints of CFG rules, we can infer the potential
type of the subsequent lexical token. For instance,
as illustrated in Figure 3, after transforming the
original code “if i % 2 == into the sequence of
lexical tokens, we can use CFG to infer the poten-
tial type of the subsequent lexical token as either
“NAME” or “NUM”, which could be helpful in the sce-
nario of code generation.

Nonetheless, despite the constraints that CFG
imposes on code, its direct application to the field
of code generation still presents certain challenges.
As demonstrated in the example of Figure 3, a
CFG is capable of analyzing potential types for the
subsequent lexical token. However, when multi-
ple token types are considered as valid next token
types, CFG’s utility in aiding code generation tasks
becomes significantly limited, for it lacks the capac-
ity to calculate the probability distribution among
these possible token types. Hence, we train a lexi-
cal token-type predictor and intend to utilize it as a
substitute for the CFG.

Lexical Token Type Predictor. We train a neural
network to predict the lexical type of the next token.
In particular, given the prompt and previously gen-
erated tokens, we initially employ a lexer to trans-
form the given data into a sequence of lexical token
types. Subsequently, this sequence is inputted into
the predictor. The predictor then forecasts a token
type that will be outputted as the most probable
lexical token type for the subsequent token.

In the context of code generation with LLMs
and its prompt denoted as p, assuming that the
LLM is in the process of generating the ¢-th to-
ken when the generated code denoted as G, for
any given code snippet denoted as S = [p; G1.),
where [; -] denotes the concatenation of two ele-
ments, it is feasible to extract its token sequence
T = Lexer(S) = [r1,72,...,7] via lexical anal-
ysis, where 7 € 7T denotes the lexical token

type and [denotes the length of lexical token se-
quence. Then an LSTM (Hochreiter and Schmidhu-
ber, 1997) is adopted to serve as the type predictor
and to predict the token type of the subsequent to-
ken by inputting the token sequence T, as follows:

Ti41 = TP(T) = LSTM(71, 72, ..., 71)) - 3)

Other neural networks, such as the Trans-
former (Vaswani et al., 2017) can also be applied
and we leave the exploration of other neural net-
works as our future work.

Type Predictor Logit. In order to mitigate the
negative impact of watermarking on code utility, it
is imperative to leverage our type predictor during
the watermark insertion process, which is also the
LLM decoding period. This necessitates transform-
ing the predictive outcomes of the type predictor
into a form of logit that can be added onto model
logits. We name the new logit as type predictor
logit, which can also be represented as Ltp.

The type predictor logit is a probability distribu-
tion of tokens within vocabulary V. Consequently,
it becomes imperative to construct a dictionary in
advance that associates each type of lexical token
with potential LLM tokens corresponding to that
particular type. For instance, the KEYWORD lexi-
cal token type encompasses LLM tokens such as
“def”, “if”, and “else”, while the Punctuation
lexical token type incorporates LLM tokens includ-
ing “(”,)7, «“;”, “¥”, and so forth. We denote
this dictionary by ® : 7 +— V. Thus, Ltp can be
calculated as follows:

1, w; € @(Tl+1)

0, w; ¢ ®(1i41) @

Lyp = log prp(wil[p; G1:i]) = {
Here, p represents the prompt input into the LLM,
and GG denotes the pre-existing generated code. At
this juncture, we are in the process of generating
the ¢-th token w;.

3.3 Combining the All

The subsequent section will present the watermark
inserting formula corresponding to Figure 2, along
with the ultimate watermark embedding algorithm.

wi = argmax{Lym + BLwm +7L1et.)

In accordance with the settings established in the
preceding sections, we posit that LLM is generat-
ing the i-th token. Herein, 8 and ~ represent hy-
perparameters for LLM logit £y v, watermark logit
Lwm, and type predictor logit Ltp respectively.

3.4 Watermark Extraction

In the watermarking phase, we employ Lwwm to in-
sert a watermark w into the output G. Our strategy
for watermark extraction involves enumerating all
possible instances of m, recreating the process of
watermark insertion, and identifying the instance
of w that maximizes Lwy, as follows:

L

m = arg max {ZlongM (w | m’,wi_l)} , (6)
m =1

where L denotes the length of the token sequence

in the generated code G.

4 Experimental Setup

4.1 LLMs and Dataset

To validate the effectiveness of our CODEIP,
we choose three prominent LLMs: Code Llama
(Roziere et al., 2023), StarCoder (Li et al., 2023a),
and DeepSeek Coder (Bi et al., 2024) as our target
models. We insert the watermark into the code
generated by these selected models. Note that,
these models exist in different versions, each char-
acterized by varying model sizes. In our experi-
ments, we choose to employ the 7B model size,
limited by the computational resources. We select
Java, Python, Go, JavaScript and PHP from Code-
SearchNet (Husain et al., 2019) dataset and use the
docstrings and function declarations as prompts.
For each prompt, the LLMs will generate the next
200 tokens. Note that here we do not adopt Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) datasets as our evaluation datasets.
This is because their code length is generally too
short and not suitable for inserting watermarks.
The relationship between the length of generated
code and the extraction rate is studied in Sec. 5.3.

4.2 TImplementation Details

The default hyperparameters are configured as fol-
lows. For all three LLMs, we implement a tem-
perature of 0.75, a repetition penalty of 1.2, and
no repeat n-gram size of 10. Given the distinct
training processes of various LLMs, we establish
the parameters (3,) as (5, 3) for Code Llama and
StarCoder, (6,4) for DeepSeek Coder. The type
predictor is an LSTM model, which encompasses
an embedding layer characterized by an embedding
dimensionality of 64. The hidden state dimension-
ality of the LSTM is 128. In our experiment, we
train a type predictor for each language involved,

Table 1: The result of watermark extraction rate. “WM?”: watermark, “TP”: type predictor.

LLM Strategy Java Python Go JavaScript PHP
Code Llama w/ WM + w/o TP 0.90 0.93 0.87 0.98 0.97
w/ WM + w/ TP 0.92 0.93 0.86 1.00 0.97

StarCoder w/ WM + w/o TP 0.88 0.98 0.90 0.97 0.96
w/ WM + w/ TP 0.86 0.97 0.87 0.96 0.96

Deepseek Coder w/ WM + w/o TP 0.99 0.95 0.87 1.00 1.00
ps w/ WM + w/ TP 0.99 1.00 0.91 1.00 1.00

given the distinct grammatical structures inherent
to each language. All the experiments in this pa-
per are conducted on a Linux server with 128GB
memory, with a single 32GB Tesla V100 GPU.

4.3 Evaluation Metrics

To evaluate the effectiveness of watermarking, one
objective is to assess whether the watermark can be
detected from the generated code. Specifically, we
select 100 functions from the dataset for each pro-
gramming language and extract the docstrings and
declarations of each function to serve as prompts
for LLMs generation. We employ the extraction
rate of watermarks as a metric to measure the effi-
cacy of watermarking, reflecting the percentage of
watermarks successfully extracted from the embed-
ded code. To validate the utility of watermarked
code, we adopt the CodeBLEU (Ren et al., 2020)
metric, which has been widely adopted in the evalu-
ation of code generation. Note that, here we do not
adopt the Pass@k metric (Chen et al., 2021), which
has been widely adopted to evaluate the LLMs for
code generation. This is because the test cases are
missing in our used CodeSearchNet dataset.

S Results and Analysis

5.1 Extraction Rate of Watermarks

Table 1 shows a comparison among different kinds
of watermarking strategies. Generally, under both
watermarking strategies, the extraction rates con-
sistently surpass 0.90 on most programming lan-
guages, indicating the efficacy of our watermarking
techniques in the context of LL.Ms for code genera-
tion. Using DeepSeek Coder as a case in point, our
watermarking strategy, both with and without the
type predictor, demonstrates an impressive extrac-
tion rate of 0.99 for Java and 1.00 for PHP. These
results are consistent with our initial expectations,
as the type predictor is designed to prioritize the
preservation of the utility of the generated code.

5.2 Watermark vs Code Quality

We further explore the impact of watermarking
strategies on the utility of generated code. Ta-
ble 2 illustrates the overall performance of different
LLMs when paired with distinct logits (“w/ WM
+ w/o TP” and “w/ WM + w/ TP”’), measured by
the CodeBLEU score. From this table, it is evident
that the exclusive use of watermark logit leads to
a notable decrease in CodeBLEU scores for code
generation across various models and languages,
and with the subsequent incorporation of the type
predictor logit, a distinct resurgence in CodeBLEU
scores is observed across most settings. Notably,
in Java, Go, and JavaScript, the impact on Code-
BLEU generation resulting from the simultaneous
application of both logits (i.e., watermark logit and
type predictor logit) is only half as pronounced as
that arising solely from the use of watermark logit.
This emphasizes the significant efficacy of the type
predictor in preserving code semantics.

5.3 Parameter Analysis

The impact of parameter 5. We conduct an ex-
periment on the variation in extraction rates when
adjusting the /3 value under three distinct LLMs for
two programming languages, namely Java and Go,
as shown in Figure 4. It can be seen that as 3 contin-
ues to increase, the extraction rate of watermarks is
also constantly increasing. When (3 exceeds 5, a ex-
traction rate of approximately 0.9 can essentially be
achieved, which is relatively ideal. It indicates that
watermark logit has a positive effect on whether
watermarks can be detected.

The impact of parameter v. We conduct exper-
iments on three distinct LLMs by varying the y
value, aiming to investigate the variations in ex-
traction rates pertaining to two programming lan-
guages: Java and Go. The experimental results, as
depicted in Figure 5, reveal a noteworthy trend.
The initial augmentation of « visibly improves
the quality of the generated code. Nevertheless,
as the augmentation progresses beyond a certain

Table 2: CodeBLEU scores for different models with different strategies. The value in () represents the disparity in
quality (CodeBLEU) between watermarked and non-watermarked code.

LLM Strategy Java Python Go JavaScript PHP
w/o WM + w/o TP 28.99 22.56 31.73 23.01 44.56
Code Llama TW/WM +w/o TP~ ~ 2335 (-5:64) ~ 12.04 (-10.32) ~ 22.44 (-9.29)" "16.47(-6.54) ~40.47 (-4.09) -
w/ WM + w/ TP 27.14 (-1.85) 12.25(-10.31) 26.49 (-5.24) 20.83(-2.18) 40.61 (-3.95)
w/o WM + w/o TP 39.16 17.74 27.61 24.06 42.60
StarCoder "W/ WM +w/o TP~ "25.70 (-13.46)" "17.60(-0.14) ~ 1339 (-14.22) "15.25(-8.81) ~40.11(-2.49)
w/ WM + w/ TP 32.11(-7.05) 18.16 (+0.42) 17.55(-10.06) 19.18 (-4.88) 40.14 (-2.46)
WoWMtwioTP 3210 1968 3310 __ 2897 __ ¢ 4229 .
DeepSeek Coder ~ w/ WM + w/o TP~ ~ 2555 (-655) ~ 18.35(-1.33) ~ 2693 (-6.17) 17.88(-6.09) 43.30 (+1.11)
w/ WM + w/ TP 31.22(-0.88) 13.57(-6.11) 29.32(-3.78) 19.65 (-4.32) 43.40 (+1.11)
1.0 1.0 3 30
208 208 32 ii '/4/’/‘\
IS < 31
é 0.6 é 0.6 é 30 Code Llama % 24 Code Llama
Soa So4 £ 291 3 Do ot g2 T oot Coter
o o g 28 g
Poz Skl AL S i 7
0.0 —4— Decpseck Coder 0.0 —4— Deepseck Coder 26 %
1232567 123;4}567 P57 3 3 i 3
v v
(a) Java (b) Go (a) Java (b) Go
Figure 4: Impact of parameter 3. Figure 5: Impact of parameter .
. . L. 1.0 1.0
threshold, a discernible decline in CodeBLEU be- o5
comes evident. One plausible explanation for this 50‘8 5 '
. . . 0.6
inconsistency may stem from the inherent contra- 5%¢ 8
diction in tokenization, namely, the disparity be- g04 g0
1 1 14 o2 Code Llama L02 Code Llama
tween prevalent tokenization methods utilized by o SurCoder o Surcoder
0.0 ~—4— Deepseek Coder 0.0 —4#— Deepseck Coder

LLMs (e.g., WordPiece (Schuster and Nakajima,
2012) and BPE (Sennrich et al., 2015)), and those
employed by lexers.

For example, the LLM subtokens “ran” and
ge”, when combined, can constitute the lexical
token "range” which can be recognized during lex-
ical analysis. And assuming the generated code to
be “for i in ran”, the subsequent LLM subtoken
to be generated is most likely to be “ge”, thereby
rendering the generated code as “for i in range”.
However, from the perspective of a lexer, the type
of “ran” could potentially be classified as type
“NAME”, so the calculated lexical token type will be
“PUNCTUATION”, thereby selecting “:”. Hence, the
generation of code will be transformed into “for
i in ran:”. This contradiction caused by differ-
ent segmentation methods between LLM tokenizer
and lexical analysis can also lead to performance
degradation when + is high.

113

The impact of generated code length. We also
investigate the influence of generated code length,
measured in terms of the number of tokens pro-

10 50 100 150 200
Generate Code Length

(a) Java

10 50 100 150 200
Generate Code Length

(b) Go

Figure 6: Impact of generated code length.

duced, on the effectiveness of watermark insertion.
Our findings reveal a positive correlation between
code length and the successful extraction rate, as
depicted in Figure 6. This observation underscores
that the successful extraction rate of our watermark
remains contingent on the length of the generated
code. Specifically, shorter lengths of generated
code lead to diminished distinctions between water-
marked and non-watermarked code, consequently
presenting a heightened challenge in detecting wa-
termarks within such code.

5.4 Resistance to Crop Attack

To underscore the robustness of our watermark-
ing strategies, we consider a hypothetical scenario
where developers use only a portion, rather than
the entire generated code, to undermine the water-

Table 3: The performance of CODEIP in code water-
marking against crop attack.

LLM Rate Java Python Go JS PHP

0 1092 093 0.86 1.00 0.97
Code Llama 02510.89 095 0.75 0.96 0.94
0501071 085 0.51 0.87 0.87

0 086 097 0.87 096 0.96
StarCoder 0251081 095 085 093 095
050 (0.63 09 079 0.85 0.92

0 (099 1.00 091 1.00 1.00
DeepSeek Coder 0.25 | 0.98 099 0.77 0.94 0.95
0501091 090 0.56 0.90 0.87

mark—a situation termed a “Crop Attack™. This
involves subjecting the generated code to crop rates
of 0.25 and 0.5, representing the removal of 25%
and 50% of the code, respectively. The results are
presented in Table 3. Examination of the table re-
veals that, in most cases, our watermark’s effective-
ness only experiences a slight reduction under such
rigorous attacks. These findings strongly indicate
that our watermark exhibits notable resistance to
crop attacks, demonstrating its inherent robustness.

6 Related Work

LLM-based Code Generation. The roots of
code generation can be traced back several
decades (Backus et al., 1957; Waldinger and
Lee, 1969; Manna and Waldinger, 1971). Re-
cently, LLMs especially those pre-trained on code,
such as DeepSeek Coder (Bi et al., 2024), Code
Llama (Roziere et al., 2023), CodeGen (Nijkamp
et al., 2022), StarCoder (Li et al., 2023a), and
CodeGeeX2 (Zheng et al., 2023), have emerged
as dominant forces in code generation. Leverag-
ing the capabilities of these LLMs, several com-
mercial tools are reshaping the programming land-
scape for developers, including GPT-3.5 (Ope-
nAl, 2023), Gemini (Google, 2024), GitHub Copi-
lot (Microsoft, 2024), and Tabnine (Tabnine, 2024),
ushering in a new era of innovation.

Software Watermarking. The software water-
marking problem has been studied since 1996 by
Davidson and Myhrvold (1996), who altered code
block or operand order to insert watermarks. Qu
and Potkonjak (1998) proposed a software water-
mark method based on graph coloring problem and
graph structure of the code, which was further de-
veloped by Myles and Collberg (2004), Zhu and
Thomborson (2006) and Jiang et al. (2009). These
rule-based early methods are often constrained by

the usage scenarios and various attack techniques.
Stern et al. (2000) has also proffered a methodology
that entails the transformation and reorganization
of code to uphold semantic integrity while concur-
rently resisting reverse engineering. Recently, sev-
eral works (Yang et al., 2023; Li et al., 2023b) have
been focusing on watermarking the code gener-
ated by LLMs. They utilized a post-processing ap-
proach, whereby watermarks are inserted through
transformations applied to the code subsequent to
its generation by the model. However, these tech-
niques present several limitations including their
specificity for a single language, susceptibility to
counterfeiting upon watermark method disclosure,
restricting their applicability.

Machine Generated Text Identification. The
task of identifying machine-generated text has al-
ways been of paramount importance. An intuitive
approach is to treat it as a binary classification task,
accomplished by training a model (Solaiman et al.,
2019; Bakhtin et al., 2019). Another approach is
to identify model-generated text by detecting fea-
tures of the generated text. Tay et al. (2020) dis-
tinguished texts by detecting detectable artifacts in
the generated text, such as sampling methods, top-
k probabilities, etc. In 2023, a novel method was
introduced by Kirchenbauer et al. (2023) suggest-
ing the inserting of watermarks into text during the
model inference period. The authors applied a hash
function and a random number generator to divide
candidate tokens into groups, allowing watermark
extraction by those aware of the rule. Lee et al.
(2023) extended this method to code generation
with threshold-controlled watermark inclusion.

7 Conclusion

In this paper, we propose CODEIP to watermark
the LL.Ms for code generation, with the goal of
safeguarding the IPs of LLMs. We insert water-
marks into code generated by the model, and intro-
duce grammatical information into the watermark
generation process by designing a type predictor
module to safeguard the utility of generated code.
Comprehensive experimental findings affirm that
CODEIP exhibits a notable extraction rate, excels
in safeguarding code semantics, and demonstrates
a degree of resilience against attacks. In our fu-
ture work, we plan to persistently advance towards
more secure LLM-powered software engineering
through the continuation of our research.

8 Limitations

In our experiment, we adopt CodeBLEU for evalua-
tion, which is a commonly used metric in assessing
the quality of code generation. In our future work,
we will employ additional evaluation metrics to
assess the experimental results. Furthermore, the
experiments have substantiated that our watermark
exhibits a certain degree of robustness under crop
attacks, as this is the most easily implemented at-
tack method in model copyright scenarios. Other
forms of attacks such as variable name obfusca-
tion could potentially degrade the readability of
generated code, thus making them less likely to
be employed in attacks aimed at infringing model
copyrights, which is an assault we aim to prevent.
We will persistently investigate and enhance the
robustness of our watermark to make it applicable
for more protection scenarios.

References

C Amazon. 2023. Ai code generator—amazon code-
whisperer.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

John W Backus, Robert J Beeber, Sheldon Best, Richard
Goldberg, Lois M Haibt, Harlan L Herrick, Robert A
Nelson, David Sayre, Peter B Sheridan, Harold Stern,
et al. 1957. The fortran automatic coding system.
In Papers presented at the February 26-28, 1957,
western joint computer conference: Techniques for
reliability, pages 188-198.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian
Deng, Marc’ Aurelio Ranzato, and Arthur Szlam.
2019. Real or fake? learning to discriminate ma-
chine from human generated text. arXiv preprint
arXiv:1906.03351.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. Ad-
vances in neural information processing systems, 13.

Adam L. Berger, Vincent J. Della Pietra, and Stephen
A. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Comput. Linguist.,
22(1):39-71.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-
ing open-source language models with longtermism.
arXiv preprint arXiv:2401.02954.

Aras Bozkurt, Xiao Junhong, Sarah Lambert, Angelica
Pazurek, Helen Crompton, Suzan Koseoglu, Robert
Farrow, Melissa Bond, Chrissi Nerantzi, Sarah Hon-
eychurch, et al. 2023. Speculative futures on chatgpt
and generative artificial intelligence (ai): A collec-
tive reflection from the educational landscape. Asian
Journal of Distance Education, 18(1):53—-130.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Robert I Davidson and Nathan Myhrvold. 1996. Method
and system for generating and auditing a signature
for a computer program. US Patent 5,559,884.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171-4186.

Nat Friedman. 2021. Introducing github copilot: your ai
pair programmer. URL https://github. blog/2021-06-
29-introducing-github-copilot-ai-pair-programmer.

Google. 2024. Gemini. https://deepmind.google/
technologies/gemini/. [Online; accessed 1-Feb-
20241].

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735—
1780.

Alfred V Hoe, Ravi Sethi, and Jeffrey D Ullman. 1986.
Compilers—principles, techniques, and tools. Pear-
son Addison Wesley Longman.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436.

Zetao Jiang, Rubing Zhong, and Bina Zheng. 2009. A
software watermarking method based on public-key
cryptography and graph coloring. In 2009 Third In-
ternational Conference on Genetic and Evolutionary
Computing, pages 433—437. IEEE.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. arXiv
preprint arXiv:2301.10226.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Chuan Li. 2024. Demystifying gpt-3 language model:
A technical overview. https://lambdalabs.com/
blog/demystifying-gpt-3/. [Online; accessed 1-
Feb-2024].

https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Zongjie Li, Chaozheng Wang, Shuai Wang, and Cuiyun
Gao. 2023b. Protecting intellectual property of large
language model-based code generation apis via wa-
termarks. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 2336-2350.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv:1907.11692.

Zohar Manna and Richard J Waldinger. 1971. Toward
automatic program synthesis. Communications of
the ACM, 14(3):151-165.

Microsoft. 2024. Microsoft Copilot. https://
www.microsoft.com/zh-cn/microsoft-copilot.
[Online; accessed 1-Feb-2024].

Ginger Myles and Christian Collberg. 2004. Software
watermarking through register allocation: Implemen-
tation, analysis, and attacks. In Information Secu-
rity and Cryptology-ICISC 2003: 6th International
Conference, Seoul, Korea, November 27-28, 2003.
Revised Papers 6, pages 274-293. Springer.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

OpenAl. 2023. chatgpt. http://chat.openai.com.
[Online; accessed 1-Feb-2023].

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Terence J. Parr and Russell W. Quong. 1995. Antlr: A
predicated-11 (k) parser generator. Software: Practice
and Experience, 25(7):789-810.

Gang Qu and Miodrag Potkonjak. 1998. Analysis of
watermarking techniques for graph coloring problem.
In Proceedings of the 1998 IEEE/ACM international
conference on Computer-aided design, pages 190—
193.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

10

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE international

conference on acoustics, speech and signal process-
ing (ICASSP), pages 5149-5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Julien P Stern, Gael Hachez, Francois Koeune, and Jean-
Jacques Quisquater. 2000. Robust object watermark-
ing: Application to code. In Information Hiding:
Third International Workshop, IH’99, Dresden, Ger-
many, September 29-October 1, 1999 Proceedings 3,
pages 368-378. Springer.

Zhensu Sun, Xiaoning Du, Fu Song, and Li Li. 2023.
Codemark: Imperceptible watermarking for code
datasets against neural code completion models. In
Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1561—
1572.

Tabnine. 2024. Tabnine. https://www.tabnine.
com/. [Online; accessed 1-Feb-2024].

Yi Tay, Dara Bahri, Che Zheng, Clifford Brunk, Don-
ald Metzler, and Andrew Tomkins. 2020. Reverse
engineering configurations of neural text generation
models. arXiv preprint arXiv:2004.06201.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Richard J Waldinger and Richard CT Lee. 1969. Prow:
A step toward automatic program writing. In Pro-
ceedings of the 1st international joint conference on
Artificial intelligence, pages 241-252.

Yao Wan, Yang He, Zhanggian Bi, Jianguo Zhang, Yulei
Sui, Hongyu Zhang, Kazuma Hashimoto, Hai Jin,
Guandong Xu, Caiming Xiong, et al. 2022. Natu-
ralcc: an open-source toolkit for code intelligence.
In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion
Proceedings, pages 149-153.

Borui Yang, Wei Li, Liyao Xiang, and Bo Li. 2023.
Towards code watermarking with dual-channel trans-
formations. arXiv preprint arXiv:2309.00860.

https://www.microsoft.com/zh-cn/microsoft-copilot
https://www.microsoft.com/zh-cn/microsoft-copilot
http://chat.openai.com
https://www.tabnine.com/
https://www.tabnine.com/

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

William Zhu and Clark Thomborson. 2006. Recogni-
tion in software watermarking. In Proceedings of
the 4th ACM international workshop on Contents
protection and security, pages 29-36.

A Lexical Token Type

Despite the diversity in syntax among various pro-
gramming languages, a consistency remains at the
lexical analysis level. That is, the types of tokens
parsed out by lexical analysis are fundamentally
similar. The text box below presents potential token
types that may be parsed following lexical analysis.

"TOKEN” , "TEXT?, "WHITESPACE’ ,
"ESCAPE’ , "ERROR” , ' OTHER? ,
"KEYWORD’, ’CONSTANT’, ’DECLARATION’,
"NAMESPACE’, ’PSEUDO’, ’RESERVED’,
"TYPE’, "NAME? ' ATTRIBUTE’ ,
'BUILTIN’, "PSEUDO’ , "CLASS’ ,
"CONSTANT’, ’DECORATOR’, ’ENTITY’,
"EXCEPTION’, ’FUNCTION’, ’MAGIC’,
'PROPERTY’, ’LABEL’, ’NAMESPACE’,
'OTHER’, ’TAG’, ’VARIABLE’, ’CLASS’,
’GLOBAL’ , " INSTANCE” , 'MAGIC’ ,
'LITERAL’, ’DATE’, ’STRING’, ’AFFIX’,
'BACKTICK’, ’CHAR’, ’DELIMITER’,
'DOC’, ’DOUBLE’, ’ESCAPE’, ’HEREDOC’,
» INTERPOL’ , 'OTHER? , 'REGEX” ,
’SINGLE’ , " SYMBOL’ , ’NUMBER’ ,
'BIN’, ’FLOAT’, °’HEX’, ’INTEGER’,
'LONG’, ’OCT’, ’OPERATOR’, ’WORD’,
"PUNCTUATION’, °’MARKER’, ’COMMENT’,
"HASHBANG’ , ’MULTILINE’, ’PREPROC’,
'PREPROCFILE’, °’SINGLE’, ’SPECIAL’,
' GENERIC’ , 'DELETED” , "EMPH’
"ERROR” , "HEADING’ , " INSERTED” ,
’QUTPUT” , ’PROMPT” , ’STRONG” ,
" SUBHEADING’ , ’ TRACEBACK’

B Learning the Type Predictor

Formally, the type predictor accomplishes the task
of the next lexical token prediction. We adhere to
conventional training methodologies for this partic-
ular task to train it. For a given programming lan-
guage, we postulate that the collected code dataset
of this particular language is denoted as D, and
each segment of code within this dataset as d € D.
To facilitate the acquisition of pertinent language

11

grammar by the type predictor, we initially employ
a lexer specific to that language to transform each
instance of d into a corresponding lexer token se-
quence. Taking into account that the possible token
type of the subsequent word is typically associated
with the types of nearby tokens, for predicting the
type of the i-th token, we extract n preceding to-
ken types from the sequence to predict this i-th
token type. Hence, for the dataset D, our learning
objective can be articulated as follows.

|Tql

J(D) = logprstmUilli-—n):i)

deD i=n

)

where J is the loss function utilized during the
training of type predictor, and |7}| denotes the
length of lexical token type sequence of original
code d.

C CodeBLEU
The CodeBLEU metric can be depicted as follows.

CodeBLEU = 7 - BLEU + A - BLEU eignt

8
+ p - Match,y + € - Matchge ®)

Here, BLEU is computed utilizing the conven-
tional BLEU method as delineated by (Papineni
et al.,, 2002). The term BLEUyign refers to a
weighted n-gram match that is derived from juxta-
posing hypothesis code and reference code tokens
with varying weights. Furthermore, Match,g signi-
fies a syntactic AST match which delves into the
syntactic information inherent in the code. Lastly,
Matchgs denotes a semantic dataflow match that
takes into account the semantic congruity between
the hypothesis and its corresponding reference.

In our experiments, we adopt the parameters rec-
ommended by Ren et al. (2020) in their original pa-
per, namely (n, A, i,) = (0.10,0.10, 0.40, 0.40).

D Case Study

In Figure 7, we demonstrate examples of the gen-
eration code of LLM under three different strate-
gies(w/o WM + w/o TP, w/ WM + w/o TP, and w/
WM + w/ TP), and the watermark message is the
number “1012”. The prompt contains the docstring
and declaration of the function.

From Figure 7(a) we can see that when water-
mark logit and type predictor logit are not applied
during the decoding stage of LLM, it generates
some normal Python code, and in this scenario, no
watermark is inserted in the code because water-
mark logit is not applied. When only the watermark

logit is added to the model logit, the LLM starts
to generate large sections of comments, which is
meaningless to the implementation of the function.
The reason is supposed to be that the watermark
logits enhance the generation probability of com-
ment symbols like “#” and “' ' ', who then affect
the LLM to generate comments rather than codes,
which do harmness to code utility. Subsequently,
when type predictor logits are also added to the
model logits, the generation code of LLM resumes
to normal and generates complete code to imple-
ment the function shown in the prompt.

As illustrated in Figure 7(b), the LLM generated
nearly identical outputs under the three strategies.
In this particular instance, no conspicuous gram-
matical errors were detected, and the outputs of
both strategies - w/ WM + w/o TP and w/ WM +
w/ TP - bear a striking resemblance to the output of
w/o WM + w/o TP strategy. This case demonstrates
that the watermarks we incorporated exert minimal
influence on the output of LLM.

As depicted in Figure 7(c), w/ WM + w/o TP
leads to meaningless generations due to the absence
of grammar guidance, when w/ WM + w/ TP gen-
erates something similar to w/o WM + w/o TP, and
also insert watermark “1012” into it. We posit that
the observed outcome can be attributed to the fact
that watermark logits have potentially increased the
probability of erroneous type tokens being selected
by LLM. Furthermore, it is discernible that once
an incorrect type of token is chosen, the model’s
output will continually be misguided. For instance,
upon the model’s erroneous output of the token
“public” due to the influence of watermark logits,
it is anticipated that a complete function declara-
tion will be subsequently generated by the model,
thereby leading to a sustained impact on code se-
mantics, and the generation of symbol “' ' ' will
lead to the generation of comments, which also
shows the misleading effect watermark logit have
on code generation task. As it is also shown in the
Figure, when type predictor logit is applied, such
circumstances are unlikely to occur.

12

~

Create an alias for a specific index/indices
def alias_create(indices, alias, hosts=None, body=None, profile=None, source=None):

~
Prompt

if not hosts: w/o WM+w/o TP
hosts =
__salt__['elasticsearch.get_hosts'](profi
le)
return

__salt__['elasticsearch.snapshot_get'](re
pository, snapshot, ignore_unavailable,
hosts, profile)
try:

response =
es.snapshot.get(repository=repository,
snapshot=snapshot,
ignore_unavailable=ignore_unavailable)
[...continued

def snapshot_get(¥*, repositorv;VVM+“M°TP

snapshot, ignore_unavailable=False)
. versionchanged:
- In Elasticsearch 5.0 and later,
" ‘ignoreUnavailable’ " can be passed as a
URL parameter. If not provided, then it
defaults to

previously hard-coded in the client).

“*True’ " (which was
. versionchanged:
- In Elasticsearch 6.0 and later,
" “masterTimeout’ " can be passed as a URL
parameter or as the value of

[...continued

ret = w. WM+w. TP

{}
hosts =
__utils__["elasticsearch.check_cluster"]
(hosts)['master']

for host in hosts:
try:
url = "https://" + host +
"'/ _cat/snapshots/"+repository+" "+
snapshot
headers =
{"accept":"application/json" }
[...continued

(a) An example of Python.

s \
// Deserializeldentity provides a mock function with given fields: serializedIdentity Prompt
func (_m *IdentityDeserializer) DeserializeIdentity(serializedIdentity [Jbyte)(msp.Identity, error) {

w/o WM+w/o TP w. WM+w/o TP w. WM+w. TP

[Truncated...] [Truncated...] [Truncated...]
var rl error var rl error var rl error
if rf, ok := if rf, ok := if rf, ok := ret.Get(1l).(func([]byte)
retMock.Results[1].(func([Jbyte) error); ret_mock.call.Result.(func([Jbyte) error);| error); ok {
ok { ok { if ret == reflect.Value{Zero}-

rl = rf(serializedIdentity) rl = rf(serializedIdentity) rf(args[0]) { //nolint: staticcheck

retMock.Results[1] = rl if rl != nil || len(ret.Error(_i+0)) > }
} else { 0 { // If there is an error, then it's if ret == reflect.Value{Nil}-rf(args[0])

rl = ret.Error(l) not nil { // nolint: staticcheck

3} return r@, errors.Wrap(err, 3}
return r@, ril ret.Error(_i+0), 2, serialized) rl = ret.Error(1l)
} } return rl

3

(b) An example of Go.

// Creates the request protobuf. This method is considered an internal implementation detail and not meant to be used by applications. Prompt
public ReadR R Proto(Req ontext req ontext) {
w/o WM+w/o TP w. WM+w/o TP w. WM+w. TP

return Request.newBuilder()
.setServiceName(serviceName)
. setMethodName(methodName)
.setPayload(ByteString. copyFrom(payloa
da))
.build();
}

[continued...]

public static final Request create(final
MethodDescriptor<?, ?> method, final
CallOptions callOptions);

3 " createResponse()’

public static final <RequestTypeT,
ResponseTypeT>
ServerCallListener.Listener<
[continued...]

Request.Builder builder =
Request.newBuilder();
builder.setMethod(getProtoMethod(requestT
ype));
builder.putAllHeaders(getProtoMap(getHead
ers()));
builder.putAllPathParamValues(getProtoMap
(getQueryParams()));

ByteString body = ByteString.EMPTY;
[continued...]

(c) An example of Java.

Figure 7: Case study.

13

	Introduction
	Preliminary
	Code Generation
	The Problem: Watermarking the Code

	CodeIP
	Watermark Insertion
	Grammar-Guided Watermarking
	Combining the All
	Watermark Extraction

	Experimental Setup
	LLMs and Dataset
	Implementation Details
	Evaluation Metrics

	Results and Analysis
	Extraction Rate of Watermarks
	Watermark vs Code Quality
	Parameter Analysis
	Resistance to Crop Attack

	Related Work
	Conclusion
	Limitations
	Lexical Token Type
	Learning the Type Predictor
	CodeBLEU
	Case Study

