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ABSTRACT

Emerging vulnerabilities in machine learning (ML) models due to adversarial attacks raise concerns
about their reliability. Specifically, evasion attacks manipulate models by introducing precise per-
turbations to input data, causing erroneous predictions. To address this, we propose a methodology
combining SHapley Additive exPlanations (SHAP) for feature importance analysis with an innovative
Optimal Epsilon technique for conducting evasion attacks. Our approach begins with SHAP-based
analysis to understand model vulnerabilities, crucial for devising targeted evasion strategies. The
Optimal Epsilon technique, employing a Binary Search algorithm, efficiently determines the mini-
mum epsilon needed for successful evasion. Evaluation across diverse machine learning architectures
demonstrates the technique’s precision in generating adversarial samples, underscoring its efficacy
in manipulating model outcomes. This study emphasizes the critical importance of continuous
assessment and monitoring to identify and mitigate potential security risks in machine learning
systems.

Keywords Adversarial Machine Learning, Evasion Attacks, SHAP (SHapley Additive exPlanations), Model
Vulnerability Assessment, Tabular Data Analysis.

1 Introduction

The widespread adoption of machine learning models has driven remarkable technological advancements and improve-
ments in decision-making, concurrently exposing a vulnerability—adversarial attacks, particularly evasion attacks.
These attacks involve subtle alterations to input data, leading to erroneous predictions with potentially severe conse-
quences Szegedy et al. (2014); Goodfellow et al. (2015); Carlini and Wagner (2017). To address this challenge, our
approach introduces a methodology combining SHapley Additive exPlanations (SHAP) for feature importance analysis
with an innovative optimal epsilon technique Lundberg and Lee (2017). Motivated by the growing need to secure ma-
chine learning models in vital sectors like healthcare, finance, autonomous vehicles, and cybersecurity Biggio and Roli
(2018), our methodology integrates feature importance analysis using SHAP, a powerful tool for understanding feature
impact across various domains Lundberg et al. (2019). This analysis spans both binary and multiclass classification
scenarios, offering insights for developing targeted evasion strategies by evaluating the significance of different features.
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The optimal epsilon technique, introduced in our study, plays a pivotal role in evasion attacks by determining the
minimal epsilon necessary for successful evasion. This concept involves finding the smallest perturbation magnitude
to deceive a machine learning model into making incorrect predictions without detectable alterations. The technique
enhances precision and effectiveness in exposing vulnerabilities, underscoring the need for robust countermeasures
Papernot et al. (2017). Through experiments, we assess the methodology’s effectiveness across diverse machine learning
architectures and datasets, showcasing its ability to generate precise adversarial samples Wang and He (2021).

The contributions of this paper are as follows:

• Integration of SHAP with Evasion Attacks: The novel approach of systematically integrating SHAP-based
feature importance analysis into the evasion attack process, allowing for targeted manipulation of the most
influential features, leading to more efficient and effective attacks Huang et al. (2017); Dvijotham et al. (2018).

• Optimal Epsilon Technique: Introduction of a novel and systematic technique for determining the minimum
epsilon needed for successful evasion through a binary search-based approach, enhancing the precision of
adversarial sample generation and providing a nuanced understanding of model robustness Athalye et al.
(2018).

• Black-Box Applicability: MISLEAD operates in a black-box setting, relying solely on the model’s predictions,
making it applicable to real-world scenarios where attackers might not have access to the model’s internal
parameters.

• Comprehensive Feature Analysis: Thorough analysis of feature impacts, categorizing them based on their
influence and directionality, allowing for the development of sophisticated and targeted attack strategies.

The paper is organized as follows: Section 2 explores fundamental theories and previous studies, providing a base for
our research approach. In Section 3, we detail our methodology, including SHAP-based feature importance analysis and
the innovative optimal epsilon technique for evasion attacks. Section 4 discusses our experimental setup and findings,
highlighting the effectiveness and implications of our work. Finally, Section 5 concludes the paper with a summary of
our findings and potential avenues for future research.

2 Background

2.1 Adversarial Machine Learning

Recent years have underscored machine learning models’ vulnerability to adversarial attacks, especially evasion attacks
that involve crafting adversarial examples for specific target class predictions. Adversarial attacks categorize based on
the attacker’s knowledge: perfect (white-box), limited (gray-box), and zero knowledge (black-box) attacks Nazemi
and Fieguth (2019); Hitaj et al. (2017); Sotgiu et al. (2020); Biggio and Roli (2018). These categories depend on the
attacker’s understanding of training data and model parameters.

2.2 Feature Importance

SHAP has emerged as a powerful tool for understanding machine learning models’ decision-making process Lundberg
and Lee (2017). Applied across domains, including image classification, natural language processing, and tabular data
analysis Marcílio and Eler (2020); Panati et al. (2022); Mosca et al. (2022); Lundberg et al. (2020), SHAP values
enhance interpretability, aiding feature selection and model optimization Cai et al. (2018); Chen et al. (2018); Ancona
et al. (2018). The optimal epsilon technique in our paper systematically determines the minimum epsilon for effective
evasion, a valuable contribution to the field. While epsilon’s role in controlling perturbation magnitude is well-discussed,
systematic techniques for determining optimal epsilon are underexplored. Our paper adapts binary search algorithms, a
novel approach in evasion attacks Yu et al. (2017); Han and Lu (2012/09); Meyers et al. (2023).

2.3 Evasion attacks on ML models

Fast Gradient Sign Method (FGSM) is one of the pioneering techniques in evasion attacks. It computes gradients with
respect to the input data and perturbs the data in the direction that maximizes the loss, thus causing misclassification
Goodfellow et al. (2015). Projected Gradient Descent (PGD) is an iterative variant of FGSM that performs multiple
steps of gradient descent while ensuring that the perturbed data remains within an epsilon ball around the original
sample Madry et al. (2017a). DeepFool is an attack method that computes the perturbation by linearizing the decision
boundary of the model and iteratively finding the closest decision boundary point Moosavi-Dezfooli et al. (2016).
Papernot et. al. have explored practical black-box attacks against machine learning models, emphasizing the real-world
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applicability of adversarial attacks Papernot et al. (2017). Athalye et. al. investigated techniques for synthesizing
robust adversarial examples, aiming to create adversarial samples that are less susceptible to detection and defense
mechanisms Athalye et al. (2018).

2.4 Feature + Evasion on Tabular classification

In tabular datasets, attacks focus on domain-specific challenges, like financial datasets Hashemi and Fathi (2020); Sarkar
et al. (2018); Cartella et al. (2021). Novel methods, such as Max Salience Attack (MSA), aim to minimize altered
features Sarkar et al. (2018). Our paper proposes a unique methodology integrating SHAP-based feature importance
analysis into evasion attacks, providing a comprehensive perspective on model vulnerabilities. This differs from recent
advancements like Feature Importance Guided Attack (FIGA) Gressel et al. (2023), emphasizing minimal perturbation
using SHAP and an optimal epsilon technique.

2.5 SHAP for Black Box Access

Hassija et al., Hassija et al. (2024) explains, SHAP operates as a black-box explainer for black-box models:

• SHAP’s Functionality: SHAP focuses on explaining individual predictions, not the entire inner workings of
the model.

• Model Agnostic: The key strength of SHAP lies in its model-agnostic nature. It doesn’t require knowledge of
the model’s architecture (e.g., decision trees, neural networks) to compute feature contributions. It treats the
model as a function, taking inputs and generating outputs.

• SHAP’s Internal Workings: SHAP leverages game theory concepts (Shapley Values) to fairly distribute
credit for a prediction amongst all features. While the underlying calculations involve the model’s predictions
for various data permutations, SHAP itself remains agnostic to the specific model logic.

In essence, SHAP acts as an intermediary. It interacts with the black-box model at the input-output level, extracting
feature importance without needing to delve into the internal complexities of the model. This allows SHAP to provide
valuable insights into a model’s decision-making process without requiring white-box access.

3 Methodology

This section provides a detailed explanation of our evasion attack methodology, covering the overall threat model, key
assumptions, data collection, and preprocessing procedures. The goal is to enhance the reliability and quality of our
input data, emphasizing factors influencing the model’s predictions through SHAP techniques for feature importance
analysis. Following this analysis, we categorize the impact of individual features based on our findings and introduce an
attack strategy, a carefully designed plan to systematically modify input samples, outsmarting the model’s predictions
to achieve the desired target class.

3.1 Threat Model and Assumptions

Our research assumes the existence of a machine learning target model vulnerable to evasion attacks due to its sensitivity
to changes in input features. Focusing on tabular datasets with numerical and categorical data, our attack strategy
operates in a complete black-box setting, where the attacker can only query the target model for predictions without
insight into internal parameters and weights.

3.2 Data Collection and Preprocessing

We employ a Bank Marketing dataset comprising numerical and categorical variables. The class distribution shows
36,548 samples in Class 0 and 4,640 samples in Class 1. With 10 numerical and 10 categorical features, the dataset is
comprehensively characterized. Categorical variables are numerically encoded using LabelEncoder Pedregosa et al.
(2011), and both numerical and categorical features are normalized to a 0 to 1 range using MinMaxScaler Pedregosa
et al. (2011) for comparative analysis.

3.3 Feature Importance Analysis using SHAP

SHAP values quantify the influence of each feature on model predictions, providing insights into the direction and
magnitude of their impact. Calculating SHAP values for every sample generates an array of values for the 20 features.
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(a) Global Bar Plot (b) Local Bar Plot

Figure 1: Binary Classification Bar Plots

These insights are analyzed through various plots to rank features, assess their average impact, and identify the most
influential ones in the dataset. The application of SHAP is explored in both binary and multiclass classification
scenarios.

3.3.1 Binary Classification

In binary classification, involving only two labels, interpreting SHAP values is more straightforward. The following
plots are employed:

Global Bar Plot: Offers a comprehensive view of feature importance across the entire dataset. It displays the mean
SHAP value for each feature, arranged in descending order of importance, highlighting influential features in driving
model predictions (Figure 1(a)). However, it doesn’t indicate the direction of impact or specific feature values necessary
for predicting specific classes.

Local Bar Plot: Zooms in on individual samples, detailing how each feature impacts the model’s prediction for a
specific sample. This plot enhances understanding at the micro-level, revealing intricate relationships between features
and predictions (Figure 1(b)).

Beeswarm Plot: Figure 2 provides a more detailed and informative visualization than the bar plots. It showcases the
relative importance of features and their relationship with the predicted outcome, offering a comprehensive overview of
how variables influence predictions. This insight is critical for generating perturbations in our evasion attack strategy.

Together, these plots form an integral part of our methodology, enabling analysis of the impact of individual features on
model predictions in both macro and micro perspectives.

3.3.2 Multiclass Classification

Multiclass classification introduces more complexity with multiple classes for prediction. The following plots are
applied:

Global Bar Plot: Represents each feature with a bar divided into sections corresponding to each class (Figure 3(a)).
This allows for a detailed understanding of a feature’s importance across different classes, revealing the variable
significance of features in predicting various classes.

Beeswarm Plot: Similar to the binary classification scenario, the multiclass beeswarm plot provides an intricate
visualization of SHAP values across the dataset. However, a notable difference is the existence of separate graphs for
each class (Figures 3(b), 3(c), 3(d)), illustrating how features influence predictions for a specific class. This detailed
representation is key to understanding the optimal feature values necessary for predicting each class, crucial for devising
targeted evasion strategies.

Together, these plots in multiclass classification scenarios enable a comprehensive analysis of feature impacts, both
across and within individual classes. They enhance understanding of how different features contribute to model
predictions in multiclass settings, vital for developing sophisticated evasion techniques in a multiclass context.
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Figure 2: Binary Classification Beeswarm Plot

(a) MultiClass Global Bar Plot (b) Beeswarm Plot For Class 0

(c) Beeswarm Plot For Class 1 (d) Beeswarm Plot For Class 2

Figure 3: MutliClass Classification Beeswarm and Global Bar Plots

3.4 Feature Analysis for Evasion

In addressing the challenge of evasion attacks, we conduct a comprehensive analysis of feature impacts on model
predictions. This section details our approach to categorize and utilize feature behavior for devising evasion strategies.
By understanding how individual features influence model predictions, we aim to identify vulnerabilities in machine
learning models and exploit these for successful evasion.
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Figure 4: Feature Analysis For Evasion

3.4.1 Feature Impact Categorization

Our methodology begins with categorizing the impacts of individual features, pivotal for understanding their influence
on model predictions. We use predefined thresholds, denoted as Tlow and Thigh, to assign impact categories: ’Low’ (L),
’Medium’ (M), or ’High’ (H), based on the feature’s value Fij using Equation 1.

CFij =


L if Fij < Tlow

M if Tlow ≤ Fij < Thigh

H if Fij ≥ Thigh

(1)

where, CFij represents the impact category of feature i in sample j

3.4.2 Categorizing SHAP Values

Additionally, we categorize the SHAP values Sij , labeling them as ’positive’ (P), ’neutral’ (NT ), or ’negative’ (N),
based on their sign using Equation 2.

CSij =


P if Sij > 0

NT if Sij = 0

N if Sij < 0

(2)

where, CSij represents the categorized SHAP value for feature i in sample j

3.4.3 SHAP Summary Dictionary

Next, we initiate a SHAP summary dictionary (SSD) to capture the impact of features i for each class c in the dataset
using Equation 3.

SSD = {c : {i : {CS : []}, ...}, ...} (3)

where, CS represents {P,NT , N}

Each class c, feature i, and SHAP category (CS) is represented, with the impact category (CF) accumulated in a list.

3.4.4 Concise SHAP Summary Direction

Using a count function, we quantify occurrences of impacts for each feature within each class. The sentiment (CS) with
the maximum count for each impact (CF) and feature (i) in class (c) is then determined using Equations 4 and 5.

Mc,i(CF ) = argmax
CS

Ci,j,CS(CF ) (4)
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Cc,i,CS(CF ) = # of times CF appears in CS (5)

This aggregation process leads to a more concise SSD, enabling us to better understand the relationship between features
and their impacts across different classes. Appendix A Figure 8(a) shows the Concise SSD for the Iris Dataset.

3.4.5 Possible Class Conversions

The set of possible class conversions, denoted as classconversions, is a set containing pairs (i, j) where i and j are
unique classes, and i ̸= j. It includes all possible combinations of unique class pairs, ensuring that each pair consists of
different classes, as defined by Equation 6.

classconversions = {(i, j)|i, j ∈ classes and i ̸= j} (6)

3.4.6 Feature Impact Aggregation

To determine how feature impacts from one class i can be converted to another j, an intersection method is used. This
method involves intersecting the negative and neutral impacts for class i (I−i ) with the positive impacts for class j
(positivej). This intersection results in Pij which indicates a strong positive effect on class j while exerting a negative
impact on class i.

Positive Effect on Class j:
Pij = I−i ∩ positivej (7)

Conversely, the positive and neutral impacts for class j (I+j ) are intersected with the negative impacts for class i
(negativei). This intersection yields Nij , signifying a strong negative effect on class i with a positive effect on class j.

Negative Effect on Class i:
Nij = I+j ∩ negativei (8)

The final step involves taking the union of Pij and Nij . This union synthesizes the modifications necessary to promote
a positive effect on class j while simultaneously inducing a negative effect on class i.

Final Effect to move from Class i to Class j:

Fij = Pij ∪Nij (9)

Such modifications are critical in performing the targeted evasion attack, effectively moving from class i to class j.

3.4.7 Storing Conversion Directions

In the final step of our process, we store conversion directions for each feature in the conversion table. These directions
are pivotal in guiding modifications to feature values during a targeted evasion attack. Appendix A Figure 8(b) shows
the conversion table for the Iris Dataset.

This table plays a pivotal role in mapping the impact of each feature from the original class to its potential impact on
a target class, contingent upon modifications in feature values. The entire process of feature analysis for Evasion is
encapsulated in the ’Feature Analysis Block’ of Figure 4, providing a visual representation of the methodology and its
components.

3.5 Evasion Attack Strategy with Optimal Epsilon Technique

Our evasion attack strategy (refer Appendix B, Algorithm 1) operates in a black-box setting, relying solely on the
model’s output predictions to guide the iterative process of modifying input features. The primary objective is to
manipulate a given input sample, xorg, such that it deceives the machine learning model into misclassifying it as a target
class, different from its original class.

This strategy leverages the knowledge acquired through the comprehensive feature importance analysis using SHAP, as
detailed in Section 3.3 and Section 3.4. The conversion table, derived from this analysis, provides crucial insights into
the directional adjustments required for each feature to facilitate the desired class conversion.

The evasion attack algorithm iterates over the features of the input sample, modifying them according to the conversion
rules specified in the conversion table. The adjustments, denoted as ∆xi, are carefully calibrated to remain within
plausible bounds, ensuring that the modifications do not exceed a predefined threshold, dmax, also referred to as the
epsilon (ϵ) value:

7
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Figure 5: Optimal Epsilon

x′
i = xi +∆xi (10)

During the attack process, we continuously monitor the distance between the modified sample, xadv_temp, and the
original input, xorg, represented as distance(xadv_temp, xorg). The objective is to find the adversarial sample, xadv_best,
that successfully triggers misclassification into the target class with minimal deviation from the original sample

xadv_best = arg min
xadv_temp

distance(xadv_temp, xorg) (11)

To refine the evasion attack approach and ensure the generation of effective adversarial samples with minimal perturba-
tion, we introduce the Optimal Epsilon technique, as shown in Figure 5. This technique systematically determines the
smallest epsilon (ϵoptimal) necessary for successful evasion by employing a binary search loop, refer to Algorithm 2 in
Appendix B.

The binary search process starts with an initial epsilon range [ϵlow, ϵhigh] = [0, 0.5], where 0.5 represents the upper limit
for allowed perturbation. This upper limit can be extended to 1 for determining the optimal epsilon across all samples
without restrictions on perturbation magnitude. The loop iterates until the gap between ϵhigh and ϵlow is less than a
predefined tolerance value.

Within each iteration, adversarial samples are generated by modifying feature values according to the conversion rules,
aiming to shift the prediction from the original class to the target class. The effectiveness of these samples is evaluated
on the target model. If a successful adversarial sample is found, the distance between the adversarial and original
samples is calculated, and the optimal epsilon and the best adversarial sample are updated accordingly.

The binary search concludes once the difference between ϵhigh and ϵlow falls below the tolerance threshold. The final
ϵoptimal represents the minimum perturbation magnitude required for effective adversarial samples under the given
conditions.

By integrating the Optimal Epsilon technique seamlessly into the evasion attack strategy, our methodology ensures the
generation of precise and impactful adversarial samples, underscoring the vulnerability of machine learning models to
carefully crafted evasion attacks.

4 Experiments

4.1 Efficacy as a Key Metric for Evasion

Unlike traditional accuracy metrics in machine learning, efficacy in the context of our paper refers to the model’s
susceptibility to evasion attacks. Specifically, it measures the proportion of samples that successfully evade and deceive
the model within the allowed perturbation limit, denoted as epsilon.

Let N be the total number of samples subjected to the evasion attack. Out of these, let Nevaded be the number of
samples that successfully evade the model’s detection within the perturbation limit. The efficacy, E, can then be
mathematically represented as:

8
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(a) SVM with RBF Kernel (b) SVM with Linear Kernel (c) XGBoost

(d) Decision Tree (e) Logistic Regression

Figure 6: Saturation Point: MultiClass Attacks on Iris Dataset

Table 1: Efficacy of MultiClass Targeted Attack on Iris Dataset
Epsilon SVM (RBF) SVM (Linear) XGBoost Decision Tree Logistic Regression

(ϵϵϵ) Class Class Class Class Class
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0.3 0.31 0.86 0.33 0.31 0.86 0.28 0.31 1 0.29 0.31 0.96 0.29 0.4 0.33 0.11
0.4 0.62 1 0.4 0.625 1 0.33 0.37 1 0.29 0.37 1 0.29 0.73 0.95 0.16
0.5 0.94 1 0.4 1 1 0.33 0.69 1 0.29 0.69 1 0.29 1 1 0.28
0.6 1 1 0.44 1 1 0.44 0.93 1 0.59 0.94 1 0.59 1 1 0.61

E =
Nevaded

N
(12)

A high efficacy score implies a greater number of samples evading the model successfully, indicating a potential
vulnerability in the model’s defense against adversarial attacks within the specified perturbation limit. By evaluating
efficacy across different models and configurations, we can compare their robustness against evasion attacks, offering
insights into the effectiveness of various defense mechanisms.

4.2 Multiclass Classification - Iris Dataset

In the context of multiclass classification, we extended our research to the Iris dataset Fisher (1988), known for its
suitability in multiclass tasks. We evaluated five machine learning architectures: SVM with RBF and Linear kernels,
XGBoost, Logistic Regression, and Decision Tree Unwin and Kleinman (2021). Our focus was on perturbing features
of original samples to generate adversarial samples, aiming at specific class misclassifications. In the multiclass setting,
this approach introduced additional complexity due to the presence of multiple target classes. Table 1 illustrates the
efficacy of targeted attacks across different machine learning models and varying epsilon values. Figure 6 visualizes the
relationship between the efficacy of attacks and the number of features perturbed. This provides deeper insights into

9
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(a) SVM with Linear Kernel (b) SVM with RBF Kernel

(c) XGBoost (d) Logistic Regression

Figure 7: Saturation Point : Binary Class Attack on Bank Marketing Dataset

Table 2: Efficacy of Binary Class Attack on Bank Marketing Dataset

Epsilon SVM SVM XGBoost Logistic
(ϵϵϵ) (RBF) (Linear) Regression
0.2 0.58 0.95 0.86 0.99
0.3 0.96 0.96 0.94 1
0.4 0.97 0.97 0.98 1
0.5 0.97 0.97 0.99 1

the optimization of feature perturbations for successful evasion, showing how certain models reach a saturation point
beyond which additional perturbations do not significantly increase the success of the attack.

4.3 Binary Classification - Bank Marketing Dataset

In the binary classification context, experiments were carried out on a bank marketing dataset Moro et al. (2012), a
subset derived from the original Bank Marketing dataset from the UCI repository Sérgio Moro and Rita (2014). These
experiments yielded crucial insights into the robustness of various machine learning models and the dynamics of feature
perturbations. We evaluated four machine learning architectures: SVM with Radial Basis Function (RBF) and Linear
kernels Boser et al. (1992), XGBoost Chen and Guestrin (2016), Logistic Regression.

Table 2 details the diverse performance spectrum across various models with increasing epsilon values. Notably, Logistic
Regression exhibited high evasion susceptibility, reaching perfect evasion (efficacy of 1) at an epsilon value of 0.3 and
maintaining this across higher epsilon values. In contrast, SVM with RBF kernel and XGBoost models demonstrated a

10
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Table 3: Comparative Analysis of the Efficacy of Targeted Attacks on the SVM Model for Iris Dataset
Epsilon Class 0 Class 1 Class 2

(ϵϵϵ) FGM PGD MISLEAD FGM PGD MISLEAD FGM PGD MISLEAD
0.2 0.02 0.04 0.03 0.58 0.22 0.35 0.28 0.25 0.4
0.3 0.08 0.06 0.31 0.6 0.33 0.86 0.28 0.31 0.4
0.4 0.2 0.1 0.62 0.7 0.56 1 0.28 0.33 0.4

Table 4: Comparative Analysis of the Efficacy of Untargeted Attacks on the SVM Model for Iris Dataset

Epsilon (ϵϵϵ) FGM PGD MISLEAD
0.2 0.34 0.52 0.53
0.3 0.48 0.68 0.86
0.4 0.78 0.79 1

gradual increase in their susceptibility to evasion attacks as epsilon increased, suggesting a more robust stance against
smaller perturbations but a vulnerability at higher epsilon levels. Figure 7 visually illustrates the saturation point in the
number of features necessary for successful evasion attacks across different epsilon value. The saturation point is a
critical concept, denoting the threshold beyond which increasing the number of perturbed features does not significantly
enhance the success rate of the evasion attack.

4.4 Comparative Study

In our comparative study, we evaluate the performance of the MISLEAD technique against established adversarial
defense methods, leveraging Fast Gradient Method (FGM) and Projected Gradient Descent (PGD) from Adversarial
Robustness Toolbox (ART) Nicolae et al. (2018) and SecML Melis et al. (2019) libraries.

For the Targeted Attack, experiments were conducted with each of the three Iris classes as the target, as shown in Table
3. MISLEAD consistently shows enhanced resilience against targeted attacks towards specific classes when compared
to FGM and PGD.

Across various epsilon values in the Untargeted Attack, as shown in Table 4, MISLEAD demonstrates competitive
efficacy when compared to FGM and PGD. The qualitative analysis suggests that MISLEAD achieves robust results,
especially at higher epsilon values, surpassing existing methods. Importantly, FGM and PGD are considered White
Box attacks, while MISLEAD operates as a Black Box attack. This distinction adds a critical layer to the comparative
analysis, as MISLEAD’s efficacy under limited information about the model internals is a significant aspect in real-world
scenarios.

These results collectively suggest that the MISLEAD technique, as a novel approach, displays promising performance
in both attack scenarios. The qualitative insights emphasize its potential in providing robust adversarial defense,
showcasing its superiority over existing methods across various attack scenarios on tabular data.

4.5 Assessment on Model Accuracy

Upon applying our evasion attack method, as detailed in Tables 5 and 6, we observe a decrease in accuracy models.
For the iris dataset, accuracy drops from a stable 0.92 down to 0.00 with progressive increases in the perturbation ϵ.
This showcases the attack’s capacity to significantly disrupt model performance. The bank marketing dataset shows a
similar pattern, with accuracy falling from 0.96 to 0.00. These findings demonstrate our method’s ability to highlight
the vulnerabilities of machine learning models and stress the need for enhanced defensive measures.

While the current study focuses on tabular data, we believe the MISLEAD methodology can be extended to other
data domains, such as images and audio, by leveraging appropriate model explanation techniques. For image data,
methods like Grad-CAM Selvaraju et al. (2017), DeepLIFT Shrikumar et al. (2017), and SHAP for images can provide
explainable feature representations. Similarly, for audio data, techniques like Layer-wise Relevance Propagation
Montavon et al. (2019) can extract interpretable features. By integrating these domain-specific feature importance
analysis tools, the MISLEAD approach can identify vulnerabilities and generate targeted adversarial samples across
diverse data modalities. This extensibility underscores the generalizability of the proposed methodology, fostering its
applicability in securing machine learning systems handling various data types.
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Table 5: Impact of Evasion Attacks on Model Accuracy - Iris Dataset

(ϵϵϵ) SVM [RBF] XGBoost Logistic Regression
Before After Before After Before After

0.2 0.92 0.44 0.96 0.48 0.94 0.56
0.3 0.92 0.12 0.96 0.02 0.94 0.36
0.4 0.92 0.00 0.96 0.00 0.94 0.06
0.5 0.92 0.00 0.96 0.00 0.94 0.00

Table 6: Impact of Evasion Attacks on Model Accuracy - Bank Marketing Dataset

SVM [RBF] XGBoost Logistic Regression
(ϵϵϵ) Before After Before After Before After
0.2 0.91 0.38 0.96 0.16 0.91 0.04
0.3 0.91 0.03 0.96 0.08 0.91 0.03
0.4 0.91 0.03 0.96 0.01 0.91 0.00
0.5 0.91 0.03 0.96 0.00 0.91 0.00

5 Mitigation Strategies

Mitigating evasion attacks on AI models is an active area of research, with several promising approaches. Adversarial
training, as described by Madry et al. in Madry et al. (2017b), exposes the model to both clean and adversarially
crafted data, improving its robustness to slight variations used in evasion attempts. Defensive distillation, proposed by
Goldblum et al. in Goldblum et al. (2020), leverages a pre-trained, robust model to train a new model to inherit that
robustness. These techniques can be complemented by ensuring high-quality training data with inherent variations and
employing ensemble methods for a more robust overall system. Continuous monitoring and adaptation to evolving
threats remain essential for maintaining a strong defense.

6 Conclusion

In this work, we have introduced a groundbreaking methodology that combines SHAP-based feature importance
analysis with an innovative optimal epsilon technique, significantly amplifying the effectiveness of evasion attacks
on machine learning models. This methodology is distinct in its capability to precisely identify and manipulate the
most influential features of a learning model, thereby refining the accuracy of adversarial sample generation. Our
study’s cornerstone, the optimal epsilon technique, determines the minimal perturbation required for successful evasion,
optimizing the evasion process and establishing a new benchmark in adversarial attack precision. Employing the SHAP
framework, our approach not only deepens the understanding of model vulnerabilities but also facilitates the creation of
targeted and highly effective adversarial samples, marking a novel advancement in the field.

Looking towards the future, several research avenues present themselves. One promising direction is the extension of our
techniques to different data forms, including image and audio data, to comprehensively assess the vulnerabilities across
various machine learning models. Additionally, applying our methods to advanced machine learning architectures,
especially deep learning models, could provide invaluable insights into both offensive and defensive strategies in
model security. Moreover, the development of robust defense mechanisms against the sophisticated evasion attacks
demonstrated in our work stands as a critical area of future exploration. Through these endeavors, we aim to contribute
to the ongoing advancement in the security of machine learning systems against increasingly sophisticated adversarial
threats.
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and Pushmeet Kohli. Training verified learners with learned verifiers. ArXiv, abs/1805.10265, 2018.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples. Proceed-
ings of the 35th International Conference on Machine Learning, 80:284–293, 10–15 Jul 2018.

Amir Nazemi and Paul Fieguth. Potential adversarial samples for white-box attacks. arXiv preprint arXiv:1912.06409,
2019.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: Information leakage from
collaborative deep learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, page 603–618, 2017.

Angelo Sotgiu, Ambra Demontis, Marco Melis, Battista Biggio, Giorgio Fumera, Xiaoyi Feng, and Fabio Roli. Deep
neural rejection against adversarial examples. EURASIP Journal on Information Security, 2020.

Wilson E. Marcílio and Danilo M. Eler. From explanations to feature selection: assessing shap values as feature
selection mechanism. 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 340–347,
2020. doi:10.1109/SIBGRAPI51738.2020.00053.

Chandana Panati, Simon Wagner, and Stefan Brüggenwirth. Feature relevance evaluation using grad-cam, lime and
shap for deep learning sar data classification. 23rd International Radar Symposium (IRS), pages 457–462, 2022.

Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel Gallagher, and Georg Groh. SHAP-based explanation methods:
A review for NLP interpretability. Proceedings of the 29th International Conference on Computational Linguistics,
pages 4593–4603, October 2022.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global understanding with explainable ai for
trees. Nature Machine Intelligence, 2(1):2522–5839, 2020.

Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine learning: A new perspective.
Neurocomputing, 300:70–79, 2018. ISSN 0925-2312.

Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. Learning to explain: An information-theoretic
perspective on model interpretation. In Proceedings of the 37th International Conference on Machine Learning
(ICML), 80, 2018.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus H. Gross. Towards better understanding of gradient-based
attribution methods for deep neural networks. International Conference on Learning Representations (ICLR), 2018.

Guo Yu, Ruimin Shen, Jinhua Zheng, Miqing Li, Juan Zou, and Yuan Liu. Binary search based boundary elimination
selection in many-objective evolutionary optimization. Applied Soft Computing, 60:689–705, 2017.

Bo Han and Yongquan Lu. Research on optimization and parallelization of optimal binary search tree using dynamic
programming. Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and
Information Technology (EMEIT 2012), pages 229–233, 2012/09.

Charles Meyers, Tommy Löfstedt, and Erik Elmroth. Safety-critical computer vision: an empirical survey of adversarial
evasion attacks and defenses on computer vision systems. Artificial Intelligence Review, pages 1–35, 06 2023.

13

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SIBGRAPI51738.2020.00053


MISLEAD A PREPRINT

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. 6th International Conference on Learning Representations, ICLR Conference
Track Proceedings, 06 2017a.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and accurate method
to fool deep neural networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2574–2582, 2016. doi:10.1109/CVPR.2016.282.

Masoud Hashemi and Ali Fathi. Permuteattack: Counterfactual explanation of machine learning credit scorecards.
arXiv:2008.10138, 2020.

Suproteem K. Sarkar, Kojin Oshiba, Daniel Giebisch, and Yaron Singer. Robust classification of financial risk.
arXiv:1811.11079, 2018.

Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and Olivier Elshocht.
Adversarial attacks for tabular data: Application to fraud detection and imbalanced data. arXiv:2101.08030, 2021.

Gilad Gressel, Niranjan Hegde, Archana Sreekumar, Rishikumar Radhakrishnan, Kalyani Harikumar, Anjali S., and
Krishnashree Achuthan. Feature importance guided attack: A model agnostic adversarial attack. arXiv preprint
arXiv:2106.14815, 2023.

Vikas Hassija, Vinay Chamola, Atmesh Mahapatra, Abhinandan Singal, Divyansh Goel, Kaizhu Huang, Simone
Scardapane, Indro Spinelli, Mufti Mahmud, and Amir Hussain. Interpreting black-box models: A review on
explainable artificial intelligence. Cognitive Computation, 16(1):45–74, 2024. doi:10.1007/s12559-023-10179-8.
URL https://doi.org/10.1007/s12559-023-10179-8.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C56C76.
Antony Unwin and Kim Kleinman. The Iris Data Set: In Search of the Source of Virginica. Significance, 18(6):26–29,

11 2021. URL https://doi.org/10.1111/1740-9713.01589.
Sérgio Moro, Paulo Cortez, and Paulo Rita. Bank Marketing. UCI Machine Learning Repository, 2012.

https://doi.org/10.24432/C5K306.
Paulo Cortez Sérgio Moro and Paulo Rita. A data-driven approach to predict the success of bank telemarketing.

Decision Support Systems, 62:22–31, 2014.
Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers.

Proceedings of the Fifth Annual Workshop on Computational Learning Theory, page 144–152, 1992.
Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, page 785–794, 2016.
Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba, Valentina

Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben Edwards. Adversarial robustness
toolbox v1.2.0. CoRR, 1807.01069, 2018. URL https://arxiv.org/pdf/1807.01069.

Marco Melis, Ambra Demontis, Maura Pintor, Angelo Sotgiu, and Battista Biggio. secml: A python library for secure
and explainable machine learning. arXiv preprint arXiv:1912.10013, 2019.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via gradient-based localization. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 618–626, 2017. doi:10.1109/ICCV.2017.74.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating activation
differences. In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page
3145–3153. JMLR.org, 2017.

Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert Müller. Layer-Wise
Relevance Propagation: An Overview, pages 193–209. Springer International Publishing, Cham, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017b.

Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially robust distillation. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 3996–4003, 2020.

14

https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1111/1740-9713.01589
https://arxiv.org/pdf/1807.01069
https://doi.org/10.1109/ICCV.2017.74


MISLEAD A PREPRINT

A Concise SSD and Conversion Table

In this section we present the compact SSD and the conversion table for the Iris Dataset. In this representation, the keys
denote class conversions, while the corresponding list values illustrate the directional adjustments needed for each of
the four features in the sample.

(a) Concise SSD For Iris Dataset

(b) Conversion Table For Iris Dataset

Figure 8: Concise SSD and Conversion Table

The feature analysis for evasion begins with the categorization of features based on their influence levels - Low (L),
Medium (M), and High (H), as per Equation 1. Following this, we progress to the initialization of the SHAP Summary
based on Equation 3, which involves segregating SHAP values into three distinct categories: positive (P ), neutral
(NT ), and negative (N) based on the criteria detailed in Equation 2. This classification is pivotal in understanding the
directional influence of each feature.

Once the SHAP summary is constructed, the subsequent step involves generating a concise summary. This is achieved
by iterating through each class and feature, allowing us to categorize the impact of features within each class. To
accomplish this, we analyze the occurrence counts of impact categories for each class and feature, considering the
occurrence of these impact categories within the SHAP categories (Equation 4 and 5). Illustrating the process with an
example: for a specific class and feature, if the impact category ’H’ occurs 4 times in the ’positive’ SHAP category and
2 times in the ’negative’ SHAP category, we assign the impact category ’H’ to the ’positive’ category in the refined
summary, prioritizing the higher occurrence within that particular SHAP category. This approach provides a balanced
representation of feature impacts by averaging effects across the entire dataset, fostering a more robust understanding of
relationships between feature values and their corresponding impact categories.

In addition to analyzing feature impact, we create a conversion table mapping the impact of each feature on the original
class to its potential impact on the target class given a change in feature value. Initially, an empty conversion table is
initialized, and possible class conversions are determined based on the number of unique classes present in the dataset
(Equation 6). For each class conversion, we iterate through features and consider impact categories within both the
original and target classes. By comparing these impact categories, we identify the direction in which the feature’s value
should be modified (Equation 7, 8 and 9).
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B Algorithms

B.1 Evasion attack

In this section we provide a detailed description of the evasion attack algorithm employed in our research. This
algorithm operates in a black-box setting, relying solely on the model’s output predictions to guide the strategy. The
iterative process aims to modify the features of the input sample, ultimately crossing the decision boundary into the
target class.

Algorithm 1 Evasion Attack Strategy
Input: xorg, cfrom, cto
Output: xadv , success
Data: targetmodel, dmax, conversiontable, Tlow, Thigh

xadv ← copy of xorg

bestadv ← copy of xorg

dleast ← 1
conversionrules ← conversiontable[(cfrom, cto)]
for all feature in xorg do

Categorize featureval based on Tlow and Thigh

for all conversioncategory in conversionrules[feature] do
xtemp ← copy of xadv

if conversioncategory is ’-’ or the category equals conversioncategory then
continue

end if
Modify xadv from category to conversioncategory

Clip modified feature value to [0, 1]
if targetmodel.predict(xadv) == cto then

dnew = distance(xadv, xorg)
if dnew < dleast then
bestadv ← copy of xadv

dleast ← dnew
end if

end if
end for

end for
if bestadv ̸= xorg then

return bestadv , True
else

return xadv , False
end if
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B.2 Optimal Epsilon

In this section we provide an algorithm to obtain an Optimal Epsilon, that determines the smallest epsilon, (ϵoptimal)
required for creating impactful adversarial samples. It employs a refined evasion attack approach, utilizing a binary
search loop to iteratively narrow down epsilon ranges, ensuring the generation of effective adversarial samples with
minimal perturbation.

Algorithm 2 Optimal Epsilon
Input: xorg, cfrom, cto
Output: xadv, dleast, ϵoptimal, success
Data: targetmodel, conversiontable, Tlow, Thigh, tolerance
ϵlow ← 0
ϵhigh ← 0.5
xadv ← copy of xorg
bestadv ← copy of xorg
dleast ← 1
conversionrules ← conversiontable[(cfrom, cto)]
ϵoptimal ← 1
while (ϵhigh − ϵlow) > tolerance do
ϵmid ← (ϵlow + ϵhigh)/2
xadv ← copy of xorg
for all feature in xorg do

Categorize featureval based on Tlow and Thigh

for all conversioncategory in conversionrules[feature] do
if conversioncategory is ’-’ or the category equals conversioncategory then

continue
end if
Modify xadv from category to conversioncategory

Clip modified feature value to [0, 1]
if targetmodel.predict(xadv) == cto then
dnew = distance(xadv, xorg)
if dnew < dleast then
bestadv ← copy of xadv
dleast ← dnew
ϵoptimal ← ϵmid

end if
end if

end for
end for
if (bestadv ̸= xorg) then

ϵhigh ← ϵmid
else
ϵlow ← ϵmid

end if
end while
if (bestadv ̸= xorg) then

return bestadv, dleast, ϵoptimal, True
else

return xadv, dleast, ϵoptimal, False
end if
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