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Abstract

We present a machine learning method for swiftly identifying nanobubbles in graphene, crucial for understanding elec-
tronic transport in graphene-based devices. Nanobubbles cause local strain, impacting graphene’s transport properties.
Traditional techniques like optical imaging are slow and limited for characterizing multiple nanobubbles. Our approach
uses neural networks to analyze graphene’s density of states, enabling rapid detection and characterization of nanobub-
bles from electronic transport data. This method swiftly enumerates nanobubbles and surpasses conventional imaging
methods in efficiency and speed. It enhances quality assessment and optimization of graphene nanodevices, marking
a significant advance in condensed matter physics and materials science. Our technique offers an efficient solution for
probing the interplay between nanoscale features and electronic properties in two-dimensional materials.
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1. Introduction

Structural imperfections, including atomic defects and
ripples [1, 2, 3, 4], represent diverse factors contributing to
disorder in graphene. The formation of graphene nanobub-
bles, characterized by the elastic deformation of crystal
structures, is an intrinsic phenomenon observed during
sample transfer onto substrates [5, 6]. Extensive research
has explored the impact of nanobubbles on the reduction of
carrier mobility [6]. As a result, researchers strive to avoid
regions prone to nanobubble formation when fabricating
graphene devices, aiming to mitigate potential, uniden-
tified influences. Recognizing nanobubbles in a graphene
sample is thus pivotal for fabricating high-quality devices [7].
Nanobubble location being a local feature necessitates the
use of scanning probe techniques that focus on processing
local information.

Substantial research has focused on the impact of elas-
tic strain induced by nanobubbles, which create a charac-
teristic, non-uniform profile of pseudomagnetic fields (PMFs)
[8, 5, 9]. These PMFs play a critical role in the trans-
port of Dirac fermions through graphene, facilitating the
emergence of phenomena such as zero-field Landau levels
[5, 10, 11], valley-selective transport behaviors [12, 13, 14,
15], and strain-induced quantum interference [16]. More-
over, nanobubbles can host localized states that exhibit
conductance resonances, indicating that the presence of
nanobubbles significantly influences the detailed structure
of the density of states (DOS) [16]. Although the DOS
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provides comprehensive information about the system, di-
rectly extracting specific physical details about nanobub-
bles from the DOS is challenging. This difficulty arises
from the simultaneous presence of both local and global
features within the aggregated data.

This study introduces a novel strategy for detecting
and identifying nanobubbles in monolayer graphene by
leveraging machine learning (ML) techniques to navigate
the complexities inherent in processing data from electrical
measurements. Building on prior research in nanobubble
identification [17, 18] and the advancement of a graphene
nanobubble sensor using quantum interferometry [19], our
approach emphasizes the identification of multiple nanobub-
bles. It aims to develop an accurate predictive model
that directly correlates the geometric characteristics of
nanobubbles with the DOS in graphene samples [20]. This
direct correlation enables the precise assignment of mea-
surements to individual nanobubbles within a sample, even
in scenarios involving multiple nanobubbles. Given that
nanobubbles can significantly alter the electrical proper-
ties of graphene, particularly in cases of degenerate de-
fect states, the exploration of an ML approach to recog-
nize multiple nanobubbles is deemed essential. Our in-
vestigation into the effects of nanobubble multiplicity on
the ML recognition algorithm reveals an effective tech-
nique for accurately identifying individual nanobubbles.
The proposed ML-based method for nanobubble recogni-
tion is poised to enhance the pure-electrical evaluation of
graphene and other 2D materials, potentially streamlining
the mass production of these materials for device fabrica-
tion.
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Table 1: The superscripts A, B, and C denote indices of single-bubble data that are combined to generate multibubble samples, with indices
satisfying 0 ≤ A < B < C ≤ 274 to ensure no duplication of samples. For the dataset accommodating up to Nbubble bubbles, the labeling
system comprises 2Nbubble+1 labels for each sample: one discrete label indicating the actual number of nanobubbles, and 2Nmax

bubble continuous
labels representing the sizes of the bubbles. The value of the discrete label is determined by rounding the machine learning prediction to the
nearest integer. The DOS spectra, D(E), are calculated by averaging the interpolated DOS spectra, D(E)int, followed by taking the natural
logarithm of this average.

Nbubble Labels Features (DOS)

0 [0, 0, 0, 0, 0, 0, 0] log[D(E)
(Z)
int ]

1 [1, σ(A), h
(A)
0 , σ(A), h

(A)
0 , σ(A), h

(A)
0 ] log[D(E)

(A)
int ]

2 [2, σ(A), h
(A)
0 , σ(B), h

(B)
0 , σ(B), h

(B)
0 ] log[(D(E)

(A)
int +D(E)

(B)
int )/2]

3 [3, σ(A), h
(A)
0 , σ(B), h

(B)
0 , σ(C), h

(C)
0 ] log[(D(E)

(A)
int +D(E)

(B)
int +D(E)

(C)
int )/3]

2. Methods

2.1. Generating Raw Nanobubble Data

We approximated the nanobubble using a Gaussian dis-
tribution located at r⃗0 as

h(r⃗) = h0e
−(r⃗−r⃗0)

2/2σ2

, (1)

where h0 is the maximum height of the vertical deforma-
tion and σ is the standard deviation corresponding to the
width of the nanobubble. This nanobubble introduces a
PMF, which can be described by the same mechanism as
electron confinement in real magnetic fields [21, 22, 23, 24].
The C3v symmetric PMF is described by

B⃗ps(r⃗) = ν
ℏβ
ea0

h2
0

σ6
r3e−(r−r0)

2/2σ2

sin 3θẑ, (2)

where β = 3.37, a0 = 0.146 nm is the nearest carbon-
carbon bonding length, and ν = ±1 for different valleys
of graphene, respectively. We set its maximum strength
B̃max at r− r0 =

√
3/2σ as the representative quantity of

nanobubbles, which is formulated as

B̃max(σ, h0) ≡
h2
0

σ3
. (3)

In the presence of nanobubbles, DOS spectra exhibit
peaks at specific energies, resulting from PMF-induced
localized states within nanobubbles. As B̃max increases,
a greater number of localized states emerge, and their
corresponding DOS peaks tend to shift toward lower en-
ergy. This correlation between DOS and B̃max is a pri-
mary focus of this work, analyzed through a supervised
machine learning approach. As a theoretical study, we ob-
tained the DOS spectra through tight-binding calculations
of a graphene sheet with nanobubbles, employing kwant
codes [25]. While the number of bubbles could be further
extended, our study focuses on Nmax = 3 case, indicat-
ing that the maximum number of bubbles considered is 3.
This consideration is justified as the standard preprocess-
ing involving heating and cooling of the graphene leads to
the coalescence of adjacent nanobubbles, thereby limiting
the total number of bubbles within a single sheet.

2.2. Preprocessing Nanobubble Data

The raw DOS spectra consist of 20,001 data points
spanning an energy range from -0.1 to 0.1 eV; subsequently,
we performed interpolation on the DOS to standardize
the energy grid, resulting in a range from -0.099 to 0.099
eV with 10,001 data points [26]. Each DOS spectrum,
D(E)int, is characterized by two important parameters, σ
and h, corresponding to the geometrical factors of nanobub-
bles, as previously mentioned. We considered σ ranging
from 20 to 30 a and h from 1 to 25a, with a step of a, where
a =

√
3a0 = 0.246nm is the lattice constant of graphene.

Consequently, the total dataset comprises 275 samples (=
11 × 25), marking a significant expansion compared to
previous research [17], which utilized 75 samples.

In this work, we generate a multibubble dataset by
combining data from the single-bubble dataset. The multi-
bubble DOS is equivalent to the average of the correspond-
ing single-bubble DOS data, within numerical accuracy,
provided that the bubbles are sufficiently distant from each
other. If the bubbles are spatially close to each other, they
merge into a single bubble for stabilization. Therefore, for
our analysis, we can simply aggregate single-bubble DOS
data to generate a multibubble dataset.

For Nbubble = 1, 2, we include all 275 single-bubble
samples and all possible combinations between them, to-
taling 275 × 274/2 = 37, 675. For Nbubble = 3, the num-
ber of available combinations exceeds our computational
capacity, so we randomly select 37,675 samples from the
three-bubble combinations. Additionally, we include a
dataset where Nbubble = 0, as a reference to determine
whether a given DOS contains nanobubbles or not.

We introduce a unified labeling scheme for varying num-
bers of nanobubbles, as illustrated in Table 1. In practice,
the accidental occurrence of two nanobubbles of identical
size on a single graphene sheet is extremely rare. There-
fore, we treat a set of nanobubbles with the same index as
a single nanobubble.

We divided the dataset into training and testing sets
with a train-test ratio of 7:3 for each Nbubble case to mit-
igate the risk of an imbalanced dataset, which could ad-
versely affect the model’s performance. To prevent over-
fitting, we employed data augmentation techniques, such
as min-max scaling and the addition of appropriate white
noise. This ensured that each Nbubble occupies the same
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partition in the training and test set, resulting in a to-
tal sample ratio of approximately 7:3 (527,100 samples in
the training set and 226,400 samples in the test set). The
DOS spectra, D̃(E), serving as features for the supervised
machine learning, are defined as follows [27]:

D̃(E) =
D(E)−min(D(E))

max(D(E))−min(D(E))
+ ηξ(E) (4)

where η denotes the amplitude of noise, and ξ(E) repre-
sents a random variate sampled from a normal distribution
N (0, 1). By adjusting η, we introduce controlled measure-
ment noise into the dataset.

2.3. Deep learning model parameters

Figure 1 illustrates the architecture of our deep learn-
ing model. As outlined in Table 1, we utilize a discrete la-
bel and 2Nbubble continuous labels to represent the number
of nanobubbles and the geometrical shapes of the nanobub-
bles, respectively. The model serves dual functions: it
operates as a classifier using the discrete label and as a
regressor for the continuous labels.

The deep learning model is developed using Tensor-
Flow packages and consists of three primary components:
a 1D Convolutional Neural Network (CNN), 1D Global
Average Pooling (GAP), and a Multi-Layer Perceptron
(MLP)[28]. Linear and Rectified Linear Unit (ReLU) ac-
tivation functions are employed within our model. The
CNN layers are organized into blocks as follows: [1D CNN
layer - Batch Normalization (BN) [29] - ReLU], with filter
sizes of [8 – 16 – 32 – 64], kernel sizes of [15 – 45 – 75 –
105], and all strides set to 10. This arrangement of CNN
layers facilitates the extraction of the feature tensor from
the input data. Subsequently, a 1D GAP layer is used to
flatten the feature tensor, preparing it for the MLP com-
ponent, which is composed of blocks structured as [MLP
layer - BN - Linear]. The unit sizes in the MLP layers
are determined to be [32 – 16 – 8 – (2Nmax

bubble +1)], where
Nmax

bubble denotes the maximum number of nanobubbles, set
at 3 in this instance.

To facilitate effective training, we employ the Adaptive
Moment Estimation (Adam) optimizer [30] along with a
Mean Squared Error (MSE) loss function. For validation,
20% of the training set is randomly selected and shuffled at
the beginning of each epoch. Utilizing callback functions
from TensorFlow, we monitor the validation loss value for
each epoch and optimize our model by aiming to achieve
the minimum validation loss.

3. Results and Discussion

Figure 2 showcases the performance results for both
regression and classification. The regression analysis eval-
uates the precision of predicted values for σ, h0, and B̃max

of individual nanobubbles, compared to their true values,
denoted by superscripts (i), (ii), and (iii) respectively.

CNN 15 x 1 (8)

BN / ReLU
(Ndata, 1001, 8)

CNN 45 x 1 (16)

BN / ReLU
(Ndata, 101, 16)

CNN 75 x 1 (32)

BN / ReLU
(Ndata, 11, 32)

CNN 105 x 1 (64)

BN / ReLU
(Ndata, 2, 64)

MLP (32)

BN / Linear
(Ndata, 32)

MLP (16)

BN / Linear
(Ndata, 16)

MLP (8)

BN / Linear
(Ndata, 8)

MLP (2𝑁!"!!#$%&' + 1)

BN / Linear
(Ndata, 2𝑁!"!!#$

%&' + 1)

(Ndata, 10001, 8)

GAP 1D (Ndata, 64)

Figure 1: Deep learning model architecture for recognition of
nanobubbles. The architecture of the Deep Learning Model for
Nanobubble Recognition. The abbreviations ‘CNN, ‘GAP 1D’, and
‘MLP’ refer to the Convolutional Neural Network, One-Dimensional
Global Average Pooling, and Multi-Layer Perceptron, respectively.
‘BN’, ‘ReLU’, and ‘Linear’ correspond to the Batch-Normalization
process, Rectified Linear Unit activation function, and Linear ac-
tivation function, respectively. In each CNN layer, the kernel size
and number of filters are specified adjacent to CNN, with all layers
sharing a uniform stride of 10. For the MLP layers, unit parame-
ters are detailed next to MLP. The output tensor shapes for each
layer are depicted within squares featuring rounded corners. Ndata

and Nmax
bubble denote the dataset size and the maximum number of

nanobubbles, respectively.
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Figure 2: Recognition performance of our model upon the D(E) spectrum datasets. (a)-(c) Regression results of σ, h0, and B̃max, respectively.
The top panels indicate the predicted values of individual nanobubbles when Nmax

bubble =3, and the bottom panels show the prediction errors
for different Nbubble. The diagonal lines in the top panels indicate the exact prediction lines. (d) Confusion matrix for classification results
of the datasets with different Nbubble.
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In Figure 2 panels (a-c), the regression outcomes for σ,
h0, and B̃max are presented. Overall, the mean values and
standard deviations closely align with the diagonal lines,
illustrating the model’s accurate prediction of nanobub-
ble parameters. Additionally, the precision of prediction
performance is further assessed by calculating the mean
absolute errors (MAE) for the nanobubble parameters σ,
h0, and B̃max for individual bubbles,

MAE =
1

N

N∑
i=1

|xi − x̂i|, (5)

where N denotes the total number of datasets, xi repre-
sents the true value, and x̂i is the predicted value. As
demonstrated in Figure 2(a-c), the prediction errors for
the nanobubble parameters when Nbubble = 1 are found
to be minimal, attributed to the uniformity of labels (i.e.,
[1, A, A, A]). Conversely, for Nbubble > 1, the labels within
the dataset are not uniform but distinct, leading to larger
MAEs.

In addition to σ and h0, we also analyze the perfor-
mance of our deep learning model based on the parameter
B̃max. In the classification of the DOS spectra, we find
that B̃max serves as the representative parameter, rather
than σ and h0. Given that the electronic states of strained
graphene are determined by characteristic PMF profiles,
it is logical to predict that graphene nanobubbles with
similar B̃max values will produce analogous DOS spectra,
despite variations in σ and h0 values.

Figure 2(c) illustrates the prediction accuracy of such
a representative physical quantity, B̃max, which we calcu-
lated using predicted σ and h0 values. The results show
a good agreement between the predicted and true B̃max

values, surpassing the prediction accuracy for σ and h0.
Additionally, it is observed that the prediction accuracy
slightly declines for larger B̃max values. Nanobubbles cor-
responding to these larger B̃max cases are generally charac-
terized by a high aspect ratio of σ and h0, that is, smaller
σ and larger h0. From a theoretical perspective, such high
B̃max nanobubbles are likely to result in significant errors,
as nanobubbles with small σ cannot be accurately mod-
eled by elastic theory under the assumption of a continuous
graphene sheet. Therefore, we focus on moderate or small
B̃max cases, where the accuracy of our machine learning
recognition remains notably high.

The classification performance of Nbubble is evaluated
using a confusion matrix. As displayed in Figure 2(d),
the confusion matrix from the classification results clearly
demonstrates that our model effectively recognizes the num-
ber of nanobubbles present in a graphene sample by ana-
lyzing given DOS spectra. For this confusion matrix, we
employ the conventional evaluation metrics as follows [31]:

A =
ΣiMii

ΣiΣjMij
, Pi =

Mii

ΣjMji
, Ri =

Mii

ΣjMij
, (6)

where A represents accuracy, Pi denotes precision, and Ri

signifies recall for each Nbubble = i (0 ≤ i ≤ 3). Precision

Table 2: Classification performance of Nmax
bubble = 3 model according

to evaluation metrics, where the accuracy scores 0.906.

Nbubble Precision Recall

0 1.000 1.000

1 0.981 0.833

2 0.749 0.940

3 0.951 0.853

(a)

(b)

0.0 0.1 0.2

0.0

0.5

1.0

Accuracy

0.0 0.1 0.2
¥

Precision

Nbubble = 0

Nbubble = 1

Nbubble = 2

Nbubble = 3

0.0 0.1 0.2
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0.0 0.1 0.2
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2.50

M
A
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h
(i)
0

0.0 0.1 0.2
¥

æ(ii)

h
(ii)
0

0.0 0.1 0.2

æ(iii)

h
(iii)
0

Figure 3: Recognition performance with respect to noise amplitude
η. (a) Regression results of σ and h0 are depicted by MAE for
each model with varying η. Prediction errors for both σ and h0

increases as η increases. (b) Classification results are presented using
evaluation metrics. The accuracy derived from the confusion matrix
decreases as η increases.

measures the proportion of retrieved values that are rele-
vant, while recall quantifies the proportion of relevant val-
ues that are successfully retrieved. Table 2 showcases the
computed evaluation metrics for our model. Our model
demonstrates superior performance with smaller Nbubble,
yet remains effective even with larger numbers of bubbles.
Furthermore, we can systematically improve the perfor-
mance by providing additional training samples for a larger
number of bubbles.

In practical experimental situations, we expect the DOS
signals to contain random noise from measurements. There-
fore, the model’s performance in the presence of noise is
a key component for applying the model to real-world
samples. We examine the effects of noise on our model’s
prediction and classification performance. We introduce
white noise by adding a uniform random distribution to
the DOS spectra, with an amplitude η. Figure 3 demon-
strates that both the regression and classification perfor-
mance deteriorate as η increases. The analysis shows that
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Figure 4: Performance of the trained model with η = 0.05 when
subjected to test data D(E) with varying values of η. (a) Regression
results are illustrated through MAE with the selected dataset for
h0 = 13 and σ = 20, 25, 30. (b) Classification performances are
presented using evaluation metrics.

the lower the noise level η, the better the model performs,
as expected. While solely based on this noise level depen-
dency, it might seem that training a model with higher
noise strength is not beneficial, cross-noise level testing
reveals different conclusions.

After training a model with the η = 0.05, we apply
the model to the DOS dataset with different noise lev-
els. To visualize the recognition performance for differ-
ent noise levels, we choose specific samples h0 = 13 and
σ = 20, 25, 30, but the overall tendency is independent
of the choice of the samples. The regression and classi-
fication evaluations are carried out with the same D(E)
dataset by varying the noise level 0 ≤ η ≤ 0.1. As shown
in Figure 4(a), it is evident that our model exhibits good
performance when the noise amplitudes for the evaluation
are equal to or less than the trained model’s η. Inter-
estingly, the prediction performance does not deteriorate
much even if the noise level is slightly higher than the
trained η = 0.05.

Similarly, as shown in Figure 4(b), the classification
performance of our model exhibits high accuracy when the
noise levels of the evaluation datasets do not exceed that
of the trained dataset. A notable aspect of the classifi-
cation results is the optimization of model performance
at noise levels in the evaluation dataset that match the
trained dataset’s noise level. This observation suggests
that our deep learning model is adept at effectively de-
tecting nanobubbles inD(E) when operating within an ap-
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4
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T
ru
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1.000 0.000 0.000 0.000 0.000 0.000

0.000 0.365 0.632 0.003 0.000 0.000

0.000 0.003 0.606 0.388 0.003 0.000

0.000 0.000 0.011 0.651 0.337 0.001

0.000 0.000 0.000 0.048 0.770 0.181

0.000 0.000 0.000 0.003 0.238 0.759

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Confusion matrix for the Nmax
bubble = 5 model applied to a

doubled dataset for Nbubble = 4 and 5, while maintaining the same
size for others

propriate noise amplitude, η, consistent with the model’s
training conditions. Consequently, it is crucial to choose
an appropriate noise amplitude during training, consider-
ing an optimal range of η to ensure high accuracy.

4. Results of Nmax
bubble = 5 model

For our next step, we aim to generalize our recognition
model to handle larger Nmax

bubble cases beyond 3. To achieve
this, we apply the same methodology to a dataset with
Nmax

bubble = 5, using the same algorithm as described in the
previous section. With Nmax

bubble = 5, the number of possi-
ble combinations from the dataset exceeds the predefined
maximal combination 275C2. Consequently, we augment
the dataset to ensure that the maximum number of com-
binations is effectively doubled for Nbubble = 4, 5, com-
pensating for the relatively small portion of all possible
combinations included in the training set.

With the augmented dataset, we assess the regression
performance — finding an accuracy of 0.71. While the
accuracy of our model for Nmax

bubble = 5 may not be sig-
nificantly higher compared to the Nmax

bubble = 3 scenarios,
this moderate level of accuracy could still be meaning-
ful for generalization purposes. The classification perfor-
mance for Nmax

bubble = 5 with the augmented dataset is il-
lustrated in Figure 5. Our model performs effectively for
a larger number of cases, yet exhibits lower performance
for scenarios with fewer cases. The decrease in classifi-
cation performance for fewer Nbubble cases is attributed
to the limited variety within the dataset for Nbubble = 1
and Nbubble = 2, even after dataset augmentation. Provid-
ing sufficiently large datasets for training could further en-
hance our model’s ability to effectively recognize Nbubble.
In essence, our deep learning approach remains valid when
Nbubble is less than or equal to the Nmax

bubble of the training
dataset.
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5. Summary

We have explored the recognition of multiple nanobub-
bles in graphene using DOS spectra through neural net-
work techniques, aiming to expand upon the previously
demonstrated single-bubble recognition [17]. To facilitate
the recognition of multiple nanobubbles, we devised a la-
beling rule based on the premise that multiple nanobubbles
with identical indices can be treated as a single bubble,
given their low likelihood of simultaneous occurrence in
practical scenarios.

Our study demonstrates commendable performance in
both regression and classification for a model with Nmax

bubble

= 3. Notably, the trained model shows high proficiency
in distinguishing whether a given DOS spectrum repre-
sents graphene with or without nanobubbles. Moreover,
the model maintains effective recognition capabilities for
nanobubbles when the DOS spectra are subjected to noise
levels with an amplitude that is equal to or less than the
model’s trained noise level.

We also endeavored to extend our model to accom-
modate larger Nmax

bubble values to generalize its application.
Although the model’s performance diminishes slightly in
comparison to the Nmax

bubble = 3 scenario, achieving a mod-
erate level of accuracy, we identified that the diminished
performance for larger Nmax

bubble values could be mitigated
by increasing the dataset size, thus enabling significant
enhancements in nanobubble recognition accuracy. Conse-
quently, by incorporating additional training datasets into
the ML model, our approach can be adapted to manage
larger Nmax

bubble values effectively.
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