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A NOTE ON THE MAXIMAL OPERATOR ON

BANACH FUNCTION SPACES

ANDREI K. LERNER

Abstract. In this note we answer positively to two conjectures
proposed by Nieraeth [13] about the maximal operator on rescaled
Banach function spaces. We also obtain a new criterion saying
when the maximal operator bounded on a Banach function space
X is also bounded on the associate space X

′.

1. Introduction

Let X be a Banach function space over R
n. Denote by X ′ its as-

sociate space. Next, for p > 0 denote by Xp the space with finite
semi-norm

‖f‖Xp := ‖|f |1/p‖pX .

Let s > r ≥ 1. Assume that X is r-convex and s-concave. Define
the (r, s)-rescaled Banach function space of X as

Xr,s :=
[

[

(Xr)′
]( s

r
)′
]′

.

This space was introduced in a recent work by Nieraeth [13]. The
factorization formula (see [13, Cor. 2.12])

X = (Xr,s)
1
r
− 1

s · Ls(Rn)

makes the space Xr,s an important tool in the extrapolation theory for
general Banach function spaces (see [13] and also [12]).
Let M be the Hardy–Littlewood maximal operator defined by

Mf(x) := sup
Q∋x

1

|Q|

∫

Q

|f |,

where the supremum is taken over all cubes Q ⊂ R
n containing the

point x.
In [13, Conjectures 2.38, 2.39] the following conjectures were stated.
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2 A.K. LERNER

Conjecture 1.1. Let s > r ≥ 1 and let X be an r-convex and s-
concave Banach function space over R

n. Suppose that M is bounded

on
[

(Xr)′
]( s

r
)′
. Then the following are equivalent:

(i) M is bounded on Xr,s;
(ii) M is bounded on Xr.

Conjecture 1.2. Let s > r ≥ 1 and let X be an r-convex and s-concave
Banach function space over R

n. Then the following are equivalent:

(i) M is bounded on Xr,s and on (Xr,s)
′;

(ii) M is bounded on Xr and (X ′)s
′

.

Observe that actually both above conjectures are formulated in [13]
in a more general setting of quasi-Banach function spaces and abstract
maximal operators. We restrict ourselves to Banach function spaces
and the most standard maximal operator. Note also that the implica-
tions (i) ⇒ (ii) were shown in [13] for both conjectures and, hence, the
question is about the converse implications (ii) ⇒ (i).
In this note we show that both Conjectures 1.1 and 1.2 are true. A

useful tool in our proofs will be a new criterion about the interplay
between the boundedness of M on X and X ′, which is perhaps of some
independent interest. This criterion is formulated in terms of the local
maximal operator mλ acting on measurable functions on R

n by

mλf(x) := sup
Q∋x

(fχQ)
∗(λ|Q|), λ ∈ (0, 1),

where f ∗ stands for the standard non-increasing rearrangement of f ,
and the supremum is taken over all cubes Q ⊂ R

n containing the
point x.
Given a Banach function space X , we associate with it the func-

tion ϕX defined by

ϕX(λ) := inf
‖f‖X=1

‖mλf‖X , λ ∈ (0, 1).

Observe that since mλf ≥ |f | a.e. (see, e.g., [8, Lemma 6]), we have
ϕX(λ) ≥ 1 for all λ ∈ (0, 1). Also, it is immediate that the function
ϕX(λ) is non-increasing.
We have the following result.

Theorem 1.3. Let X be a Banach function space over Rn, and assume
that the maximal operator M is bounded on X. Then

(i) the function ϕX′(λ) is unbounded;
(ii) if there exists λ0 ∈ (0, 1) such that ϕX(λ0) > 1, then M is bounded

on X ′.

An immediate consequence of Theorem 1.3 is the following criterion.
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Theorem 1.4. Let X be a Banach function space over R
n, and as-

sume that the maximal operator M is bounded on X. The following
statements are equivalent:

(i) M is bounded on X ′;
(ii) the function ϕX(λ) is unbounded;
(iii) there exists λ0 ∈ (0, 1) such that ϕX(λ0) > 1.

Indeed, observe that the implication (i) ⇒ (ii) follows by taking
X ′ instead of X in Theorem 1.3 and taking into account that, by the
Lorentz–Luxembourg theorem, X ′′ = X . Next, (ii) ⇒ (iii) is trivial.
Finally, (iii) ⇒ (i) is contained in item (ii) of Theorem 1.3.
The equivalence (ii) ⇔ (iii) in Theorem 1.4 can be written in the

following form.

Corollary 1.5. Let X be a Banach function space over Rn, and assume
that the maximal operator M is bounded on X. Then either ϕX(λ) is
unbounded or ϕX(λ) ≡ 1 for all λ ∈ (0, 1).

The function ϕX is especially useful when dealing with scaled spacesXp.
Indeed, using that (|f |r)∗(t) = f ∗(t)r, r > 0, we obtain

ϕXp(λ) = inf
‖|f |1/p‖X=1

‖mλ(|f |
1/p)‖pX = ϕX(λ)

p, p > 0.

Thus, if ϕXp0 is unbounded for some p0 > 0, then ϕXp is unbounded
for all p > 0. This fact combined with the above results will be crucial
in proving Conjectures 1.1 and 1.2.
In order to prove Conjecture 1.2, we will also essentially use the

notion of Ap-regularity of Banach function spaces. This notion was
considered by Rutsky [15, 16].
The paper is organized as follows. Section 2 contains some prelimi-

naries. In Section 3 we prove Theorem 1.3. Conjectures 1.1 and 1.2 are
proved in Section 4. We will also give an alternative proof, based on
the function ϕX , of a recent result by Lorist and Nieraeth [12] about
the boundedness of M on X and X ′.

2. Preliminaries

2.1. Banach function spaces. Let L0(Rn) denote the space of mea-
surable functions on R

n. A vector space X ⊆ L0(Rn) equipped with a
norm ‖ · ‖X is called a Banach function space over Rn if it satisfies the
following properties:

• Ideal property: If f ∈ X and g ∈ L0(Rn) with |g| ≤ |f |, then
g ∈ X and ‖g‖X ≤ ‖f‖X .
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• Fatou property: If 0 ≤ fj ↑ f for {fj} in X and supj ‖fj‖X < ∞,
then f ∈ X and ‖f‖X = supj ‖fj‖X .

• Saturation property: For every measurable set E ⊂ R
n of posi-

tive measure, there exists a measurable subset F ⊆ E of positive
measure such that χF ∈ X .

We refer to a recent survey by Lorist and Nieraeth [11] about (quasi)-
Banach function spaces, where, in particular, one can find a discussion
about the above choice of axioms.
The following statement is an equivalent formulation of the Fatou

property (see, e.g., [11, Lemma 3.5]).

Proposition 2.1. Let X be a Banach function space on R
n. Then for

every sequence fj ∈ X,

‖ lim inf
j→∞

fj‖X ≤ lim inf
j→∞

‖fj‖X .

The next statement is also well known.

Proposition 2.2. Let X be a Banach function space on R
n, and as-

sume that M is bounded on X. Then χQ ∈ X for every cube Q ⊂ R
n.

Proof. Fix a cube Q. By saturation property, there is a set F ⊆ Q of
positive measure such that χF ∈ X . Since M is bounded on X ,

|F |

|Q|
‖χQ‖X ≤ ‖MχF ‖X ≤ c‖χF‖X ,

which implies ‖χQ‖X < ∞. �

Given a Banach function space X , we define the associate space (also
called the Köthe dual) X ′ as the space of all f ∈ L0(Rn) such that

‖f‖X′ := sup
‖g‖X≤1

∫

Rn

|fg| < ∞.

By the Lorentz–Luxembourg theorem (see [17, Th. 71.1]), we have
X ′′ = X with equal norms.
Let X be a Banach function space, and let 1 ≤ p, q ≤ ∞. We say

that X is p-convex if

‖(|f |p + |g|p)1/p‖X ≤ (‖f‖pX + ‖g‖pX)
1/p, f, g ∈ X,

and we say that X is q-concave if

(‖f‖qX + ‖g‖qX)
1/q ≤ ‖(|f |q + |g|q)1/q‖X , f, g ∈ X.
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2.2. Ap weights. By a weight we mean a non-negative locally inte-
grable function on R

n. Given a weight w and a measurable set E ⊂ R
n,

denote w(E) :=
∫

E
w and 〈w〉E := 1

|E|

∫

w
.

Recall that a weight w satisfies the A1 condition if

[w]A1 :=
∥

∥

∥

Mw

w

∥

∥

∥

L∞

< ∞;

a weight w satisfies the Ap, 1 < p < ∞, condition if

[w]Ap := sup
Q

〈w〉Q〈w
−p′/p〉

p/p′

Q < ∞;

a weight w satisfies the A∞ condition if

[w]A∞
:= sup

Q

∫

Q
M(wχQ)

w(Q)
< ∞.

It was shown in [6] that if w ∈ A∞, then for r := 1+ 1
cn[w]A∞

and for

every cube Q,
( 1

|Q|

∫

Q

wr
)1/r

≤ 2
1

|Q|

∫

Q

w.

From this, by Hölder’s inequality we obtain that for every cube Q and
any measurable subset E ⊂ Q,

(2.1) w(E) ≤ 2
( |E|

|Q|

)δ

w(Q),

where δ := 1
r′
= 1

1+cn[w]A∞

.

2.3. Ap-regular Banach function spaces. Let X be a Banach func-
tion space, and let 1 ≤ p ≤ ∞. We say that X is Ap-regular if there
exist C1, C2 > 0 such that for every f ∈ X there is an Ap weight
w ≥ |f | a.e. with [w]Ap ≤ C1 and ‖w‖X ≤ C2‖f‖X .

Proposition 2.3. A Banach function space X is A1-regular if and only
if M is bounded on X.

Proof. Indeed, one direction is trivial, namely, if X is A1-regular, then

‖Mf‖X ≤ ‖Mw‖X ≤ C1‖w‖X ≤ C1C2‖f‖X.

Conversely, if M is bounded on X , then there exists r > 1 depending
only on ‖M‖X→X such that Mr is also bounded on X , where Mrf :=
M(|f |r)1/r (see, e.g., [10] for the proof of this result). Combining this
with the well known fact that Mrf ∈ A1 [2] with the A1-constant
depending only on r and n, we obtain that X is A1-regular. �

The following result is an abridged version of the characterization
obtained by Rutsky [15, Th. 2].
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Theorem 2.4 ([15]). Let X be a Banach function space, and let 1 <

p < ∞. The following statements are equivalent:

(i) both X1/p and (X1/p)′ are A1-regular;
(ii) X ′ is Ap-regular.

A difficult part of this result is the implication (i) ⇒ (ii). We outline
a slightly different proof for the sake of completeness. Essentially this
is contained in the following result by Rubio de Francia [14, Section 3].

Theorem 2.5 ([14]). Let X be a Banach function space, and let p ∈
(1,∞). Assume that T is a linear operator bounded on X1/p(ℓp), namely,
there exists C > 0 such that for every sequence {fj},

(2.2) ‖(
∑

j

|Tfj|
p)1/p‖X1/p ≤ C‖(

∑

j

|fj|
p)1/p‖X1/p.

Then for every f ∈ X ′, which is positive almost everywhere, there exists
a function w ≥ f such that ‖w‖X′ ≤ 2‖f‖X′ and T is bounded on Lp(w)
with the operator norm ‖T‖Lp(w)→Lp(w) depending only on C in (2.2).

Now observe that by Proposition 2.3, condition (i) of Theorem 2.4
is equivalent to M being bounded on X1/p and on (X1/p)′. In turn,
by [13, Th. 4.9], this implies that (2.2) holds for every standard
Calderón–Zygmund operator T . It remains to choose any nondegener-
ate Calderón–Zygmund operator T , namely, an operator T for which
‖T‖Lp(w)→Lp(w) < ∞ implies w ∈ Ap, and an application of Theorem 2.5
completes the proof.
The following result was also obtained by Rutsky [16, Prop. 7].

Proposition 2.6 ([16]). Let X be a Banach function space over R
n

such that X is Ap-regular for some 1 ≤ p < ∞. Suppose that there
exists δ > 0 such that M is bounded on Xδ. Then M is bounded on X.

We sketch the proof of this statement. By the well known property
of the Ap weights [1], if w ∈ Ap, then there exist α, β > 0 depending
only on [w]Ap and p such that for every cube Q,

α|Q| < |{x ∈ Q : w(x) > β〈w〉Q}|.

From this, by Chebyshev’s inequality, for every δ > 0,

Mw(x) ≤ Cδ,α,βMδw(x).

Hence, taking f ∈ X and the corresponding w ∈ Ap from the definition
of the Ap-regularity, we obtain

‖Mf‖X ≤ ‖Mw‖X ≤ C‖Mδw‖X

= C‖M(wδ)‖
1/δ

Xδ ≤ C‖w‖X ≤ C‖f‖X ,
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which proves the result.

2.4. Rearrangements and the maximal operator mλ. Denote by
S0(R

n) the space of measurable functions f on R
n such that

µf(α) := |{x ∈ R
n : |f(x)| > α}| < ∞

for any α > 0. Recall that for f ∈ S0(R
n) the non-increasing rearrange-

ment f ∗ is defined by

f ∗(t) := inf{α > 0 : µf(α) ≤ t}, t > 0.

It can be easily seen from the definition of the rearrangement that
for every measurable function f and any cube Q,

(fχQ)
∗(λ|Q|) > α ⇔ |Q ∩ {|f | > α}| > λ|Q|, α > 0, λ ∈ (0, 1).

From this we have that

(2.3) {x ∈ R
n : mλf(x) > α} = {x ∈ R

n : Mχ{|f |>α}(x) > λ},

and, for every measurable set E ⊂ R
n,

(2.4) mλ(χE)(x) = χ{MχE>λ}(x).

3. Proof of Theorem 1.3

We start with part (i) of Theorem 1.3, and we will show that it even
holds under a weaker assumption, namely, instead of assuming that M
is bounded on X (which, by Proposition 2.3, says that X is A1-regular)
it suffices to assume the A∞-regularity of X . This is a simple corollary
of the following lemma.

Lemma 3.1. Let w ∈ A∞. Then for all f ∈ L1(w) and λ ∈ (0, 1),

(3.1)

∫

Rn

|f |w ≤ 2n+1λδ

∫

Rn

(mλf)w,

where δ := 1
1+cn[w]A∞

.

Proof. Observe that (3.1) is equivalent to the same inequality but with
f = χE, where E is an arbitrary measurable set of finite measure.
Indeed, assume that (3.1) is true for f = χE . By (2.4), this means that

(3.2) w(E) ≤ 2n+1λδw{x : MχE > λ}.

Taking here E := {x : |f | > α} and applying (2.3), we obtain

w({x : |f | > α}) ≤ 2n+1λδw({x : mλf > α}),

which, in turn, implies (3.1) by integrating over α ∈ (0,∞) (in order
to ensure that the set {x : |f | > α} is of finite measure, one can
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assume first that f is compactly supported and then use the monotone
convergence theorem).
Hence, it suffices to prove (3.2). Let Md denote the dyadic maxi-

mal operator. By the Calderón–Zygmund decomposition, the set {x :
MdχE > λ} can be written as the union of pairwise disjoint cubes Qj

satisfying

λ <
|Qj ∩ E|

|Qj |
≤ 2nλ.

From this, by (2.1),

w(Qj ∩ E) ≤ 21+nδλδw(Qj) ≤ 2n+1λδw(Qj).

Summing up this inequality yields (3.2), and therefore the proof is
complete. �

Proof of Theorem 1.3, part (i). We will show that if X is A∞-regular,
then there exist C, δ > 0 such that ϕX′(λ) ≥ Cλ−δ for all λ ∈ (0, 1).
Given g ∈ X , take an A∞ weight w such that |g| ≤ w a.e., where

[w]A∞
≤ C1 and ‖w‖X ≤ C2‖g‖X. By Lemma 3.1, there exists δ > 0

(one can take δ := 1
1+cnC1

) such that
∫

Rn

|fg| ≤

∫

Rn

|f |w ≤ 2n+1λδ

∫

Rn

(mλf)w

≤ 2n+1λδ‖mλf‖X′‖w‖X ≤ 2n+1C2λ
δ‖mλf‖X′‖g‖X.

From this, taking the supremum over all g ∈ X with ‖g‖X = 1 yields

‖f‖X′ ≤ 2n+1C2λ
δ‖mλf‖X′.

Hence, ϕX′(λ) ≥ 1
2n+1C2

λ−δ, and the proof is complete. �

Turn to part (ii) of Theorem 1.3. This part is a simple combination
of several known results, which we will describe below.
Define the Fefferman–Stein sharp function f# by

f#(x) := sup
Q∋x

1

|Q|

∫

Q

|f − 〈f〉Q|,

where the supremum is taken over all cubes Q containing the point x.
It was proved by Fefferman and Stein [4] that for every p > 1 and for
all f ∈ S0(R

n),

‖f‖Lp ≤ Cn,p‖f
#‖Lp.

Having this result in mind, we say that a Banach function space X has
the Fefferman–Stein property if there exists C > 0 such that

‖f‖X ≤ C‖f#‖X

for all f ∈ S0(R
n).
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The following characterization was obtained in [9, Cor. 4.3].

Theorem 3.2 ([9]). Let X be a Banach function space over R
n, and

assume that M is bounded on X. Then M is bounded on X ′ if and
only if X has the Fefferman–Stein property.

Further, we will use the following pointwise estimate obtained in [7,
Th. 2].

Theorem 3.3 ([7]). For any locally integrable function f and for all
x ∈ R

n,

mλ(Mf)(x) ≤ Cn,λf
#(x) +Mf(x).

Now, the second part of Theorem 1.3, modulo some technicalities, is
just a combination of two above results.

Proof of Theorem 1.3, part (ii). The proof is almost identical to the
proof of a similar result proved in [9, Th. 4.1].
Our goal is to show that if ϕX(λ0) > 1 for some λ0 ∈ (0, 1), then

X has the Fefferman–Stein property. Thus, by Theorem 3.2, we would
obtain that M is bounded on X ′.
Since (|f |)#(x) ≤ 2f#(x) (see, e.g., [5, p. 155]), we will assume that

f ≥ 0. By Theorem 3.3,

ϕX(λ0)‖Mf‖X ≤ ‖mλ0(Mf)‖X ≤ Cn,λ0‖f
#‖X + ‖Mf‖X .

Assuming that f ∈ X , and using that M is bounded on X , we obtain
that ‖Mf‖X < ∞. Therefore, by the above estimate,

(3.3) ‖f‖X ≤ ‖Mf‖X ≤
Cn,λ0

ϕX(λ0)− 1
‖f#‖X .

Now, in order to show that X has the Fefferman–Stein property, it
remains to extend (3.3) from f ∈ X to f ∈ S0(R

n). Assume first
that f ∈ S0(R

n) ∩ L∞. We will use the fact proved in [9, Lemma 4.5]
and saying that there is a sequence {fj} of bounded and compactly
supported functions such that fj → f a.e. and (fj)

#(x) ≤ cnf
#(x).

Observe that, by Proposition 2.2, each fj belongs to X . Therefore,
by (3.3),

‖fj‖X ≤ C‖(fj)
#‖X ≤ C ′‖f#‖X .

From this, by Proposition 2.1,

‖f‖X ≤ C ′‖f#‖X .

It remains to extend this estimate from f ∈ S0(R
n) ∩ L∞ to f ∈

S0(R
n). For f ∈ S0(R

n) and N > 0 define fN := min(f,N). Then
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fN ∈ S0(R
n) ∩ L∞. Using that (fN)

#(x) ≤ 3
2
f#(x) (see [5, p. 155])

and applying the previous estimate, we obtain

‖fN‖X ≤ C‖f#‖X .

Applying again Proposition 2.1 proves the Fefferman–Stein property
of X , and therefore the proof is complete. �

4. Proof of Conjectures 1.1 and 1.2

We start with the following statement which collects some stan-
dard properties related to the boundedness of M on a Banach function
space X .

Proposition 4.1. Let X be a Banach function space, and assume
that M is bounded on X. Then

(i) M is bounded on Xr for all r ∈ (0, 1);
(ii) there exists r > 1 such that M is bounded on Xr;
(iii) M is bounded on (X ′)r for all r ∈ (0, 1).

Proof. Observe that M is bounded on Xr if and only if Mr is bounded
on X . Therefore, part (i) follows trivially by Hölder’s inequality. In
turn, part (ii) is just a reformulation of the result [10] saying that if M
is bounded on X , then there exists r > 1 depending only on ‖M‖X→X

such that Mr is also bounded on X .
Part (iii) is an immediate consequence of the Fefferman–Stein in-

equality [3] saying that for all locally integrable f, g and for all p > 1,
∫

Rn

(Mf)p|g|dx ≤ Cn,p

∫

Rn

|f |p(Mg)dx.

From this
∫

Rn

(Mf)p|g|dx ≤ Cn,p‖|f |
p‖X′‖Mg‖X ≤ C‖|f |p‖X′‖g‖X.

Hence, by duality, for all p > 1,

‖(Mf)p‖X′ ≤ C‖|f |p‖X′,

which finishes the proof. �

As we mentioned in the Introduction, the implications (i) ⇒ (ii) are
known for both Conjectures 1.1 and 1.2. For the sake of the complete-
ness we give different proofs based on Theorem 1.3.

Proof of Conjecture 1.1. Observe that sinceX is r-convex and s-concave,
the space Xr,s is a Banach function space (see [13]). Therefore, by the

Lorentz–Luxembourg theorem,
[

(Xr)′
]( s

r
)′
= X ′

r,s.
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Let us start with the implication (i) ⇒ (ii). Since M is bounded on
Xr,s, by Theorem 1.3, the function ϕ[

(Xr)′
]( sr )′ is unbounded. Hence,

ϕ(Xr)′ is unbounded as well. Next, since M is bounded on
[

(Xr)′
]( s

r
)′
,

by the first part of Proposition 4.1, M is bounded on (Xr)′. This
along with unboundedness of ϕ(Xr)′ implies, by Theorem 1.4, that M
is bounded on (Xr)′′ = Xr.
Turn to (ii) ⇒ (i). SinceM is bounded onXr, by Theorem 1.3, ϕ(Xr)′

is unbounded. Hence, ϕ[
(Xr)′

]( sr )′ is unbounded as well. This coupled

with the boundedness of M on
[

(Xr)′
]( s

r
)′
implies, by Theorem 1.4,

that M is bounded on Xr,s. �

Proof of Conjecture 1.2. Let us start with the implication (i) ⇒ (ii).
In the previous proof we showed that if M is bounded on Xr,s and
X ′

r,s, then M is bounded on Xr. Using the fact that X ′
r,s = (X ′)s′,r′

[13, Pr. 2.14], in a similar way we obtain that M is bounded on (X ′)s
′

.
Turn to (ii) ⇒ (i). Since M is bounded on (X ′)s

′

, by the first part
of Proposition 4.1, M is bounded on X ′. Hence, by Theorem 1.3, ϕX

is unbounded, and so ϕXr is unbounded as well. This coupled with the
boundedness of M on Xr implies, by Theorem 1.4, that M is bounded
on (Xr)′. In a similar way we obtain that M is bounded on [(X ′)s

′

]′.

Setting Y :=
[

(Xr)′
]( s

r
)′

and q := ( s
r
)′, we obtain that Y 1/q and

(Y 1/q)′ are A1-regular. Therefore, by Theorem 2.4, Y ′ = Xr,s is Aq-
regular. Further, it was shown in the proof of [13, Pr. 2.14] that
Xθ

r,s = [(X ′)s
′

]′ for θ := 1
(r′/s′)′

. Hence, M is bounded on Xθ
r,s, which,

along with the Aq-regularity of Xr,s, proves, by Proposition 2.6, that
M is bounded on Xr,s. By symmetry, using that X ′

r,s = (X ′)s′,r′ and
applying the same argument, we obtain that M is bounded on X ′

r,s,
and, therefore, the proof is complete. �

In order to further illustrate the method based on Theorem 1.3, we
give an alternative proof of the following recent result of Lorist and
Nieraeth [12].

Theorem 4.2 ([12]). Let r∗ ∈ (1,∞) and let X be an r∗-convex Banach
function space over R

n. Then the following are equivalent:

(i) We have M : X → X and M : X ′ → X ′;
(ii) There is an r0 ∈ (1, r∗] so that for all r ∈ (1, r0) we have

M : Xr → Xr, M : (Xr)′ → (Xr)′;

(iii) There is an r ∈ (1, r∗] so that M : (Xr)′ → (Xr)′.
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Proof. We start with (i) ⇒ (ii). By a combination of the first two parts
of Proposition 4.1, there is an r0 ∈ (1, r∗] so that for all r ∈ (1, r0)
we have M : Xr → Xr. Next, by Theorem 1.3, the function ϕX is
unbounded. Hence, ϕXr is unbounded as well. Therefore, applying
Theorem 1.4, we have M : (Xr)′ → (Xr)′. Next, the implication
(ii) ⇒ (iii) is trivial.
Turn to (iii) ⇒ (i). By Theorem 1.3, ϕXr is unbounded. Hence, ϕX

is unbounded as well. Further, by the third part of Proposition 4.1, M :
(Xr)′ → (Xr)′ implies M : X → X . It remains to apply Theorem 1.4
in order to conclude that M : X ′ → X ′. �
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