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ENHANCED DISSIPATION AND BLOW-UP SUPPRESSION FOR AN AGGREGATION
EQUATION WITH FRACTIONAL DIFFUSION AND SHEAR FLOW

BINQIAN NIU, BINBIN SHI, AND WEIKE WANG

ABSTRACT. In this paper, we consider an aggregation equation with fractional diffusion and large shear flow,
which arise from modelling chemotaxis in bacteria. Without the advection, the solution of aggregation equation
may blow up in finite time. First, we study the enhanced dissipation of shear flow by resolvent estimate method,
where the fractional Laplacian (—A)*/? is considered and a € (0,2). Next, we show that the enhanced
dissipation of shear flow can suppress blow-up of solution to aggregation equation with fractional diffusion and
establish global classical solution in the case of &« > 3/2. Here we develop some new technical to overcome
the difficult of low regularity for fractional Laplacian.

1. INTRODUCTION

Aggregation-diffusion-type equations arise in a wide variety of biological applications, such as Keller-
Segel models of chemotaxis and migration patterns in ecological systems. In this paper, we consider the
following aggregation equation on torus T? with fractional diffusion and large shear flow

o + Au(y)0yn + (=A)*?*n + V- (nB(n)) = 0, (LD
n(t,z,y)|,_, = no(z,y), (t,x,y) € RT x T2 '

Here the n(t, x,y) is nonnegative unknown functions which represent the density, the smooth function u(y)
represents the underlying fluid velocity and A is a positive constant. The domain

T? = {(3:73/)‘3:73/ € T27T}7

where To; = [—m, ) is a periodic interval. The fractional Laplacian (—A)®/2 is defined via the Fourier
transform, it is as follows
(A= > (K 4122k, e, 0 <a <2, (1.2)
(k,)ez?

the 7 denotes the Fourier transform of n. The fractional Laplacian is a nonlocal operator and its kernel
representation is used in this paper, see Section 2. The linear vector operator B(n) is called attractive
kernel, which could be formally represented as

B(n) = V(=A)"'(n —7), (1.3)

the 7 denotes the average of n. In this paper, we study the global well-posedness of equation (1.1) for some
large shear flows.

Without the advection (A = 0), the equation (1.1) is an aggregation equation with fractional diffusion
on + (—A)?n + V- (nB(n)) =0, (1.4)

which is used as a model for various biological and physical phenomena, see [5,6]. When @ = 2, the
equation (1.4) goes back to the classical parabolic-elliptic Keller-Segel model. It is well-known that the
solutions for Keller-Segel model in high dimensional may blow up in finite time if the initial data ng is large
in L' norm. More precisely, for two dimensional case, if the L' norm of initial data ng is less than 8, there
exists a unique global solution; and if the L' norm of initial data n( exceeds 87, the solution may blow up
in finite time, one could refer to [26, 27, 37] for more details. In three and higher dimensional cases, the
solution may blow up even for initial data ng arbitrary small in L' norm, see [11,40]. When 0 < o < 2,
the solution of (1.4) may blow up in finite time for high dimensions and large initial data ng, see [4, 32].
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In addition, the blow-up solution has also been studied in [4,30,31] for more general aggregation-diffusion
equations.

The case A # 0 is corresponding to aggregation progress in the background of a shear flow. A realistic
scenario is that chemotactic processes take place in a moving fluid, and the possible effects and related
problems resulting from the interactions between the chemotactic process and the fluid transport have been
widely investigated, see [7, 18, 35,36,42,46]. The study of aggregation equation with an incompressible
flow is one of those attempts, the model is as follows

On+ Au-Vn+ (=A)**n+ V- (nB(n)) = 0, (1.5)

where u is divergence free vector field. An interesting question arising is whether one can suppress the
possible finite time blow-up by the mixing effect coming from the fluid transport. Recently, some progresses
have been made for the suppression of blow-up by incompressible flow. When o = 2, the equation (1.5) is
classical Keller-Segel model with incompressible flow. Kiselev, Xu [29] and Hopf, Rodrigo [28] considered
that the u is the relaxation enhancing flow [8], they proved that the solution of the advective Keller-Segel
equation does not blow-up in finite time provided the amplitude of the relaxation enhancing flow is large
enough. Bedrossian and He [2] found that shear flows (u = (u(y),0)) have a different suppression effect
in the sense that sufficiently large shear flows could prevent the blow-up in two dimensions but could not
guarantee the global existence in three dimensions if the initial mass is greater than 87. When 0 < a < 2,
the equation (1.5) is an aggregation equation with fractional diffusion (also known as generalized Keller-
Segel model) with incompressible flow. Hopf, Rodrigo [28] and Shi, Wang [38] proved that the solution of
(1.5) does not blow-up in finite time by the large relaxation enhancing flow, where the range of o need to
be considered. For the blow-up phenomenon can be suppressed through fluid transport progress, some other
problems and models can refer to [15, 16, 19,23, 25,33,39,47]. However, the equation (1.5) becomes (1.1)
if u is shear flow, and it is currently unclear whether the shear flow can suppress the blow-up in the case of
O<a<2

The additional flows studied in those references are found to provide an enhanced dissipation effect from
fluid, which could help the dissipation terms dominate even in the nonlinear level. In this paper, we study
that the blow-up solution of (1.1) can be suppressed by enhanced dissipation of shear flow. First, we need to
consider the enhanced dissipation of shear flow in the case of fractional dissipation, the model is as follows

Ohg +u(y)deg +v(=A)2g =0, ¢(0,2,y) = go(z,y), (1.6)

where v > 0. The meaning of enhanced dissipation is that the dissipation effect can be enhanced and the L?
norm of solution to equation (1.6) has a faster decaying rate if v is small enough. When o = 2, Bedrossian
and Zelati [1] studied the enhanced dissipation of (1.6) by hypocercivity, and Wei [43] studied the enhanced
dissipation of (1.6) by resolvent estimate. Recently, some special shear flows have been widely studied,
such as Couette flow [3], Poiseuille flow [14] and Kolmogorov flow [44,45]. When 0 < a < 2, Zelati,
Delgadino and Elgindi [12] given a enhanced dissipation rate of (1.6). He [24] obtained an almost sharp
enhanced dissipation rate of (1.6) by resolvent estimate, where o > 1 and the fractional Laplacian operator
was written as the form of anisotropic. Li and Zhao [34] considered the linearized critical surface quasi-
geostrophic equation around the Kolmogorov flow. As a toy model, they studied the equation (1.6) in the
case of @« = 1 and u(y) = cosy, and obtained the sharp enhanced dissipation rate by hypocercivity. In
[24,34], the authors also given some useful comments for the range of «.

In this paper, we consider the equation (1.1), the goal is to show that the blow-up solution of an aggre-
gation equation with fractional diffusion can be suppressed through some shear flows. We will prove the
global existence of solution to aggregation equation with fractional diffusion and large shear flow for some
«. This question is motivated by the works of [2,28,38]. Here we study the sharp enhanced dissipation rate
of (1.6) in the case of & > 0. As an application, we show that the enhanced dissipation of shear flow can
suppressed the blow-up of an aggregation equation with fractional diffusion.

First, we study the enhanced dissipation of shear flow in an aggregation equation with fractional diffusion,
the equation (1.6) is written as

8t.g + £V,ag = 07 9(0733721) = 90(33731)7 (17)
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where

Lyo=v(—A)2 4 u(y)dy, 0<a<2. (1.8)
In this paper, we study the enhanced dissipation of shear flow by the equation (1.7). In fact, we only to study
semigroup with the operator —L, , as generator and give the semigroup estimate. Let denote P, and P are
projection operator, which are defined that for any g(z, y)

1
9" = Pyg = > / g(z,y)dz, gr=Prg=g- 4", (1.9)
™ JT

where ¢ is zero node and g+ s nonzero mode.

The e~**v is semigroup with the operator —L, o as generator, the first main theorem is the following

Theorem 1.1. Assume that the shear flow u(y) € C°°(T), there exist constants m, N € N, ¢; > 0, 6y > 0
with the property that, for any A € R and § € (0,0¢), there exist finitely many points y1, ...y, € T with
n < N, such that
lu(y) = Al = cd™,  V|y—y;| =6, Vje{l,...n}
Then there exists a vy = v(u) such that if v < vy, for any t > 0, the following enhanced dissipation estimate
hold,
He_tﬁyyaP7SHL2—>L2 < 6_)\L7at+ﬂ/27 )‘:/,oz = EOV%J
where the L, o and Py are defined in (1.8) and (1.9) respectively, the g is small enough and o € (0,2).

In Theorem 1.1, we obtain the sharp enhanced dissipation rate of shear flow, this result seems to improve
previous works [12, 24, 34], where general shear flow u(y) satisfies the assumption in Theorem 1.1 and
a € (0,2). In this paper, we study enhanced dissipation of shear flow based on the assumption in Theorem
1.1 and resolvent estimate, which is inspired by the works of [13,19,43].

The assumption of shear flow in Theorem 1.1 is reasonable, we can easily check that the Kolmogorov flow
u(y) = cosy satisfies the assumption by Taylor expansion and m = 2. In the case of & = 2, u = cos y, the
enhanced dissipate rate has been studied in [44,45]. If we consider the case of 0 < o < 2 and u(y) = cosy,
we also have following corollary by Theorem 1.1,

Corollary 1.2. Assume that the shear flow u(y) = cosy is Kolmogorov flow, then there exists a vy = v(u)
such that if v < v, for any t > 0, the following enhanced dissipation estimate hold,

et Pl e € T = e, (110

—L2
where

L,,= I/(—A)O‘/2 + cos Y0y, (1.11)
the P are defined in (1.9), the € is small enough and o € (0,2).

Next, we study that the enhanced dissipation of shear flow can suppress blow up in an aggregation equa-
tion with fractional diffusion, and we establish the global classical solution with large initial data. Here we
study the enhanced dissipation of (1.1) by operator £, , and Theorem 1.1, thus we modify the (1.1) by time
rescaling. If taking t = A7 and denoting v = A~!, the equation (1.1) is written as

{&m +u(y)dpn + v(—A)¥2n + vV - (nB(n)) =0,

1.12
:n0($7y)7 (tvl'ay) GRJ’_ XT2. ( )

n(tv €T, y) ‘t:(]
Since equations (1.1) and (1.12) are equivalent in the sense of time rescaling, we mainly consider the (1.12)
and establish the global classical solution by enhanced dissipation of shear flow. Based on the Theorem 1.1,
we imply that
ymte — v, m — 00,

then the enhanced dissipation of shear flow is very weak for m is large enough, it is difficult for suppressing
the blow-up. In this paper, we consider that the shear flow u(y) = cosy is Kolmogorov flow, and we imply
m = 2 to the assumption in Theorem 1.1.

The second main theorem of this paper read as follow.
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Theorem 1.3. Let o € [3/2,2) and initial datang > 0,ng € HY(T?)NLY(T?),v > 1+a. the u(y) = cosy
is Kolmogorov flow. Then there exists a vy = v(«a, ng), such that if v < vy, the unique nonnegative classical
solution n(t,x,y) of equation (1.12) is global in time.

In Theorem 1.3, we show that the shear flow can suppress the blow-up of aggregation equation with
fractional diffusion in the case of @ > 3/2, it seems to be the first result about shear flow suppress blow
up in nonlinear equation with fractional diffusion. I believe that the range of « is not sharp, which is only
technical one. We know by (1.4) that the aggregation equation with fractional diffusion is scaling invariant,
thus the critical space of (1.4) is L%, where d represents the spatial dimension. It is well know that the
solution is global smooth if we have global supercritical estimate. By the definition of P, P, and Theorem
1.1, we deduce that the zero mode of (1.12) is one dimension which is no enhanced dissipation, and the !
is supercritical for a > 1. Therefore, I speculate that the Theorem 1.3 still holds in the case of & > 1. In
addition, the L? estimate of (1.12) is supercritical in the case of & > 3/2, thus the key point of this paper is
to establish global L? estimate of (1.12) through the enhanced dissipation of shear flow.

If consider the equation (1.1), we have the following corollary by Theorem 1.3.

Corollary 1.4. Let o € [3/2,2) and initial data ng > 0,ng € HY(T?) N LY(T?),y > 1 + a, the u(y) =
cos y is Kolmogorov flow. Then there exists a Ay = A(a, ng), such that if A > Ay, the unique nonnegative
classical solution n(t,x,y) of equation (1.1) is global in time.

In the following, we briefly state our main ideas of the proofs to Theorem 1.1 and 1.3. Firstly, we need
to proved the enhanced dissipation of equation (1.6) by resolvent estimate and semigroup estimate, see
Theorem 1.1. We assume that the shear flow satisfies the assumption in Theorem 1.1 and consider the
operator L, in (1.8). In the proof, we establish the pseudospectral bound estimate by resolvent estimate
and can obtain the semigroup estimate of e~** by the Gearchart-Priiss type theorem (see Lemma 2.1).
Next, we prove that the shear flow suppress the blow-up of equation (1.12) and establish global classical
solution, see Theorem 1.3. Since L? is supercritical estimate in the case of o > 3/2, we only need to
establish global L? estimate. We decompose equation (1.12) into one dimensional zero mode equation and
two dimensional nonzero mode equation, see (2.5)-(2.7). Since L'is supercritical in one dimension zero
mode equation, the solution is global existence. And two dimensional nonzero mode equation has enhanced
dissipation, then we can establish global L? estimate by bootstrap argument.

In this paper, we study the enhanced dissipation of shear flow in (1.6) and blow-up suppression in an
aggregation equations with fractional diffusion, see equation (1.12). Some proofs technical and ideas are
inspired by [2,19]. Here we use semigroup theory to study the enhanced dissipation of (1.6) and the key
point is to obtain pseudospectral bound by resolvent estimate method. Since the fractional Laplacian is
nonlocal operator in the case of o € (0, 2), these technical is not obvious. Our strategy is to transform the
operator £, , into the case similar to ov = 2 through transformation and calculation, the details can refer to
Section 3. We study that the shear flow suppress the blow-up of (1.12) by bootstrap argument, where we
only consider the nonzero mode equation, see Assumption 2.10 and Proposition 2.11. Here the estimates of
(1.12) and (2.5) are also needed, see Lemma 4.1, 4.4 and 4.5. Some mathematical methods are used in the
proof, such as energy methods, nonlinear maximum principle, semigroup theory and Duhamel’s principle,
the details can refer to Section 4. Compared to the case of o = 2, the enhanced dissipation estimate of 7.,
is difficult in the case of o < 2, the main reason is that the low regularity of dissipative terms cannot control
nonlinear terms in the (1.12). In this paper, we establish some new techniques to overcome this difficulty,
the details can refer to the proof of Proposition 2.11 and Appendix B.

The rest of this paper is arranged as follows. In Section 2, we introduce some preparations and give the
bootstrap argument. In Section 3, we prove the enhanced dissipation effect of shear flow. In Section 4, we
prove the Theorem 1.3 to establish the global well-posedness of. In the Appendix A and B, we provide
necessary supplements and useful tools in this paper.

2. PRELIMINARIES AND BOOTSTRAP ARGUMENT

In what follows, we provide some notations and auxiliary results, which is helpful for the proof of this
paper. In addition, we set up the bootstrap argument in this section. The details are as follows.
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2.1. Notations and auxiliary results. Throughout the paper, we use the standard notations to denote func-
tion spaces and use C' to denote a generic constant which may vary from line to line. Given quantities X, Y,
if there exists a positive constant C' such that X < C'Y, we write X < Y. If there exist positive constants
C1,Cy such that C1Y < X < (hY, we write X ~ Y.

In this paper, we study the enhanced dissipation of shear flow by resolvent estimate, where the fractional
Laplacian is considered. Therefore, we need to introduce some the operator theory. Let (X, - ||) be a
complex Hilbert space and let H be a closed linear operator in X with domain D(H). H is m-accretive if
the left open half-plane is contained in the resolvent set with

(H+ M) eBX), |[[(H+A)"| < ®eA)™, Rex >0,

where B(X') denotes the set of bounded linear operators on X’ with operator norm || - || and I is the identity
operator.

We denote et

is a semigroup with —H as generator and define pseudospectral bound
U(H)=inf{||(H —i\)f| : f € D(H),\ € R,||f]| =1} (2.1)
The following result is the Gearchart-Priiss type theorem for m-accretive operators, see [43].
Lemma 2.1. Let H be an m-accretive operator in a Hilbert space X. Then for any t > 0, we have
He_tHHX—>X < e tVH)+T/2.
where VU (H) is defined in (2.1).

The fractional Laplacian in (1.2) is a nonlocal operator, it also has the following kernel representation on

T, see [10]
A% (@) = Coa Y- PV. [ @) =) g, 22)

Pt Td [T —y 4 k|dte

where A = (—A)Y/2,a € (0,2),z,y € T¢ ;Cq,q > 0. In this paper, we denote A;, A, as one dimension
fractional Laplacian operator. Next, we present some lemmas related to the fractional Laplacian, which is
helpful in this paper, the details are as follows.

Lemma 2.2 ([17]). Let o € [0,2], for any f,g € C*(T%), one has

/Ao‘f da:_/f YA%g(

Lemma 2.3 (Nonlinear maximum principle [9,22,38]). Let o € (0,2), f € C>®(T) and denote by T the
point such that

f(@) = max f(x),

xeTd
and f(T) > 0. Then for any 1 < p < oo, we have

f(—)l-i-pa/d

A f(@) > Cla,d,p)
Vil

. or f(@) <Cdp)|f| L

Lemma 2.4 (Kato-Ponce inequality [21]). Let s > 0,p € (1,00), for any f,g € C*°(Q2), one has
1A G o S Al 19l o2 + 189 s 15 ] o
where 1 < p; < 00 (i =1,2,3,4), 1/p=1/p1 +1/py = 1/p3 + 1/pa.
Lemma 2.5 ([41]). Let o € (0,1), for any f € C*°(T%) and € > 0, one has
1A fll oo S €7V Fllzoe + 7| fll o
Lemma 2.6. Let f,g € C™(TY) satisfy f(O)ﬁ(O) = 0, then for any s € [0, 2], one has

f(:n)g(:n)d:nz/ A7 f(z)ANg(x)dx, (2.3)
Td Td
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[, f@at@yts

where f and g are the Fourier transform.

and
S A F 2[4 e 2.4)

Remark 2.7. In Lemma 2.6, combining f(O)ﬁ(O) = 0, one has

D)de = 30 FwaH) = 0 FRIRGE) = [ A7 F@)ng(w)ds

kezd k#0
and the (2.4) was established in [28].

In this paper, we only need to establish global L? estimate of (1.12), the main reason is that there are the
following local existence and regularity criterion.

Proposition 2.8. Let a € [3/2,2) and initial data ng > 0,ng € H(T?) N LY(T?),v > 1 + q, the shear
flow u(y) = cosy is Kolmogorov flow, there exists a time T, = T (ng, a,v) > 0 such that the nonnegative
solution of (1.12)

n(t,z,y) € C([0,T.], H'(T?) N L' (T?)).

Moreover, if for a given T, the solution of (1.12) verifies the following bound

Jig, sup [[n(r, )l 2 < oo,

then the solution can be extended up to time T + 6 for sufficiently small § > 0. If ng € L*(T?), the solution
of (1.12) is L conservation, namely,
M = [l = [Ino]| -

Remark 2.9. The Proposition 2.8 tell us that we only need to have certain control of spatial L? norm of
the solution for establishing the classical solution of equation (1.12). The proofs of local existence and L'
conservation is standard method, the proof of regularity criterion can refer to [28,29].

2.2. Bootstrap argument. We know that the enhanced dissipation of shear flow occurs in nonzero mode.
Similar to [2, 19], denote

nd = Pon, ny = Pun,
where the I{) and P are defined in (1.9), the solution of equation (1.12) is decomposed into z-independent
part and z-dependent part. Since

(_A)a/2n _ Z (k2 + 12)04/26(]{:7 l)eik:v+ily7
(k,1)ez?
and combining the definition of Py and P in (1.9), one gets
Po((—A)*2n) = (=0y,)**n°, Pu((—A)*?n) = (—A)*/?n.
Then we obtain the one dimensional zero mode equation
9n® + 1/(—8yy)°‘/2 Y4+ vd y(n OBl(nO)) +v (V- (n¢B2(n¢)))0 =0, (2.5)
and the two dimensional nonzero mode equation

Oz +u(y)Oyns + V(=AY ?ny +vVn® - Bs(n.z) + vdyn.Bi(n°)
+ v (V- (ngBa(ng))), — vn’ny —vnyg(n® —7) =0, 20

where
B1(n?) = 0,(—0y,) ' (n° = W), Ba(ng) =V(-A) 'n,. (2.7)

By local estimate (see Lemma A.3), we know that there exists

lo = t(”Oa «, V) = 0(1/1/),
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such that for any 0 < ¢ < ¢, one has
72 = 1001172 + Inzllz2 < 4llnoll 7,
where the definition of ¢y can be seen in (A.10).

In this paper, we establish the global well-posedness based on the standard bootstrap argument. We
denote
so =to/2, (2.8)
then we list the bootstrap assumptions as below.
Assumption 2.10. Let a € [3/2,2) and n be the solution of (2.6) with initial data n, the positive

constant Cx be determined by the proof. Assume that the u(y) = cosy is Kolmogorov flow, define
T* = T(ng, a,v) > 0 to be the maximum time such that following assumptions hold,

(A-1) Nonzero mode L2H/? estimate: for any s < s <t <T*
t
‘|
S
(A-2) Nonzero mode enhanced dissipation estimate: for any sg <t < T™*

Inz(@)]]7 < 4C ™20 ng [,
where A, , is defined in (1.10) and s is defined in (2.8).

‘Aa/zn;ﬁH; dr < 16Cze o570 |Ing |7,

We aim to show 1™ = oo, this is achieved through the bootstrap argument. To be specific, we will prove
the following refined estimates hold on [sg, 7] by choosing proper v.

Proposition 2.11. Let o € [3/2,2) and ny be the solution of (2.6) with initial data ny and satisfy the
Assumption 2.10. Then there exist vy = v(ng, «), such that v < vy, one has

(P-1) Nonzero mode L2H/? estimate: forany so < s <t <T*

t
‘]

S
(P-2) Nonzero mode enhanced dissipation estimate: for any so <t <T*

Ina(®22 < 20 st g 2,
where A\, o is defined in (1.10) and s is defined in (2.8).

P e I

Remark 2.12. In the proof of Proposition 2.11, the estimate of term V(‘)yn;,gBl(nO) to equation (2.6) is
difficult. We need to obtain the enhanced dissipation decay this term by Assumption 2.10, the 9,n contains
a first-order derivative, while the A%/ 27175 only has «/2-order derivative in Assumption 2.10, which from
the fractional Laplacian. This is a technical obstacle in the case of o < 2. In this paper, we develop some
new technical to overcome the difficult of the low regularity for fractional Laplacian, the details can see
Appendix A.2.

Remark 2.13. Combining Assumption 2.10 and Proposition 2.11, we know that the n« has enhanced dis-
sipation after time sg, the main reason is that we need the following estimate in the proof

o

see (4.44), and it holds in the case of s > sq. I believe that this is technical.

5 71/2
AOC/2S7_OP75H dT()> dT] S (t)\u,a + 1)1/2 ’

Remark 2.14. We know that the time 7 in Assumption 2.10 is large than so + 8, ! by local estimate, the
details can see Lemma A.3. The L L2 estimate of n°, L°°L> estimate of n and L>®H/? estimate of n°
can be obtained by the Assumption 2.10, see Section 4. Combining the Assumption 2.10 and Proposition
2.11, we imply that the T* is infinity by bootstrap argument and the global L? estimate of n is established.
Based on the local solution and uniform L? estimate of n, the global classical solution of equation (1.12)
can be established by Proposition 2.8, we can finish the proof of Theorem 1.3. In this paper, the Proposition
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2.11 is the most important and we can prove it by enhanced dissipation of shear flow, the details of proof
can be seen in Section 4.

3. ENHANCED DISSIPATION OF SHEAR FLOW IN FRACTIONAL DIFFUSION

In this section, we study the enhanced dissipation of shear flow in (1.6) and finish the proof of Theorem
1.1. Here we consider the equation (1.7) and operator £, , in (1.8). In addition, the shear flow u(y) satisfies
the assumption in Theorem 1.1, the specific details are as follows

Assumption 3.1. Let u(y) € C°°(T), there exist constants m, N € N, ¢; > 0, dg > 0 with the property
that, for any A € R and § € (0, dp), there exist finitely many points y1, ...y, € T with n < N, such that

lu(y) = Al > 6™,  V]y—y| =6, Vje{l,...n}

Next,we prove the Theorem 1.1. If g(¢, x, y) is the solution of equation (1.7), taking the Fourier transform
in z, it is as follows

at.9) = 5= [ otz e, k40, G
™JT
then gx (¢, y) satisfy
Oigk + Luarge =0, gr(0,y) = gox(v), (3.2)
and
Loas = vk = 0y)*" + iku(y), (3.3)

where o € (0,2),k # 0. We study the semigroup with the operator —L,, , ;; as generator and establish a
lower bound of W (L, , 1), which is defined by (2.1) and (3.3), it is as follows

U(Lyak) =1nf{|[(Lyar —IN)f| : f € D(Lyar) X €ER,|f] =1} (3.4)
We definite the operator (k2 — 9,,,)*/2 by Fourier series that

(8 = 0)"f () = 302 + 2R, 1) = o /T Fy)e My,

€T
Since

L 7 9va/2 2\a/2 2 | 2\/2 2\a/2 2\a/2
5((l) + (k%) )g(k +12) §2((l) + (K?) ) (3.5)
one get by (3.5) and Fourier series that

(k* — ny)o‘/2f(y) = Z(k2 + 122 f(1)et

lEZ
- Z k‘2 a/2f zly + Z a/2f zly (3.6)
€7 leZ

= k| f(y) + (_ayy)a/zf(y)-
Similar to [43], we know that for any f € D(L, o) = H*(T), we deduce by (3.5) and (3.6) that

Re(Cyanfs f) = Re (v(k = 0, f + iku(y)f. f)
~ Re <V’k\af + V(_ayy)a/2f7 f>
= vlkl?[| £l 7 + v]IA572F 7 > 0,
and )
ReMIIf 172 < 5 (k71 + VA5 (72 + ReN) 7],

< Re<£u,a,kfa f> + Re</\lf7 f>

= Re((Lyap + A, f)

<[ Lo +ADF | ]
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therefore, the £, 1 is m-accretive operator. Based on the Assumption 3.1, we have the following Gearchart-
Priiss type theorem and the lower bound of (L, , 1) in (3.4).
Lemma 3.2. Let L, ;. be an m-accretive operator in (3.3), then one has

He_tﬁ"v“’k < e ¥ (Lyak)F7/2 3.7)

HL2—>L2 —

If the shear flow u(y) satisfy the Assumption 3.1, k # 0 and v|k|™' < 1. Then there exists a positive
constant €y independent of v and k, such that

U(Lyap) > equimta |k|mta, (3.8)
where U (L, 1) is defined in (3.4) and o € (0, 2)

Proof. Since L, ., is an m-accretive operator, the estimate of (3.7) is trivial by Lemma 2.1. Here we only
need to prove (3.8). For any fixed A € R, define

Luan = Luap — N = vk = 8, +ik (uly) = 1) | (3.9)
where A = A /k. Taking the set as follows
E={yeT:|ly—yj| =46 Vje{l,...,n}}, (3.10)
and the y; satisfy the Assumption 3.1. Since u(y) is a continuous function, we define the function
x:T —[-1,1]
as a smooth approximation of sign (u(y) — X) and there exists a constant co > 0, such that for any y € T,
one has
W) < e, IX'(y)] < 2072, (3.11)
and
X(y) (u(y) - A) > 0. (3.12)
In addition, for any y € E, one has
x(w) (uly) = X) = |uly) = A (3.13)
For f € D(/jua,k) and || f||z2 = 1, we obtain by the definition of E,,,(Lk in (3.9) that
(Coantoxt) =v (6 = 0,2 xf ) + ik { (u(y) = X) £,xF), (3.14)

and consider the imaginary part of (3.14), one has
i (Lyanfoxf ) = vim (k2 = 0,,) " f.xf) +k ((uly) = X) £.xS ) -
Since u(y) satisfy the Assumption 3.1, one has
‘u(y) - X‘ >cd", yek,
then we deduce by (3.12) and (3.13) that

(st =3) £.xf) = [ futo) =N 1Py = a5 [ 11l an (3.15)
Thus we know ((u(y) — X) f,xf) is nonnegative, and we can easily get
61 ( (utw) = X) £oxf ) = i { (ww) = X) £xf)
= ‘Im <£~,,,a7kf, Xf> —vim <(k:2 — ayy)a/z 1, Xf>‘ .
Combining (|k|* f, x f) is real and (3.6), we have

T ( (k2 = 9y,) ™" xS ) ~ T ((=0,)*2f,xf )

(3.16)
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By Cauchy-Schwartz inequality and Lemma 2.2, one has

(=02 .x8)| = [(ag/2 1,852 (0|
y O L

and by Lemma 2.4 and 2.5, we obtain
x| s sy 1Al + il

S 625_a/2|’fHL2 + ‘ y

Then we imply from (3.16) that
kI ( (uly) = X) £ixF) = (Im< vk X ) = vIm (82 = 8,,)°" .xf )|

(3.17)
N +u o —a/2
Combining (3.15) and (3.17), we obtain
2 —1l¢—m Y
/Elf(y)l dy < c;7o <<U(y) - A) f. xf>
T +v[ag <l ],

Since
(Coants £)=v (K2 =0, F.f) +ik () = VS, f )
and combining (3.6) and Lemma 2.2, one gets
Re(Lyanf S ) = v (82 = 0)"2 1, ) ~ vkl | ]2+ 5
Then we deduce by Cauchy-Schwartz inequality that

] 5 (e B 1) 57

1/2

L, HfH , (3.18)

and one gets

/lf )2 dy < Cei o k| 1<( Loanf||, + e 267 || L f \\f||3/2>. (3.19)
Since
C'cl 15— k|~ Loy 1/265- a/2‘ HfH3/2
<7 HfHL2 +C'201 25me a|k7| CzV u,a,kf 12
there exists a constant C' = C'(cq1, ¢2), such that the (3.19) can be written as
A S—m|— - —2m—a) || 1
/E\ﬂy)\?dyscw L I Z iy | PP +4llfl G20

Denoted E° as the complement of £, then |E€| < 2N¢ by the definition of E in (3.10). For any « € (0, 2),
letp=4/(2 —a),q = 4/a, one has

2 /2
[ 1wl dy,s</Eclqdy> ([ 11 |pdy> oY 1],

1/2

1Al S 171122

and
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Then we deduce by (3.18) that
[ 1Ry S @02 g

)a/z —1/2 Hﬁ

Hst/z (3.21)

S (2N
1
4

IN

1172 + ovayv |2,

Lo Il e
Combining (3.20) and (3.21), we have
£, <2 (55—m|k|—1 + C|k|"2v6~2m= 4 C(N§)® —1> Hz

oo 1l (322
Taking ¢ small enough and
6 = c3 (v/ Ik 7
where ¢3 > 0 is a small constant. Then there exists a constant Cy = C'(¢y, ¢, ¢3, «, m, N'), such that
Co k|t + Clk| 2062~ 4 C(N§)*v~ < Cov~ mia k| mra.
Therefore, we can imply by (3.22) that
qu,a,kaLQ > cqumia [k|ma || f]] o,
where €y = 1/2C). Since f is arbitrary, we deduce by the definition of W (L, , 1) in (3.4) that
U(Lyak) 2 covmia k] mia.

This completes the proof of Lemma 3.2. U

Next, we give the proof of Theorem 1.1 based on the Lemma 3.2.

The proof of Theorem 1.1. For any h(x,y) € L?(T?), we consider the equation (1.7) with initial data
go(x,y) = Pxh(x,y), then the solution can be written as

glt.z,y) = e rogy = e Ere Py,

and we can easily get Pog = 0. Here the operator L, , is defined in (1.8), the operator %) and P, are
defined in (1.9). Through the Fourier series, one has

gt,x,y) = e FraPrh =" gi(t,y)e™, (3.23)
k0
where g (t,y) is defined in (3.1) and is the solution of equation (3.2). Then we have
gk(tuy) =e€ —iL Y kgo k>
and the operator £, , 1, is defined in (3.3). By Lemma 3.2, one gets

< e_)‘u,a,kt+7r/2,

He_wm’k lL2yre <

where A\, o 1 = eoymiw |k m+a . Then we deduce by Plancherel equality and (3.23) that

_ _ 2
[l = lle™ e Peh[7o = 3" llonllz2 = D lle™“* o 12
k0 k0

<D e ekl go |7 < e Pk S oo e
= k0

< Dt g2, < B2,
Since A is arbitrary, we have
He—tﬁy,a P, HL2—>L2 < e MaltT/2,

This completes the proof of Theorem 1.1. U
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4. SUPPRESSION OF BLOW-UP AND GLOBAL L? ESTIMATE

In this section, we will prove the Theorem 1.3. We know from the Remark 2.14 that we only need to
show the Proposition 2.11. Some estimates are used in the proof. First, we give the following lemma.

Lemma 4.1 (L>°L? estimate of n°). Let a € [3/2,2), the nY and n- are the solutions of (2.5) and (2.6)
with initial data ng. If n satisfy the Assumption 2.10, then there exist vg = v(ng, ) and a positive constant
By = B(||no||p2, M, Cx, ), if v < v, we have

Hn < Bl.

OHLOO (0,7%;L2)

Proof. Let us multiply both sides of (2.5) by n and integrate it over T, one has

thHnOHL2+VHAa/2 0 —|—1//8 n"By(n ))nody+l//(V'(’I’L?QBQ(TL#)))O’I’LOdy:O. “4.1)
T

Using integral by part, Lemma A.1 and energy estimate, one has

By = 5 [ 0,Bitn dy1 < 0,810
and
(0,8 ) a2 < 05 agr2nd|7, < & [ag2n, + 02
Then the third term of (4.1) is estimated as
V/Tay(nOBl(nO))nOdy‘ < HAg/%OHi ey Pl 4.2)

Since
1
[ (7 00Ba(ma)) wdy = 5 [ 9 Bafn )y
T T JT2
1
= —/ 9y (n,0,V 1 By(n,))ndzdy,
™ JT2

where V~1 = (9,1 , Oy 1), we deduce by Lemma 2.4 and 2.6 that

)

L2

1 _ —a _
o / 0y (120, 1-B2<n¢>>n°dxdy'sHA 20, (n 20,9 " Ba(n)| |
™ JT2 L2

Ag‘/QnO‘

and
[a"0 040,97 Batma)|, 5 A0,V Batr)

Saerzn| 18,97 Bon )l + gl

Al=e/2g, 1. BQ(W)HLW

Combining o > 3/2 and Lemma A.1, one has
e a3

a1, el BMH 1T B B 5 S

sl

Isll e < A0 llmel 22,
and
0,97 Bt % 0,Ban )]s < ] @3)
Therefore, we can easily get
oot |, s
2 o ] s s
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If « > 3/2, we imply
3/a—1

HA“‘”"#H Il a2
28 el e lpoon [
—S‘AQ/Q i +128C HAQ/QWH +Clngl 57
and
‘Aa/2 Hn;AH2 /e Aa/2 0‘L2
a/2,.0 2 a2 4-2/a
<2 HA n HL +c|ja n;ﬁH 52 4.5)
(03 1 a
=3 ‘A 8 0‘ 10, 2 /2”¢H +Cllnel 57
Then the fourth term of (4.1) is estimated as
) 0.0 /2,0 v H o2 ‘2
V/T(v (nBa(ns))n dy‘ HA ‘ +—64C’¢ AP o
2
4 Cvlng |5+ ool 5
Combining (4.1), (4.2) and (4.6), one has
d 2 o 2 345ty
lin s v lag2ne |, <cvlnt izt + o Aot o
+Orlng| 55+ vl
By Nash inequality and ||n°||;,1 < C'M, one has
oz ol — "
g 2= oM
Then we have
1
v||n0||;, 21 20—1— N
0|2, < JL%%f—@OH = o) "
2
b g A2, + Ol + g
Define
t
66)= [ ga [ na] ., + CVlnal 2T + Clng - ar
and for any ¢ € [0, 7], we deduce by Assumption 2.10, (A.16), (A.17) and v is small enough that
%0 v Cl{ @
G < [ w@ﬁ Png|[), 4 Ovllngl 5T+ Ovlng | ar
(4.9)

t
+/ 320, HAQ/QWH +C”H”¢HL21 +C’/Uﬂ¢”“ Sar
< Ko|[no|[72

where Ko = K (||no|| 2, a, Cx, M). Then we obtain from (4.8) that

d v||n® e 20—1— 51—
o (Il - o) < - (o e -oa). )
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Combining (4.9) and (4.10), we imply that
a—1

2
In?)17 < (OM>* 4 [noll7.) = + (Ko + D)|moll7. 2 B7.

This completes the proof of Lemma 4.1. O

Remark 4.2. In the (4.4), we used the Young’s inequality, then
6/a—2<2=a>3/2
And for v = 3/2, the (4.4) can be written as

3/a—1
e
and by Assumption 2.10 and (A.17), one has

t
CV/‘
0
s0
SC’I// ‘
0

< (a2 +7) ool + 4ol [ [5on or

3-3/a 1‘

a 2 2
; + Ol 2 | gl

Aa/2 0‘

],

2
T I e

2 t 2
AP | o + 0 [ a2 ns] ot
S0

< O (|Inol| =" +7) [[noll s +64CCE ..

Thus, we can also obtain the estimate of ||[n°||;2. In this paper, we use energy inequality in the case of
a > 3/2, which will not be pointed out in later sections.

Remark 4.3. In the (4.9), for any ¢ € [0, sg], we also have

S0
<
) _/0 3204

To improve the Assumptions 2.10, we are left to complete the L°° L°° estimate of n. This will be achieved
by the nonlinear maximum principle, see Lemma 2.3.

2
nall, + Ol Cvlna < Koo

Lemma 4.4 (L°° L estimate of n). Let o € [3/2,2), the n, nY and n are the solutions of (1.12), (2.5) and
(2.6) with initial data ny. If nx satisfy the Assumption 2.10, then there exist vy = v(ng, ) and a positive
constant By = B(||no|| 2, ||nol| Lo, B1, M, Cx, ), if v < v, we have

HnHLw(O,T*;Lw) < B2-

Proof. Define

E(t) = n(t,T,7;) = sup n(t,z,y).
(z,y)€T?2

For any fixed ¢ > 0, using the vanishing of a derivation at the point of maximum, we can observe that

d
g(t)7 u(y)awn(tjtagt) =0,

on(t, 7, 7,) = p

we obtain from (1.3) that
V- (nB(n))(t, T, 7,) = —E2(t) + TE(t),

and we denote
(=2)Pn(t )|,y o = (—A)E®),

Then combining (1.12), we deduce that the £ = £(t) follows

%5 + u(=A)2E — vE? 4+ vhE = 0. (4.11)

Combining Lemma 2.3, Assumption 2.10 and Lemma 4.1, we know that £(t) satisfies

1) S [Inll 2 S (4C) 2 [[moll 2 + 2l|mo| - + By = K, (4.12)
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or £(t) satisfies

(—A)12E(0) > Cla)y i > Cla)
E2E(t) > Oa — > C(a)—7- (4.13)
iy Kt
Combining (4.11) and (4.13), one has
d 14+« 14+«
€< —vC(o) o +vE% —vhE < —vC(a) o + vE2 (4.14)
Then we deduce by « > 3/2 and (4.14) that
o 1
t) < [[nof| oo + BT Cla) 5T, 4.15)
Combining the definition of £(%), (4.12) and (4.15), we have
|2 oo < lInollz + KT C(a) ™77 + Ky 2 By,
This completes the proof of Lemma 4.4. O

Next, we consider the L F/*~1 estimate of n° in the following lemma.

Lemma 4.5 (L‘X’H a—1 estimate of n0). Let o € [3/2,2), the n® and n- are the solutions of (2.5) and
(2.6) with initial data ny. If nx satisfy the Assumption 2.10, then there exist vy = v(ng, ) and a positive
constant By = B(||AS ™ 'ng| 12, [nol| 12, B1, B2, Ct, @), if v < v, we have

HAS 1nOHLoo(o,T*;LZ) < Bs.

Proof. Let f = o — 1 and applying Ag to (2.5), one gets
8tABnO +v(—0y )O‘/zABnO +v0, AB(nOBl(nO)) + I/AB (V- (nBa(ny)))’ = 0. (4.16)
Multlplylng both sides of (4.16) by Ag n° and integrate over T, to obtain

il
L2

2
th -|-VHAB+Q/2 0 y +y/a A2 (n%By (n®)) AP nldy
4.17)

V/TAg (V- (n;,,ng(n?g)))o Agnody = 0.

We deduce by Lemma 2.4 and 2.6 that

/ ayAgmoBl(no))Agnody' [o,a572/2000m, )|, [Jageor2nt]| |
T
< HAEM(nOBl(nO))‘ B A5+a/2no‘ "
and
|as72oBum))| , s 5200, B + 1] 457282 00| -
Combining energy estimate and the definition of B1(n") in (2.7), one has
o 1/2 11 /2 _ 1/2 1/2
[a572B1n)|| , < [Ba®) |2 A5 Ol < [Bae®) 2 450
and 28/« 1-28/«a
] o o
.2 1,2 1,2
Thus, we deduce by Lemma 4.1, 4.4 and A.1 that
572 IBa i [5+2/207)
28/« o 2—28/«
S LA v W P

1 2 2
S AB+a/2,0 B,,0
<g|[agrerent] .+ e g,
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and

[l || A572B1 ) |
1/2
2

A5+a/2 n0

L2

1/2
Sl e [In° 2

L2
B4+a/2. 0 8.0
<g o], + xe g

L2’
where Ky = K(By,«), K3 = K(Bj, By). Then the third term of (4.17) is estimated as

/8 Aﬁ 0B1 AB Ody| < “A5+a/2n0“i2 + vKs HAgnOH; + vK3 HAgnon . (4.18)

By Lemma 2.2, 2.4 and 2.6, one gets

/AB -~ (n+Ba( n7g)))0 Agnody'

= |om |, Q20 v (”¢))A§ﬁ"0d$dy‘
< Aa/2 16y(n¢6yv_1'32(n¢))HL2‘A§B+l_a/2n0 12
< ‘Aa/2(n¢8yv_1-32("75)) L |[ATER0
and
hetaie B <o, 15 Bl
+ el oo ‘ A0,V Ba(ny)||
Combining

10,V Ba(ng)[| oo S [0l o [t 1 S It ]] e
and Lemma A.1, one has

1—a/2 a/2

[0,B2(n. )]

AP0, Ba(n)|| | S 110,97 Batng) 1

< 10,9 Bl )[[127% 0,Botin) 77

< llmse 12527

Then we can easily get

HAO‘/Q(n#(?yV_l . Bg(n¢))HL2 HABJra/znO

L2

sz sl

< agrorat] L+

A5+a/2 n0

1—a/2 a/2 o
P s34 || Age/2n0

ot Il .

2 «
AP+ el
where Ky = K (Bz). Therefore, the fourth term of (4.17) is estimated as

V| AB+a/2 OH ‘
< 4HAy n L2+VK4

2
/AB n;,ng n¢)))0 Agnody Aa/2n¢HL2 + Hn;,gH;) . (4.19)

Combining (4.17), (4.18) and (4.19), one has

d 2
el B,,0
dt HAyn L2

sofperi]

2
B0 B,,0
<ot o

L2

, (4.20)
o
st |+ HnngB) ,

+ vKs <(
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where K5 = Ky + K3 + K. Since |n?|| ;2 < By, we imply

802 30-2
gt < I 0 PP [ Pl
T ol OB

Then the (4.20) can be written as

B, 02 1
d 2 Ayn 1+ _a_ _a_ -1
lagad], < L2l (g | _ omaE® - oraE a3
dt 1Y llr2 B! Yollne Yollre
1 4.21)
2
2 «
ks (a2}, + sl
Define
! /2 2 a
a0 =vks | |A2ns| |, + lInll5dr, (4.22)
and by Assumption 2.10, (A.16), (A.17) and v is small, one has
50 2 t 2
Gty < v [ A0+ sl e + v [+ linsloae
=5 2
< Ks ([[nof| 727 + ) [Ino| 72 + £5||mo][
2 1
41604 K o] 2 + 2Azha™ K5 (4% 2 o
25 2
< Ks (Inoll557 + M +32C.) no s + Kl
2
< Ks|[nol[ 2 + Ks|[no]| 2,
where K¢ = K (||no|| 2, a, Cx, M, K5). Combining (4.21) and (4.22), we obtain
d 2
ol B0 _
dt (HAy" ‘L2 G(t)>
|AgnC]|%, 14 L o o 1
_ g Ls 5.0 a—1 _ a—1 a—1 5,0
= ep <‘Ay" P i ‘L> (423)
ABno 2 1+ o _a_ -1
5_7” i 72 <‘A5n°( “ - G(t) - CKsBf T~ CK3BfT Agno( >
C«Blaj L2 L2
If
g 0|t = =21 || A8,0[| 7
|agne| T =) — CRsBIT = CHBET A = 0,
then we deduce by (4.23) that
2 2
8,0 B8 2 a
An HL < HAynOHL2 + Ko|no|, + Ks||no|% (4.24)
If
g oot = <1 || A8,0[| 7
|agne| 7 =G - CRsBrT - e BT A <o, (4.25)
we imply that there exist a positive constant
K; = K(a,Bl,Kg,,C?g, Hn()HLz,M) < 00,
such that
2
HAgnOH < K. (4.26)
L2

Combining (4.24) and (4.26), we have

2 2
|agne], < |adno , + CKollmoll; + CRllnollf + K7 2 B3,
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This completes the proof of Lemma 4.5. O
Finally, we prove the Proposition 2.11 by the enhanced dissipation of shear flow.

The proof of Proposition 2.11. We will prove (P-1) and (P-2) in the Proposition 2.11 respectively.

(1) Nonzero mode L>H®/? estimate of n-. Let us multiply both sides of (2.6) by n.. and integrate over T?,
we obtain

Aa/%#H .y / F(n, n2)npdady = 0, 4.27)

rsll7 +v | 5

ord

where
F(n® ny) =Vn® Ba(ng) + 9ynyBi(n°)

+ (V- (n;,ng(n;ﬁ)))# —n%ny —ny(n® —n),
and B1(n”) and Bo(n.) are defined in (2.7). By Lemma 2.6, we obtain

/2 vnl - Bg(n;ﬁ)n?sdmdy‘ = ‘/2 9,n°9,v1. Bg(n;ﬁ)n?sdmdy‘
T T

<] e s matnan )

(4.28)

Combining energy estimate Lemma 2.4 and A.1, one has

|41 (8,971 Ban ny)

A8, v -B2(n¢)‘ y

2 S el

0,97 Ba(n) o 4

< nglze + s 222
and
HAgn()Hﬁ HAI—B (ayv—l . B2(n¢)n¢)‘ L
S ||Agn) L nally + A8 ol
s[ag=c].. I e e 5 57 o2
g [avznal,w o (aene 7+ Jaene] 27 el

Thus, we have

a1 + HABnO
L2

_2a
z‘;°> [ns|?,. 429

Vo 2
. vnl - Bg(n;,g)n?gda:dy‘ < 3 HA /2n7éHL2 +Cv (HABnO

By Lemma A.1, one gets

OynB1(n")n dxdy| =

1%
5 [ 0Bty S gl e 430
T2 T2

Combining the definition of P in (1.9) and Lemma A.1, one has

V/m (V- (n2Bs(n))) n;ﬁd:ﬂdy‘ _

1// V- (’I’L#BQ(TL;&))TL;AdZBdK/‘
T2

v

-/ V. Bg(n;,,g)nidwdy‘ 31)

2 Jr2

SR P g

And we can easily get

l// —n%(ny)? — (nz)?*(n® —ﬁ)da:dy' < VHnOHOOHn#HiT (4.32)
T2
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Thus, we obtain from (4.29)-(4.32) that

v / F(n®, n;,g)n#da:dy'
T2

(4.33)
<5 Jaerona [+ 0w (et o] 2 )
Combining (4.27), (4.33), Lemma 4.4 and 4.5, one has
d 2 |’ <ok 2 434
Ll g2+ v|ar2ns |, < veliog @34
where
Kg = K(a,Bg,Bg) < 0.
Then by time integral in (4.34) from s to ¢, the v is small and Assumption 2.10, one gets
2 ! /2 2
Instolize+v [ |ar2np)],ar
t
<AC vyl [ e e 4 (o)
S
§4C¢CVK8)\;7%¥€_)‘”’O‘(S_SO) HnoHiQ + 40756_)‘”’0‘(8_80) HnOHiZ
U] K
Thus, we have
t 2
v / A7) dr < 8Cpem e =0 g | (4.35)
(2) Nonzero mode L™ L? estimate of n. Denote
S = e_tL”v“,
where the L, , is defined in (1.11). Combining Duhamel’s principle, (2.6) and (4.28), one has
t+s
nx(t +s) = Smnx(s) —v Sits—rF(n° ny)dr.
S
Then we have
s+
I+ ) <N+ v [ 1900 Batp)a + (7 (ruBatma), |,
S
" (4.36)
0]+ s 00 =)+ Co [ [ Serae (OB e
By Corollary 1.2, one gets
|Sins(s)|| 2 < €2 |Ins(s)|| Lo (4.37)

Combining Lemma A.1 and energy estimate, one has

190 Ba(ne)|| 1o < 10,20 o e o S 185 o |t o + 1850 HAa/2
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then we deduce by Assumption 3.1 and Lemma A.9 that
S+
v [ Ban) |
S

s+t 0 s+t 0
o [ 10 alinall or + [ o]
1/2

t+s ) 1/2 t+s )
(v oalar) (v [ sl 439
t+s 9 1/2 t+s 2 1/2
+ <u/ HaynOHLZdT> <I// n;ﬁHLz dr)

5 (V6/7t) 1/2 ((}\;(1)61/)1/2 + 4> C;/2e_>\u,a(5_50)/2HnoHL2

Aa/2n7éHL2 dr

By Lemma A.1 and energy estimate, one has

|7 (nsBa(n ).,

12 S IVl alln ]| o+ llnz | pee ] 2

Aa/2

SVl ellngllz + [Vl - 1o TPl ool ] 2

and we deduce by Assumption 3.1, Lemma 4.4 and A.5 that

t+s tts ) 1/2 tts )
o [ Il < (v [ 9 aar) (v [ sl

< 6/7 )1/2 Arki) 2 O 2 Awalomso)r2

s (v [ pwniar) (o [

(574) " 12 s

1/2

o]l -

A2 N H; d7'> "

t+s
v [ 19nall
S

A

ol 2

[l (o[ i) (o )

< Bov (/\ )1/201/2 —Av,a(s—so /2Hn0H

and

Then we have

s+t
v [ Bt ar

(4.39)
< ((vﬁ/?t)l/2 (i) (774) ™ 4 Bavt L) 2) Cf2e o0 2 g | .
Combining Assumption 2.10 and Lemma 4.4, one has
s+t 0 0 s+t 0
V/ Hn n?’ﬁHL2 + Hn7$(n _ﬂ)HL2dT S V/ Hn HLO"Hn#HLZdT (4 40)

< Bo);, y01/2 —Xv.a(s—so /2HnOH
Next, we consider the last term of the right-hand side of (4.36). Since

Strs—r (OynzBi(n”)) = Sprs-r0y (n2B1(n°)) = Stysr (n20,B1(n"))
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one has

t+s
v [ S 0B (n) |

t+s t+
[ Semrty (1B ) st [ S 00, BA0) [
S S
By Lemma B.2, we have

Sts—rOy (nzB1(n")) (1) = — A28y o A28, (nyBy(n")) (1)

t+s L
_/ o~ (t+s—0) u,aRn#Bl(nO)(TO)dTOv
-
where

R Bim0) = Ca ZPV/IC (y, AY*710,S,, (Al e 285 (nyBi(n )))dg. (4.41)
kEZ

Then we have

|St45—r0y (n2B1(n%)) (7)]| 1> < HAS/2515+5—TA;°‘/233; (nzB1(n?)) (7)

t+s
o
By Lemma B.1, one has
| 857281005720, (0B (") (7)]| | S |[A5/2 S0

L2
(4.42)

Rn¢B1(n0)(7—0)HL2 dro.

)

A2 (1B (n) (7)

L2
we deduce by Lemma A.1 that

|37 (n 1) () By | + il

2/a—1

)

)

< Il 257 | A2

%112 + el ol 1] o

Since

S e

t+s 1/2
< <y / dT> <y / e[
t+s 9 1-1/a t+s 2 1/a—1/2
<B <I// H'I’L#Hde7—> (V/ ‘AO‘/Zn#HH d7'>

5(]/)\;7 )1 l/aB 01/2 —Av,a(s—s0 /2HnOHL27
t+s
s
’ 1/2

t+s 2 1/2 t+s 9 /
<B <y/ dT> <y/ Hn;ﬁHLQdT)

S YEBICY 2 e =02 g |,

257 | e

4)a—2 1/2
AO‘/2 / dT)

/2
A St—l—s—'r 12

and

It 20| o

Aa/28t+s—7'

we have

dr

L2

s+t
v / HAZ‘/2St+8_TA‘“/28y (nxB1(n%) ()

< <(V)\;é)1—1/a + (l/)\ )1/2) B, 01/2 —Av,a(s—s0 /2HnOH

(4.43)
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By Holder’s inequality and (4.41), we have

Rn¢B1 (n9) (7-0)

1/2
S <C ZPV/ K2(y, @“)dydy>

keZ

' </11‘2 {Agﬂ—laxgm (Ai_a/ 2Ay:a/ 28@ (nyéBl(nO)))rdjjdx)

< [As2 0.8, (A5 205 205 (n2B1(n") )

and combining lemma 2.4 and A.1, one has

1/2

L2

< [[A2/28n, P |42 (nsBi ) | 1

14272 (n2B1(n)) | 1o < A% s 2B (n”)| oo + [[r]] 2 [|4% B ()|

< Hn H3 4/04‘Aa/2 4/a=2

%11 2 + [l 2 I -

Since s > sg, we have

/t+8/ Aa/zs P#H Hn¢H3 4/

t+s t+s 2 1/2 t+s 6-8/
u/ </ Aa/ngopyé“dTO) dT] [u/ e o2
t+s ) 3/2-2/a t+s
<SBi (tAy,a + 1)1/2 <1// Hn;éHLQdT> <1//

SBI (t)\l/,a + 1)1/2 (l//\_1 )3/2—2/a 01/2 —Av,a(s—s0)/2

v,

/ —

N[ (100 adtrode

8/a—4 112
<B dT:|

ol .-

and

t+s  pis
o A A T [ e

t+s t+s 2 1/2 t+s ) 1/2
.| (/ Aa/25TOP¢HdTO> dT] [V / Hn#HLQdT]

ngl (t)‘ma + 1)1/2 (V)\_l)l/2 01/2 —Av,a(s5—50 /2‘

v,o

SBy

‘"OHL%

where we use that for s > s(, one has

[V /:+s < /THS

S a + 1/02) 2 a0/ < (0, + 1)V2.

2
A28, Py dm) dr

(4.44)

Therefore, we have

t+s t+s
v / / R
s T

SB1 (D + DY (0A0)"7 74 () ) €t e

nxBi(nd (TO) drodt
A HL2 (4.45)
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By Lemma A.1, one has
t+s

t+s
v [ S (0 BaO) e 5o [ ] ol e

t+s 1/2 t+s 1/2
S O A e I A R I

<uB, ()\ )1/2 C1/2 —Aua(s—s0 /QH"OH
Combining (4.43), (4.45) and (4.46), and denote
Ke = (s )72 + s h)?) B

By (e + 1) (A0) 7 4 oA) ) +vBe (007,
then we have
t+s
v / ISss—r (BynyBr(n0)) | o dr S Ko CY2e M50/ . (4.47)

Combining (4.36)-(4.40) and (4.47), we have

I+ ) e 2 ) (49778) ™ (2)2 4 4) €% om0
" ((yﬁ/%)m e+ () + B0 )1/2> Y2 Mo s=s0)2| |

+ By yCl/2 —Av,a(s—s0 /2HnOHL2 —|—K7Cl/2 —Av,a(s—so /2H"0HL2

Taking 7% = 8)\1, o> combining (1.10), & > 3/2 and v is small, one has
R

[nar* + )] 2 < g6~ lmo) 10+ 5

Then we can easily get
[n2(7* + 50) [ 12 < ™[0 2-
Assume that for k = m € Z™T, one has
[ sme + 0l 2 < e o] @48
then for kK = m + 1, we have

re(m 207 + )] 2 < 2o Inglmr® + s0)]| 2+ gt
<m0 g -
By same argument, we know that for any s < t < T, there exist 7o and m € Z™, such that
t=mr.+71+5s0, 0<719<7",
then by the local estimate of (2.6) and (4.48), one has
Ins(mr™ + 50 + 70)| 2 < 2[|ns(m7™ + 50)]| 2 < 2677 [mo| o
Then we obtain
e (0)]] 5 < de™™m [lno |72 < deSem e =0 g7, < 2C e e (00 gl |7,

where O > 2¢8. This completes the proof of Proposition 2.11. O

Remark 4.6. In this paper, we choose C, > 2¢8, and combining local estimate, Assumption 2.10 and
Proposition 2.11, we obtain the global L? estimate of solution to equation (1.12).

APPENDIX A. ENERGY ESTIMATES

In this section, we establish some useful energy estimate for this paper.
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A.1. Attractive kernel estimate. The attractive kernel operator By (n") and By(n.) are defined in (2.7).

We have following estimates.

Lemma A.1. The operator B1(n") and By(n..) are defined in (2.7), one has
(1) The estimates of B1(n°):

HayBl(no)HLP S HTLOHLPa 1 S p S OO,
HAgBl(no) S ’Aﬁ_lno L B>
B (n")] - + HAﬁBl(n%HLm Sl 0<B <12,

(2) The estimates of Ba(n)

9 Batnl + 2B+ [0,Ba() 1 < sl 1 <0< 00,

Bl oo S Il o
Proof. We finish the proof by following two steps.
(1) The estimates of B1(n?). According to the definition of By (n®) in (2.7), we have

19yB1 ()| oo = [In” =7l S |In° o + 7

and by Holder’s inequality, one has

_ 1 1

n= H /]1‘2 ’I’L(t,ﬂj‘,y)dﬂjdy = % /Tno(t,y)dy 5 HnOHLm
thus we have

10,B1 ()| S [I7°)] -
Combining the definition of B (n") and B > 1, we can easily get
I I e T

By Gagliardo-Nirenberg inequality, one has
[B1(n) e < [BrmO)]]18,B1(n”)][ 12 B2 (0| 2], B1 (")
then we deduce by (A.1) that

1Bl o0 S [0sB1 ()| 2 S 7] 2
By Gagliardo-Nirenberg inequality, (A.1), (A.3) and 0 < 3 < 1/2, one has
[ )]. < B2 0, )15+
< B2 [0, B |75 < ]

(2) The estimates of BQ(n;ﬁ). Obviously, for 1 < p < oo, one has
IV Ba(ng)| s = [l o

Since for 0 < p < oo, one has

0.2l + [Ba(n) s € 3 10052 Mgl
2,7=1

and
19:0;(=2) " nz 1 = [RiR 4| o S (It o
where 01 = 0,,02 = 0y, R; = 9; A1 is Riesz transforms, we have
0:B2(n2)| , + [|0yB2(n2)| 1y < [l o
By Gagliardo-Nirenberg inequality, one has

2NV Ban) [ £ [Balns) |2

LA ~

HBQ(n7’5 HLoo ~ HB2 n7g H 1/2

‘V Bo(nx HL4’

(A.1)

(A2)

(A.3)

(A4)

(A.5)

(A.6)
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then we deduce by (A.5) that
[B2(n)|| oo SNV Ba(np)|| 14 < [t o (A7)
Combining (A.1)-(A.7), we finish the proof of Lemma A.1. O

Remark A.2. In the proof of Lemma A.1, we used the properties of Riesz transforms. Namely, the Riesz
transforms is bounded in L? for 1 < p < oo, the details can see [20, Corollary 4.2.8].

A.2. Local estimate. The local estimate makes the Assumption 2.10 reasonable, which is the premise of
bootstrap argument. Here we give the local estimate of solution of equation (2.6).

Lemma A.3 (Local estimate of n). Let o € [3/2,2) and n be a solution of equation (2.6) with initial
datang > 0,n9 € HY(T?) N LY (T?),y > 1 + . Assume that the u(y) = cosy is Kolmogorov flow. Then
there exist time so > 0,1" = so + 8\, L. v is small enough and a positive constant C, such that for any
sog < s <t<t* onehas

t
‘Aa/%#H; dr < 16C e [no |7,

and for any sy < t < t*, one has
Ins(t)|72 < 4Cze w20 g,
where A\, o is defined in (1.10).

Proof. Let us multiply both sides of (1.12) by n and integrate over T?, to obtain

HnHL2 —|—1/HAO‘/2 H; +v [ V-(nB(n))ndxdy. (A.8)

2 dt T2

Using integral by part, Lemma A.1 and energy estimate, one has

1 —
v (nB(n))nd:cdy\ = '5 /T 2 V-B<n>n2dwdy\ < lnllzs + ol

and

(A I

a _ Ular |2 St
lnll72" < 5 ||an|| , +Cllnl
The (A.8) can be written as

d
nllze+v | < Col|n|| 57 + 2vm|jn|[. (A.9)

A“/2n‘

L2
Then we deduce by (A.9) that there exists

o1 433 (2n—|—CHnoH2a 2)
to=——1n =0(1/v), (A.10)
nov L= QCHnOHm 3

such that for any 0 < ¢ < ¢, one has
In]l7> < 4flno]l - (A1)

Taking sg = to/2 and t* = s¢ + 8\ 1 we know that for v is small enough, one has

v,a
s0 < t* < tp.
Then for any sg < t < t*, one has

[n02 + g2 < allmol2 < AC e 2]l 2y < ACse oD g2 (A2
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where Oz > 8. Combining (A.9) and (A.12), we imply that for any s < s < ¢ < t* and v is small, one

t
14 /
S

a0/ ar < cy/ Il 1d7+2m/ [nl[2adr + n(s)]12
3a—2 t
<Cv <4C¢HTLOHL2)2Q2/ e~ e T dretvaso
S
t
+8ﬁuC¢HnoHiz/ e_)‘”v“TdTe’\”’“SO+40756_)‘”7“3HnOHiQeA”’“sO (A.13)

-2
< v (10 nof2a) 7 aghe et

- 8nuC’¢Hn0HL2 1 e~ Avasehraso | 407&6—/\”,&5HnOHizeAu,QSO

<16Ce™ Av,as Hno HLze’\”’“SO.

Since
Jacten]l, = [lxer2ma, + ] (14
;é L% ? °
we deduce by (A.13) that
t 2 t 2
V/s ‘Aaﬂn#Hm dr < V/s ‘Aa/anLz dr < 160#€_>\V’a(s_so)HnOHiT (A.15)
Combining (A.12) and (A.15), we finish the proof of Lemma A.3. O
Remark A.4. Based on the (A.9), (A.11) and (A.14), we deduce that for any 0 < t < sg, one has
[zl = < < 2||no|| .2, (A.16)
and for any 0 < s <t < s¢, one has
! /2 2 ! /2 2 s 2
v i A n;,gHLz dr <v i A n‘ L dr < (HnOHL2 +n) HnOHLQ. (A.17)

A.3. High order estimate. Here we establish the H' estimate of n to equation (1.12) in the case of n €
LY N L™, it is as follows

Lemma A.5. Let o € [3/2,2) and n be the solution of (1.12) with initial data ny > 0,ng € H7(T?) N
LY(T?),v > 1+ a. Assume that the u(y) = cosy is Kolmogorov flow. If n € L* N L, then

[l w7t
Proof. Applying 9, to (1.12) and multiplying both sides by 0,n and integrating over T2, we obtain

2
a/2 . =
2dtHa nHL2 +v HA 0, nHL +v . Oy (V- (nB(n))) Ozndzdy = 0. (A.18)
Since
0z (V- (nB(n))) Oyndrdy = 0: (Vn - B(n)) O,ndxdy + / 0 (nV - B(n)) d,ndzxdy,
T2 T2 T2
and one has from Lemma 2.4 and 2.6 that

. Oz (Vn -B(n)) (%ndmdy‘ S ‘ A2 (T - B(n))HL2 HAHO‘/Qn‘ Lo
d
an HAl—a/z (Vn - B(n)) H < HAl /27y, , B[, + V7,2 Al_a/2B(n)HLoo‘
Combining
Jar=ermnll, g Jaz-er , < atsersnf T
L? L2
B Sl S 1,
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[a=Bw)| < Bl ABe][ 22 < falle 51,

we obtain
HAI_O‘/z (Vn-B(n)) H HAH‘O‘/zn
12
,SHAH'O‘/Z ‘ HA H2 2/06_1_HAl-',-Oc/2nHL2 HAnHL2
<t + clan]..
and

[ 2009 - B 2y 5 o] 5 4

Then one gets

v o 2
[ 9:(V - (nB(n)) 8xndxdy‘ < Aot + cvlfan]fy..

Combining (A.18) and (A 19), we have

0,n| + v ||ac2a, n‘ HAHQ/%H; + Cv||An%,.

2 dt
Applying 9, to (1.12), multiplying both sides by dyn and integrating over T?, we obtain

Loynl2s +v|

a/2
2 o A<0, nHL2 . Oy (u(y)0zn)0yndxdy

+ 1//11*2 Oy (V- (nB(n))) Oyndxdy = 0.

Obviously, one has

Oy (u(y)0xn) ayndzndy‘ =

/ u/(y)ﬁxnayndzndy‘ < HAnHi2
T2 T2

Similar to (A.19), we obtain

v o 2
[0,V ) gyndas| < a1z} v cvljan

Then we deduce by (A.21) that
2 dt
Combining (A.20) and (A.22), we have

d
K A I [ T A P

Since ||n|| ;1 + ||n]|L~ < 1, one has

Aa/2+1 HAnH

|

HAnHLzN vz + vl[An|zz + 2] An] .,

Therefore, the (A.23) is written as

Then we imply
[An] . < w7t

~

This completes the proof of Lemma A.5

Lanllza+v|acopn| < ¥ |ar2nl” 1 cvl|an|Z, + Clan]

27

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)



28 BINQIAN NIU, BINBIN SHI, AND WEIKE WANG

APPENDIX B. SEMIGROUP THEORY

In this section, we establish some useful semigroup theory, define semigroup operator

_ L,
St—e ua’

(B.1)

where the £, , is defined in (1.8) and shear flow u(y) satisfies the assumption in Theorem 1.1. We give the

following two lemmas.

Lemma B.1. Let S; be defined in (B.1), then for 0 < s <t < oo, one has

t
‘.
S
where X, , = covma, o € (0,2) and
A28, P,
‘Aa/2StP#H — sup | 1190
lgoll 20 llgollz2
Proof. Consider the equation (1.6), (1.7) and (1.9), one has
Org+ +u(y)Orgs + v(—A)

2
A‘WSTH dr <1,

2 , t
Aa/stP?gH dr < e s, 1//

HLZ’ HAQ/QStH _ sup
lgoll 220 |lgollL2

a/2g;ﬁ =0,

and the g+ can be written as
9£(t,,y) = SiPzgo(z,y).
Then we deduce by Theorem 1.1 and (B.2) that for any 0 < s < ¢ < 0o, one has

t ) ,
lg<(t, )32 + v / |A2g0r.0)|| |, dr S llge(s.) 7 S €20 lgo -

Thus, we have
’ t 2 4
low(t s 5 €t lnlfer v [ 428 P, b 5 e
S

Considering the operator A%/ 2StP¢, obviously,

|

then we have

V/
S

Similarly, one has

o 2
Aa/zstp#‘r: sup A /2StP¢90H
loolzo  llgoll?2

st <[5 lnl |

2 t
AO‘/QSTP;AH dr =v sup /
llgoll 270 /s

t
Ji
S
This completes the proof of Lemma B.1.
Lemma B.2. Let S; be defined in (B.1) and fo € C*(T?), we have

2 — /
Aa/2StP7ﬁgOHL2 HgOHLSdT < e a8

‘Aa/2STH2dT <1

t
S0y fo = —A2SA;20, fo — / e~ UNEvaR e (1,2, y)dr,
0

where
Ripo(7,2,9) = Ca ) _ PV, / Ky, )AL 0,8, (A/205205 4o dy
kcZ T
and

u(y) — u(y)
K(y,y) = ly — 7 + k[Fa/2

HAa/zstgo HL2

(B.2)

(B.3)

(B.4)

(B.5)
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In order to prove the Lemma B.2, we consider the following linear equation

If G(t, 20, Yo, T, y) is fundamental solution of equation (B.6) on T2, which satisfies

,G 9,G —A)*2G =0,
{t +u(y)0:G + v(—A) B.7)

lim G(t =d(x — —
tl_l;% ( 71'(),y0,1',y) (.Z' Zo,Y y0)7

where §(z — 29,y — yo) denotes the point mass delta function at (¢, o). Then the solution of (B.6) can be
written as

f(tuxuy) - Stfo - /2 G(tax(%y07x7y)f0(x07y0)dx0dy0' (BS)
T

Combining Lemma 2.6, one gets

S0y fo = /2 G(t, w0, yo, T, y)0y, fo(To, Yo)dzodyo
T (B.9)
= /]1‘2 A;O/2G(t7:E(]vy07$7y)Ay_oa/2ayof0(x07yO)dedyO-

Applying the operator AZ‘O/ % and AZ‘/ % to (B.7), then we have

o, (AO‘/QG + Aa/2G> +u(y)d, (AO‘/QG + Aa/2G>
+(=8)"2 (A5G + AS°G) + R(t, 20,90, 2.,) =0, (B.10)
(Aa/2G + Aa/zG) (07 Zo, Y0, T, y) = 07

where

—u(y)) 0:G(t, zo, yo, T, @d~
y.
ly — 7+ k[t +e/2

R(t, z0,y0,2,y) = Cq ZPV/ (B.11)

kezZ T

Remark B.3. In (B.10), we use the following equality as

Ag/2( C ZPV/ a G(t Zo, Yo, T, y) _u(g)a G(t Zo, Yo, T, g)

= |y — G+ k[Her?

_ a G(t xo, Yo, T, y) —U( )8$G(t7$07y07x737) ~
=Ca ZPV/ ly — 7 + k|10 dy

keZ T

8 G t » L0, Y0, T, 37)—“( )a G(t Zo, Y0, T, :'7)
+Ca ZPV/ y+k’1+a/2

kez ly —

8 G t , L0, Yo, T, y) 8 G(t Zo, Yo, T, :77)
=u(y)Cy ZPV/ b TR

kEZ

(u(y) _U(m)axG(t7an?JO7x7@ ~
+0, S PV / ) 4
2V g

:u(y)ﬁxAZ‘pG(t, L0y Yo, T, y) + R(t7 Zo, Yo, T, y)

Remark B.4. Since for any g € C°°(T?), one has

lim [ A%2G(t, 20, y0,2,y)9(z0,y0)dzodyo :A;W/ 8(z — 0,y — Y0)9(0, Yo)drodyo
t—0 T2 T2

= /2 8(w0, y0) A2 g(x — w0,y — yo)dzodyo,
T
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and

lim ASP2G(t, w0, yo, 7, ) g (w0, yo)dzodyo —/ 6(z — o,y — yO)A;)/zg(xo,yo)d!Eodyo
T

/ 8(z0,y0) NS g(z — 0,y — yo)dzodyo.

According to the definition of AZ‘/ % and AZ‘O/ % in (2.2), one has
A2 g(x — w0,y — yo) + AL 2g(x — z0,y — yo) = 0,
then we can get

: a2 a2
%E)% 2 (Ay/ G+ Ayo/ G) (t73307y07$7y)g($07y0)dx0dy0 =0.

Thus we have

}/E}% (AZ{/2G + AZ[()/zG) (07 o, Yo, T, y) =0.
Combining Duhamel’s principle, (1.8) and (B.10),we have
t
A;O/QG(t,xo,yo,x,y) = —AZ‘QG(t,xo,yo,x,y) — / e_(t_T)E”’aR(T, x0, Yo, T, y)dT.
0
By similar argument, we can easily get

81‘G(t7 Zo, Yo, T, y) - _ax()G(ta X0, Yo, T, y)7

Ag/zG(t7 Zo, Yo, T, y) = _Ag({2G(t7 Zo, Yo, T, y)
and

A;a/QﬁwG(t,:Eo,yo,:E,y) = —A;OO‘/28$0G(t,:E0,yo,:n,y), 0<a<?2.
Next, we give the proof of Lemma B.2.
The proof of Lemma B.2. Combining (B.9) and (B.12), one has
S0y fo = /2 A2 G(t, 0, 10, 7, y) Ay Dyo fo (o, yo)dwodyo

= /T2 Aa/ G(t, zo, Y0, T, y) Ay /29,0 fo(xo, yo)dzodyo

- /T2 (/Ot em(mTEveR (7, $07y0,$,y)d7> Ay 228y, folo, yo)dwodyo.
Then we deduce by (B.8) that

/1r2 Aa/2G(7f 70, Y0, T, Y) Ay /28, fo(xo, yo)dzodyo

- - AZ{/2 / G(tu xo, Yo, T, y)Agjoa/2ayo fO(x()a yO)dedyO

= — A22S A 20, fo(t, 2, y).

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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Combining (B.8), (B.11) and (B.13)-(B.15), one has

t
J=- /2 </ e~ t=LlvaR (1, xo7yo7x,y)dr> A;OO‘/Q o fo(0, Yo)dzodyo
T2 \Jo

t
= — CQ,ZPV/ </ 6_(t_7')£1/,a </ K(y,@ax(@(ﬂ x07y07x7 g)dg) dT)
keZ T2 \JO T
' A;()a/2ay0f0(x07 yo)dzodyo

t
:CQZP.V./ Ag({Z—lam (/ e—(t—'r)ﬁy,a (/ ]C(y’gj)G(T, 330,%],33,37)(137) d7'>
0 T

keZ T2
’ A;ﬁo_a/2AZ70a/2ayo fO (wO s yo)dwo dyo

t
= — CQZP.V./ </ e—(t—T)zu,aAg/Llam </ Ky, 9)G(r, :co,yo,g:,g)dg> d7>
T2 0 T

keZ
Ay PPN 20y, folwo, yo)daodyo.
By exchanging the order of integrals, one has

t
J =— CQZP.V./ e_(t_T)Eu,aAg/z—lax/K(y’@“)
T

kez 0

. (/]1.2 G(T, Z0, Yo, T, ﬂ)A;O—a/ZA;OO‘/?@yO fo(ﬂj‘()’ yo)dgjodyo> dgd,r

B.18
=Y PV / R TI / K(y, 7)A%2719,S, (A;—a/QAy:a”ang) dyjdr o
= 0 T
= — /Ot e_(t_T)E”’aRfO (1,2, y)dT,
Combining (B.16)-(B.18), we have
S0y fo = —AZ‘/zStA;aﬂ@yfo — /Ot e_(t_T)E”’O‘RfO (1,2, y)dT.
This completes the proof of Lemma B.2. U
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