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Long baseline diffraction-limited optical aperture synthesis technology by in-

terferometry plays an important role in scientific study and practical applica-
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tion. In contrast to amplitude (phase) interferometry, intensity interferometry

— which exploits the quantum nature of light to measure the photon bunching

effect in thermal light — is robust against atmospheric turbulence and optical

defects. However, a thermal light source typically has a significant divergence

angle and a low average photon number per mode, forestalling the applicabil-

ity over long ranges. Here, we propose and demonstrate active intensity inter-

ferometry for super-resolution imaging over the kilometer range. Our scheme

exploits phase-independent multiple laser emitters to produce the thermal il-

lumination and uses an elaborate computational algorithm to reconstruct the

image. In outdoor environments, we image two-dimension millimeter-level tar-

gets over 1.36 kilometers at a resolution of 14 times the diffraction limit of a

single telescope. High-resolution optical imaging and sensing are anticipated

by applying long-baseline active intensity interferometry in general branches

of physics and metrology.

Introduction

Hanbury Brown and Twiss (HBT) first proposed the seminal idea of high-angle resolution in-

tensity interferometry for the measurement of stellar diameter (1–3), which is a technique based

on the measurement of temporal correlations of arrival time between photons recorded in differ-

ent detectors. The intensity interferometry does not require a high-precision phase stabilization

system, and it is robust against optical imperfections and atmospheric turbulence. Hence, it is

much easier to implement than amplitude (phase) interferometry. In astrophysics, the forth-

coming air Cherenkov telescope arrays, which consist of almost 100 telescopes, are the current

largest optical intensity interference project (4, 5). Following its start in astronomy, intensity

interferometry has been developed as a versatile lab tool in general research fields, including
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the probe of interactions in high-energy particle physics (6), studying the photon propagation in

nonlinear media (7) and curved space (8), measurements of quantum correlations in ultracold

bosonic and fermionic systems (9–11), and identification of single photon source (12).

Although intensity interferometry has been widely implemented in passive imaging scenes (13,

14), it remains challenging to apply to the field of active imaging, i.e., light detection and rang-

ing (LiDAR). Benefiting from active illumination, LiDAR has emerged as a powerful tool to

image non-self-luminous targets (15, 16). To probe high resolution and resist atmospheric tur-

bulence, active intensity interferometry has emerges as a great candidate. However, the lack

of collimated a narrow-spectrum thermal light source and a robust imaging retrieval algorithm

imposes practical difficulties in its applications in active super-resolution imaging.

Intensity interference originates from the quantum nature of thermal light sources, which

can be understood as the photon bunching effect (3, 17). The shape of the bunching peak

measured by the intensity interferometer is squared proportional to the Fourier transform of

the shape of the source (18, 19). In experiments, intensity interference is obtained by cross-

correlating intensity fluctuations measured in different pairs of telescopes to achieve aperture

synthesis and yield resolution enhancement. In general, unlike lasers, thermal light sources

cannot simultaneously meet the requirements of intense light power, narrow spectra and small

divergence angles. A better alternative solution involves utilizing a composite approach in-

tegrating a laser source with a spatial-temporal modulation device, such as a rotating ground

glass (20–22), a spatial light modulator (23), and a projector (24) to synthesize a pseudo-thermal

light source. However, these pseudothermal light sources are still incompetent for long-range

illumination.

In this letter, we show that a phase-independent multiple laser emitter array can act as a pseu-

dothermal light source, satisfying both the thermal nature of the source and the requirement of

long-range illumination for intensity-interferometry imaging. In the experiment, we illuminate
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the targets with eight independent laser emitters modulated by the atmosphere and receive the

back-reflected photons using two telescopes with configurable transverse range. For image re-

trieval, we develop an elaborate data preprocessing technique equipped with a modified phase

retrieval algorithm, each tailored to adapt the intensity interferometric data. Our algorithm

copes with sparse sampling in the interferometric plane, the nonlinearity of the imaging model,

and the loss of Fourier phase information. Together, we experimentally realize super-resolution

imaging over 1.36 km in an outdoor urban environment. The imaging resolution is 3 mm, which

is 14 times higher than the diffraction limit of a single telescope.

Theory of active optical intensity interferometry

An optical intensity interferometry in a classical imaging system typically necessitates that

the imaging target to be a thermal light source to measure the non-shot-noise-based intensity

variations of the two light detectors and compute their correlation. For ideal monochromatic

polarized thermal light, Hanbury Brown and Twiss showed that the second-order intensity cor-

relation function is proportional to the square of the modulus of the Fourier transform of the

intensity distribution on the target surface. We now express it in mathematical form. Suppose

we have two light detectors Da and Db, whose intensities measured at time t are Ia(t) and Ib(t),

respectively, and let ka and kb be the wave vectors from the target to the detectors Da and Db,

respectively. Then, according to the intensity interferometry theory (3), the normalized intensity

correlation function c
(2)
ab can be expressed as

c
(2)
ab =

⟨∆Ia(t)∆Ib(t)⟩
⟨Ia(t)⟩⟨Ib(t)⟩

= |f(ka − kb)|2, (1)

where ⟨...⟩ is the time averaged notation, ∆I(t) ≡ I(t)−⟨I(t)⟩ and f is the normalized Fourier

function of the target surface intensity distribution ρ(r), that is

f(∆k) =
∫
ρ(r)e−i∆k·rdr∫

ρ(r)dr
. (2)
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Let L be the distance from the target to the interferometer and λ be the wavelength of light.

Since ∆k and the projected interferometer baseline B have a proportional relationship that is

∆k = 2πB/(λL), super-resolution can be achieved by changing B to cover a sufficiently large

area of the u - v plane to obtain enough information about the target in the Fourier domain. The

angular resolution of the intensity interferometer is about λ/Bmax at the wavelength λ, which

is larger than that of a single telescope (3).

U

x

y
z

Target

Source plane Detector plane

1 2 n

Turbulent flow

Da Db

coincidence

Detector

counting

Laser
emissions

Figure 1: Experimental schematic. The active optical intensity interferometer consists of two
parts: the source plane and the detection plane. The source plane contains n (n = 8 in the
present experimental setup) laser emitters arranged at fixed equal intervals d = 0.15 m. These
laser emitters are generated from the same laser source and then evenly divided by beam splitters
to irradiate 8-way light toward the target. The phase of each path of light is randomly modulated
by passing different atmospheric turbulence to superpose pseudothermal illumination. The tar-
get is affixed to a rotating base, facing toward the source plane. The detection plane consists
of two single photon avalanche diode (SPAD) detectors mounted on a one-dimensional linear
displacement stage for obtaining changeable baselines. Coincidence count sets are gathered
by cross-correlating intensity fluctuations from Da and Db to achieve the intensity correlation
function c

(2)
ab .

However, if intensity interferometry is used for active imaging, it is hard to illuminate dis-

tant targets with poorly collimated thermal light sources. On the other hand, if we illuminate

the target with well-collimated coherent light, such as a laser, intensity interference cannot be
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observed because the light detector cannot measure intensity signal fluctuations other than the

shot noise, which is not correlated with the shot noise in another detector.

To overcome the above difficulties, a basic idea is to superimpose a collection of phase-

independent coherent lights to achieve pseudothermal illumination. The working principle of

active intensity interferometry is schematized in Fig. 1. To simply verify the feasibility of ap-

plying super-resolution optical intensity interferometry to active imaging, as indicated in Fig. 1,

we bypass the need for phase modulators by instead using atmospheric turbulence to randomly

modulate the phases of multiple laser emitters. In the case of such non-ideal pseudothermal

illumination, speckle-like noise occurs when measuring the intensity correlation function, so

we propose a statistical optics theory (see supplementary materials), in which Eq. 1 needs to be

modified to a form of the ensemble average, namely

⟨c(2)ab ⟩e = c0 + c1|f(ka − kb)|2, (3)

where c0 and c1 are the coefficients jointly determined by the light intensity, the autocorre-

lation coefficient of different emitters, and the optical memory effect (25, 26). If we ignore the

optical memory effect and consider a case where all laser emitters are symmetrically equivalent,

then c0 = c/n and c1 = (n − 1 + c)/n are simple functions of the number of laser emitters n

and the autocorrelation coefficient c.

The above statistical linear relationship allows us to extract information about the target in

the Fourier domain from the measurement of the intensity correlation function. Specifically,

considering that the ensemble average expression predicts the average result of multiple paral-

lel measurements, for a single shot measurement of c(2)ab , we can write c
(2)
ab = ⟨c(2)ab ⟩e + ϵ, where

ϵ is the speckle-like noise term that we wish to suppress as much as possible. We calculate an

expression for the noise intensity (i.e., the standard deviation of c(2)ab ) and find that it decreases

to 0 at a rate of O(1/
√
n) as the number of laser emitters n increases (see supplementary ma-
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terials). This means that one way to suppress the experimental noise is to increase the number

of laser emitters so that they are physically closer to thermal illumination. We also discuss the

boundary cases of single (n = 1) and infinite (n =∞) laser emitters (fig. S2), and show that the

former will lead to a very low signal-to-noise ratio (SNR), while the latter will give predictions

that are consistent with classical HBT theory based on ideal thermal light sources.

Intensity Interferometry Imaging Setup

We implement an intensity interferometry imaging experiment in an urban atmospheric envi-

ronment 1.36 kilometers away. Figure 2 shows an aerial view of the experiment configuration,

with the imaging system placed at location S, facing the imaging target located at T over a dis-

tance of 1.36 km (determined by laser ranging measurement). The target is put on the 3-axis

motorized rotation stages, as shown in Fig. 2B.

The active optical intensity interferometer consists of phase-independent multiple laser emit-

ters and two identical receiving telescope systems, as shown in Fig. 2A. A λ = 1064 nm CW

laser (∼100 mW) is depolarized by a single-mode optical fiber depolarizer to reduce the inten-

sity fluctuation caused by different polarization reflectivities of the target. The light is coupled

into free space by a collimator with a focal length of 40 mm and is divided into 8 beams by a

beam splitter group with equal spatial separation and power. Eight beams are adjusted to point

at the target. The size of each beam after 1.36 km is approximately 0.2 m, more than the size of

the target. Since light is subject to phase fluctuations through atmospheric turbulence, the phase

shifts of each beam are randomly modulated (27, 28). The distance between each beam at the

laser emitter array is set to 0.15 m, more than the outer scale of atmospheric turbulence (the at-

mospheric coherence length typically measured 0.02∼0.05 m), to ensure that each beam has an

independent random phase shift. In the theoretical analysis, a collection of phase-independent

multiple coherent light can be equivalent to a pseudothermal light source.
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Figure 2: Super-resolution imaging based on the intensity interferometer. An aerial dia-
gram of the imaging experiment over a 1.36-km free-space link, with the setup at S and the
imaging target at T. (A) The optical setup of the imaging system, which consists primarily of
a continuous-wave (CW) laser emitter array and two receiving telescope systems for the in-
tensity interferometer. In the laser emitter array system, the light is depolarized and coupled
into free space, through a number of beam splitters (BSs), split into 8 beams. In the intensity
interferometer, two receiving telescope systems move with the translation stage to change the
baseline in the range of 0.07-0.87 m. Both telescope systems are configured to receive left cir-
cularly polarized light through a quarter-wave plate (QWP) and a polarizer. The light collected
by the receiving system is separated by the dichroic mirror, with the signal photon part being
coupled into the multi-mode fiber by the telescope and guided to the single-photon avalanche
diode (SPAD), and the background light part being received by the camera for feedback on the
tracking mirror pointing. The arrival time information of photons is recorded by the time-to-
digital converter (TDC). (B) Schematic of the imaging target. The imaging target is put on the
motorized rotation stage. (Insets) Imaging result of a double slit.

Two identical receiver systems Da and Db are separately placed on two 0.4-m-long linear

translation stages to change the baseline in the range of [0.07, 0.87] m. The receiving system is

designed for rotational symmetry, collecting circularly polarized light through a quarter-wave

plate and a polarizer. A tracking mirror mounted on a piezo platform is used to adjust the

receiving field of view (FOV), ensuring that the target remains within the FOV while the tele-

scope system moves. A dichroic mirror is introduced spectrally to separate the collected light.
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The signal light with a wavelength of 1064 nm transmitting to the dichroic mirror is coupled

to a 62.5-µm multi-mode optical fiber with a telescope that has a diameter of 42.5 mm and

a focal length of 80 mm, guided to the silicon single-photon avalanche diode (SPAD). Other

background light is received by the camera with a 300 mm focal length lens for feedback on the

tracking mirror pointing.

The arrival time information of photons at two SPADs is recorded using a time-to-digital

converter (TDC) with a time resolution of 8 ps, from which the normalized intensity correlation

function c
(2)
ab can be calculated. The optical delay difference between the two receiving systems

is controlled below 1 ns. Considering the optical coherence time of the atmosphere (typical

value about 27 ms at 1064 nm, fig. S6), the time bin and the integration time are set to 2 ms and

2 s, respectively. The count rate of each SPAD is about 104 photons per second and the SNR of

coincidence counting measurement is about 10 (see supplementary materials for more details).

Image Reconstruction

Data acquisition.

In the measurement, we change the baseline distance between two receiving telescope systems

from 0.07 m to 0.87 m per 0.04 m steps. When the baseline is set to a specific length, the target

is rotated every 6◦ in the range of 0 - 360◦, and the intensity correlation function c
(2)
ab is obtained

from the coincidence counts detected by Da and Db. A total of 60 × 21 = 1260 coincidence

count sets are gathered, and the corresponding Fourier (u, v) coverage is depicted in Fig. 3A.

Reconstruction.

Intensity interferometers do not directly provide images but intensity correlation function that is

proportional to the squared-magnitude of the Fourier transform of the source brightness (18,19).

To recover an image, the phase of the Fourier transform must be determined in addition to its
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magnitude (29–31). In real observations, however, there remain three main obstacles for exist-

ing image reconstruction techniques. First, the limited number of telescopes and observations

yields very sparse frequency coverage. Second, since the square root operation needs to be ap-

plied to the intensity correlation function to obtain the Fourier magnitude, the imaging model is

non-linear and especially sensitive to noise near zero values. Third, deploying the active inten-

sity interferometer outdoors has to face strong urban environment noise, and the imperfection

comes from the mimic pseudothermal light source. Hence robust phase retrieval techniques are

needed. The reconstruction pipeline is shown in Fig. 3.

To address the nonconvex and ill-conditioned inverse problem, elaborate data preprocessing

is designed to extract the target Fourier magnitude from the raw measurements. Before entering

the phase retrieval procedure, the raw intensity correlation function c
(2)
ab should pass through five

successive processes. The data in polar coordinates were first averaged with adjacent multiple

angles, and then central low-frequency estimation, target Fourier magnitude estimation, and

high-frequency noise suppression were performed. Finally, the data were converted into Carte-

sian coordinates and produced by two-dimensional Fourier interpolation to unveil the target

Fourier magnitude. All data preprocessing is detailed in the supplementary materials.

After data preprocessing, we finally obtained the retrieved target Fourier magnitude y =

|F (ρ(r))| (Fig. 3B). As another key ingredient in the reconstruction process, phase retrieval is

designed to reconstruct an image from the Fourier-plane magnitude and object-plane constraint.

Let x̂ = ρ̂(r) ∈ Cn be the target surface intensity distribution and y ∈ RN
+ be the acquired data

of |Fx̂|. The phase retrieval problem is to find an approximate solution to the equation,

y = |Fx|+ w, x ∈ Cn (4)

where w ∈ RN represents the unknown discrepancy between the data predicted according to

the Fourier transform model F and the actually acquired data. Mathematically, Eq. 4 can be
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modeled as

x̂ = argmin
x

Φ(x) + λR(x), (5)

where Φ(x) = 1/2∥y−|Fx|∥22 is a data-fidelity regularizer that ensures consistency between the

reconstructed result and measurements, and R(x) is a regularizer that imposes a certain prior

constraint.

To solve the above problem (Eq. 5), we altered the iterative alternating projection ap-

proach (29, 32, 33) which incorporates a cascaded phase retrieval procedure composed of Re-

laxed Averaged Alternating Reflections (RAAR) (34) and Hybrid Input and Output (HIO) algo-

rithm (30, 32) with multiple constraints (sparsity, positivity, shrink support, and oversampling)

(Fig. 3D). Putting all together, the elaborate data preprocessing followed by the modified phase

retrieval strategy explicitly improves image recovery performance and stability (Fig. 5, fig. S4,

and movie S1). More detailed mathematical treatments of the imaging process appear in the

supplementary materials.

Imaging Results

We demonstrate the effectiveness of the proposed framework with both synthetic and exper-

imental data. The resolution of our system is first confirmed by imaging a double slit. As

shown in Fig. 4, the result clearly shows that an image with a 3 mm cross-range resolution at

approximately 1.36 km can be achieved, which is approximately 42.5 mm / 3 mm ≈ 14 times

resolution enhancement over the single receiving aperture (≈ 42.5 mm). The theoretical reso-

lution predicted by the Rayleigh diffraction limit is 1.22λL/B ≈ 2.03 mm, where λ, L, and B

represent the illumination wavelength, imaging distance and the size of the synthetic aperture,

respectively.

We produce super-resolution imaging results in Fig. 5. The targets (Fig. 5A) were crafted

from surface-blackened aluminum sheets, hollowed out to create the letters ”USTC”, which are
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Figure 3: Data processing. (A) Intensity correlation function c
(2)
ab measured at λ = 1064 nm for

the letter “S” (F) with a distance of 1.36 km. (B) Fourier magnitude derived from elaborated
data preprocessing (see supplementary materials). The pseudo-colored surface represents the
preprocessed target Fourier spectrum. After combining the retrieved Fourier magnitude (B) and
retrieved Fourier phase (E), the inverse Fourier transform yields the final retrieved target (C).
(D) The flowchart of our modified phase retrieval algorithm. As an input, the retrieved Fourier
magnitude (B) is alternately projected and reflected in the Fourier and real domains using a
cascaded RAAR and HIO strategy equipped with three types of constraints (I and II in real
space and III in Fourier space). The real space constraint is a hybrid of an adaptive shrink-wrap
(II) and a sparse constraint (I), while the Fourier space constraint is an update of the iterative
intermediates as the retrieved Fourier magnitude (B) (III). (E) Retrieved Fourier phase from (B)
via algorithm (D). (F) The ground truth target. Scale bar: 1 mm ((C), (F)).

covered with retroreflective sheeting. The size of each individual letter is 8 mm by 9 mm, and

the width of the character is 1.5 mm. The measured intensity correlation points at sampled

frequencies are rebinned to match the grid of frequels with a size of 512 × 512 points. Af-

ter applying the special data preprocessing pipeline (see fig. S1 and supplementary materials),

the targets’ Fourier magnitude |F (ρ(r))| can be retrieved (Fig. 5C) and then used as input for

the modified phase retrieval to obtain the two-dimensional target images (Fig. 5D). Shape re-

constructions with PSNRs of 14 ∼ 18 dB demonstrate the feasibility of the proposed method.

A superposition of 1000 individual trials of phase retrieval results is shown in Fig. 5E, which

clearly demonstrates high image restoration fidelity and stability. Potential image quality im-
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Figure 4: Experimental results and fitting of a double slit in one dimension. In the baseline
direction, the two slits are both 1 mm wide, and the center distance between the two slits is 3
mm. We assume the spatial ergodicity of speckle (35) and use the average of the c

(2)
ab measure-

ments corresponding to 100 random minor changes in the target attitude as an ensemble average
measurement (red dot). The blue curve is the least squares fitting result of Eq. (3) with fitting
parameters c0 = 0.160 and c1 = 0.625.

provement may be achieved by increasing the number of laser emitters n, the capture frames

(fig. S3) as well as the sampling rate in the interferometric plane (figs. S3 and S5).

Discussions

In summary, we have shown active intensity interferometry for super-resolution imaging over

the kilometer range. In the experiment, phase-independent multiple laser emitters based on the

phase fluctuations of atmosphere turbulence can act as an elegant pseudothermal light source

to illuminate long-range objects, but the exposure time of imaging is limited to atmospheric

coherence time. With the introduction of an active phase modulation scheme and a confocal

receiving-emitting telescope array, high-speed active intensity interferometry imaging is an in-

teresting avenue for future work. On the other hand, higher-fidelity reconstruction is anticipated
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Figure 5: Main experimental results. The first column (A) shows the ground truth targets
placed at a distance of 1.36 km. (B) Intensity correlation function c

(2)
ab measured at λ = 1064

nm for artificial targets listed in (A). Colored dots with 2D x-y projection mark the observed
sparse data points. (C) Retrieved Fourier magnitude |F (ρ(r))| from (B) via data preprocessing
(detailed in the Fig. S1 (E-K)). (D) Retrieved target images from (C) using the modified phase
retrieval algorithm (see Fig. 3D and supplementary materials). The fifth column (E) shows the
retrieval probability map with 1000 phase retrieval algorithm trials. Scale bars: 1 mm ((A), (D),
(E)).

by applying more advanced methods, such as the optimization strategy and deep learning mod-

ules. Furthermore, by using different speckle interferometry analysis techniques, such as phase

closure analysis and amplitude interference, additional phase information may be obtained from

the data in some cases, reducing the ambiguity of recovery and further improving the accuracy

and fidelity of phase retrieval. In the future, efforts are being devoted to joint measuring the first

14



and second-order coherence of light to uncover unrivaled imaging resolution. Further combin-

ing the active intensity interferometry with deep space exploration and microscopy will open a

new path towards super-resolution imaging from macroscopic scale to microscopic scale.
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Movie S1

Materials & Methods

1 Simulations.

To gain further insight into the mechanism of active intensity interferometry, we performed

numerical simulations of the whole process. The entire imaging processing and simulations

are presented in Fig. S1, with the simulation process, data preprocessing and retrieval process

indicated as red, orange, and blue backgrounds, respectively. To simulate the HBT sampling

measurement, a target (Fig. S1A) is first transformed into the Fourier domain to achieve its

Fourier magnitude (Fig. S1B). Then, the Fourier magnitude is sampled corresponding to the
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experimental measurement setup (see HBT imaging setup, data acquisition and Fig. S1C). The

sparse Fourier sampling is then remapped using the linear transform to obtain the HBT sampling

data i.e., the intensity correlation function c
(2)
ab (Fig. S1D). The sampled c

(2)
ab data were first

converted into Polar coordinates (Fig. S1E) to simulate the real experiment acquisition.

We describe our HBT simulation procedure in Algorithm 1. Please see Section 9 for a

detailed explanation of the simulation process.

Algorithm 1 HBT sampling simulation
Input: f (normalized complex Fourier spectrum), n (number of lightning emitters), c (autocor-
relation coefficient)
Step

1: Initialize X {complex array of length n}
2: for i from 1 to n do
3: (x1, y1, x2, y2)← Sampling 4 random real numbers from distribution N

(
0,
√

1
2

)
4: (z1, z2)← (x1 + jy1, x2 + jy2)

5: X[i]← z∗2

(√
1− |f(ka − kb)|2z1 + f(ka − kb)z2

)
6: end
7: return

(
|
∑n

i=1X[i]|2 + (c− 1)
∑n

i=1 |X[i]|2
)
/n2

2 Computational retrieval method.

Image processing.

As described in the main text, to extract the target information from the measured intensity

correlation function c
(2)
ab , we have to face three main challenges. First, the interferometric

sampling remains very sparse (for the 1260 experiment data points fall in 512 × 512 grids,

leading to a 0.48% sampling rate) (see Fig. 3B), and the central crucial low-frequency region

(frequency components lie under the 0.07 m circle) is not measured due to the physical limita-

tions of the distance between two telescopes. Second, to extract the target Fourier magnitude

|F (ρ(r))| = √c1|f(ka − kb)| with the Fourier transform operator defined as F (·) from c
(2)
ab , we
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Figure S1: The flow chart of the simulation and data processing pipeline. The simulation,
data preprocessing, and image reconstruction modules are represented by the red, orange, and
blue backdrops, respectively. In the simulation module, the ground truth target (A) was first
converted into the Fourier domain to obtain its Fourier magnitude (B), where the yellow circle
denotes the current experimental setup’s spatial frequency upper limit. (C) Fourier domain
sampling also serves as a benchmark for the Fourier magnitude acquired by the ideal imaging
system. A unitary matrix transformation was used to re-sample each spatial frequency for
HBT sampling (D). (Section 1) (E) HBT sampling in Polar coordinates. To predict the central
low-frequency information, the central black region chosen at [-4 -2 0 2 4] (unit: cm) was
preserved (E). In the data preprocessing module, the HBT sampling was first averaged with five
adjacent angles and then row-by-row interpolated to obtain the central frequency estimation
(G). Using Eq. (3), one can calculate the F |(ρ(r))| (H) from (G). A Lamp-rank filter is then
applied to eliminate high-frequency oscillation to obtain (I). The estimated F |(ρ(r))| data (J)
were transformed into Cartesian coordinates and then 2-D interpolated to obtain the retrieved
Fourier magnitude (K) with the yellow circle representing the maximum baseline region. In the
image reconstruction module, target (L) is recovered from (K) via the proposed phase retrieval
technique (Section 2 and Fig. 3D). Scale bars: 1 mm ((A), (L)).

need to calculate Eq. 3, which makes the model nonlinearity and noise sensitive to the close to

zero values caused by the square root operation. Third, recovering the missing Fourier phase

part is difficult due to the high background noise originating from the outdoor environment and
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source imperfections.

To address this problem, the raw captured intensity correlation function c
(2)
ab was first sub-

tracted from the background and then polarization elimination was performed. The central sym-

metric average and adjacent five angle average were employed to make the data much approach

to ⟨c(2)ab ⟩e, which obeys the Gaussian process (Section 7). The central null part is preserved for

low-frequency component estimation (Fig. S1E). Virtual frequency components at the positions

of [-4 -2 0 2 4] cm were predicted by summing and averaging after 1-D cubic spline interpo-

lation for each angle (Fig. S1F). The estimated target Fourier magnitude |F (ρ(r))| (Fig. S1G)

was calculated using the Eq. 3 (c0 = 0.06 in Fig. 5 and 0.15 in Fig. S2) and then smoothed by

a Ramp-Lank filter to remove high-frequency oscillations (Fig. S1H). The filtered data were

transformed into Cartesian coordinates and interpolated in two dimensions to fill the voids in

the sparse sampled spatial frequencies to obtain the target Fourier magnitude. The resulting

Fourier magnitude was oversampled with one-fold zero values, and a two-dimensional Hanning

window was applied before entering the modified phase retrieval algorithm.

Retrieval algorithm.

As described in the Reconstruction section, to solve the highly ill-posed phase retrieval problem

(Eq. 5), we leverage nonconvex optimization methods inspired by the alternating projections

and reflections schemes (29, 32, 33, 36). Apart from normalization factors, we denote the target

with reflectivity ρ(r), r is the coordinates in the object (or real) space, and the corresponding

Fourier Transform ρ̃(k) = F (ρ(r)), with k representing the coordinate in the Fourier (or Re-

ciprocal) space. Four operators linking two sets S (support) and M (modulus) are introduced.

Given a support set S, the support projection operator PS involves setting to 0 the components

outside the support while leaving the rest of the values unchanged:
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PS(r) =

{
ρ(r), if r ∈ S,

0, otherwise
(1)

Similarly, one can extend this definition to enforce nonnegativity, PS+ρ(r) = max (PSρ(r), 0).

The modulus projector PM sets the modulus to the retrieved one m(k), and leaving the phase

unchanged.

PMρ̃(k) = PM|ρ̃(k)|eiφ(k) = m(k)eiφ(k) (2)

The reflection operators RS = 2PS − I and RM = 2PM − I apply the same step as the

projector but move twice as far, where I means the unit matrix. The phase retrieval algorithm

requires a starting point ρ0(r), generated by assigning a random phase to the retrieved target

Fourier magnitude iteratively produce the iterate ρ(n)(r) after n steps. With the notation above,

the HIO algorithm can be formulated as

ρ(n+1)(r) = [PSPM +PS (I− βPM)] ρ(n)(r) (3)

Where PS = (I−PS) denotes the complement of the projector S and the β(0 < β < 1)

here and below means a negative feedback parameter. Empirically, small β produces better

stability while β is better for escaping local minima. A value of β somewhere between 0.5

and 1.0, say 0.8, usually works well. In all experiments and simulations, the β is set as 0.8.

Similarly, the RAAR algorithm can be written as

ρ(n+1)(r) =

[
1

2
β (RSRM + I) + (1− β)PM

]
ρ(n)(r). (4)

The retrieved target Fourier magnitude (Fig. 3B) was one-fold zero-padded before enter-

ing into the phase retrieval algorithm. For better image performance, a combination of RAAR

(60 iterations) and HIO (one iteration) algorithms is employed, with the RAAR escaping local
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minima and HIO refining the solution. Along with the iterations, two sets of constraints are

equipped. The first object constraint was that it had to be real and non-negative. The second

object constraint was a shrink-wrap support (37) to refine the support region S during the it-

eration. Specifically, the support region S periodically convolves the iteration with a Gaussian

of width σ and then applies a threshold ϵ to smear the support; i.e., the updated support for the

two-dimensional case is taken to be

S =

{
r :

1

2πσ2

∫
R2

ρ(n)(s)e−|r−s|2/2σ2

ds ≥ ϵ

}
(5)

The third object constraint used was a sparsity constraint by setting 20 % of the maximum

entries of the original structure. The Fourier space constraint is the magnitude constraint that

sets the modulus to the retrieved one. Accompanied by the iteration, the adaptive support region

is controlled by an alternative Gaussian convolution and a threshold operation, which act as

dilation and erosion. With the iterative number increases, the exported support region will

change from a loose one to a tight one, which can significantly reduce the solution space and

exclude spurious solutions. It is worth emphasizing that using a non-centrosymmetric initial

support estimation, for instance, an equilateral triangle as initial support considerably speeds up

convergence and effectively avoids the twin-image problem (36).

All experiments were performed with MATLAB 2018b in Windows 10 running on a dual-

core chip Intel Core i9-10900K and 128G memory. A single run of the algorithm on a 1024 ×

1024 pixel image retrieval (composed of 60 (RAAR) +1 (HIO) iterations) on this CPU took ap-

proximately 1 s. Notably, all results displayed in experiments and simulations are unthresholded

and without color bar alternation.
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3 Imaging performance vs. number of laser emitters.

To evaluate the impact of different laser emitters on image performance, we performed a double

slit imaging under different laser emitters with a slit-to-slit separation of approximately 2 mm.

The experimental results under n = 1, 2, 4, and 8 emitters as well as the quality performance are

shown in Fig. S2A and B. Simulations with the same target under n = 1, 2, 4, 8, 16, 32, 64 and

‘∞’ (the ground truth Fourier domain sampling) are carried out and the corresponding results

are depicted in Fig. S2A and C. In the simulation, we generate 50 sets of data with random

initialization for each emission group and perform 50 trials of phase retrieval for each set of

data, yielding a total of 50 × 50 = 2500 reconstructions. For each emission group, the average

peak SNRs of the 2500 reconstructions are counted, with the error bars indicating the standard

deviation of the mean peak SNR. The thermal features of the light source can be improved

by increasing the number of emitters, transforming the double slit from intractable to clearly

separated. The experiments and simulations embrace with each other and both indicate that at

least four emitters can correctly achieve the remote target. The averaged error bars are fairly

modest, especially when the emitters are greater than four. It is worth emphasizing that the

experimental results were obtained by single-shot measurements.

4 Different emissions vs acquisition frames.

In the current experimental setup, the incoherent source is modeled by a collection of emitters.

Measuring the intensity correlation function c
(2)
ab with pseudothermal light inevitably leads to

speckle-like noise due to interference of the signal with scattered light. By increasing the num-

ber of emitters or merging numerous collection frames, speckle-like noise can be reduced while

also improving the quality of the returned Fourier magnitude. Two shapes of targets are tested

and the reconstruction results with different emissions and acquisition frames from numerical
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Figure S2: Imaging of a double slit with different laser emissions. The two slits are 2 mm
wide and 6 mm long, with a 4 mm center distance between the two slits. (A) The curves of the
averaged reconstruction peak SNR versus different emitters (n = 1, 2, 4, 8, 16, 32, 64 and ‘GT’
= Ground truth). In both simulation and experiment, the imaging quality improved as emitters
increased. For simulation, in each laser emission group, 50 independent sets of HBT spectrum
are sampled (Section 9 and Fig. S1A to D) and 50 phase retrieval trials are implemented for each
HBT spectrum (Section 2 and Fig. 3). The peak SNRs of the 50 × 50 = 2500 reconstruction
results are counted for each emission group, with the error bars indicating the standard deviation
of the average reconstruction peak SNR. It should be noted that the results of the experiment
are from single-shot measurements. (B) Experimental reconstruction results under different
emitters (n = 1, 2, 4, 8). (C) Typical simulation reconstruction results blindly selected from
each emission group. Note that the emission ‘∞’ means reconstructed image in a noiseless
regime, revealing the theoretical limits of the method. Scale bars: 1 mm ((B), (C)).

simulation are presented in Fig. S3. Both results indicated that increasing the number of laser

emissions brings a major enhancement in image quality when compared to accumulating the

acquisition frames, demonstrating that the thermal properties of the light source are more influ-

ential to the imaging performance. To reduce the speckle-like noise, increasing the number of

laser emitters n has a convergence rate of O(1/
√
n) and this can be further accelerated when

the value of the Fourier spectrum approaches to 0 (O(1/n)). However, by accumulating the

acquisition frames k has a convergence rate of 1/
√
k (Section 7). The variation in convergence

rate causes disparities in the effectiveness of the two techniques for image quality enhancement.
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However, if emissions are limited, increasing the number of acquisitions can improve imaging

quality.

1mm

PSNR / dB

Ground Truth
Emissions 64
Captures 100

Emissions 128
Captures 50

Emissions 256
Captures 25

Emissions 512
Captures 12

Emissions 1024
Captures 6

Emissions 2048
Captures 3
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Captures 1

PSNR / dB

15.32 14.84 14.04 15.76 16.11 16.19 14.98

7.60 7.79 8.56 8.60 8.40 8.52 9.11

1mm

0

1

0

1

Figure S3: Numerical evaluations of the reconstruction with various virtual emissions and
average times. Leftmost column: Ground truth of the simulated targets. Second from left:
The impact of increasing laser emissions while decreasing averaging times but maintaining the
product of the two essentially constant. Both results show that increasing the number of laser
emissions improves image quality slightly more than increasing the average time, indicating
that the thermal properties of the light source are more essential to imaging performance (Sec-
tion 3). Nonetheless, in the case of restricted emissions, imaging quality can be be improved
by increasing the number of captures. The simulation parameter settings are identical to afore-
mentioned except that the virtual baseline shifts from 1 to 127 cm with a fixed interval of δ = 1
cm. Scale bars: 1 mm (all subgraphs).

5 Comparisons among different phase retrieval algorithms.

To demonstrate the superiority of the proposed phase retrieval scheme, we conducted an ex-

perimental comparison by imaging the letter ‘S’ (Fig. S4F and Fig. 5D). The letter ‘S’ was

chosen because curve shapes contain more complex features in Fourier space. However, the

retrieved target Fourier magnitude (Fig. 5C) is still noise-stained and has fainter high-frequency

information (Fig. 5C). The requirements for applying the Gerchberg-Saxton (GS) (29) itera-

tive phase retrieval algorithm and its derivations such as Error Reduction (ER) (38) and Hybrid

Input Output (HIO), are not satisfied and the resulting images (Fig. S4A to C) are of poor

quality. More advanced alternating projection algorithms such as Hybrid Projection Reflection
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(HPR) (39) (Fig. S4D) and Relaxed Averaged Alternating Reflectors (RAAR) (Fig. S4E), are

also unable to recover the target. In stark contrast, the image reconstructed from the proposed

method (Fig. S4G) significantly outperforms the others, with a diffraction-limited resolution of

1.5 mm (limited by the virtual aperture of 87 cm). High-fidelity reconstructions are attributed

to the majority voting and reduced support constraint as well as the cascade scheme. For the

algorithms compared, the number of iterations was set to 60, the initial support was used as a

non-centrosymmetric triangle, and the negative feedback parameter β for the single-cycle HIO,

HPR, and RAAR algorithms was fixed at 0.8.

GS ER HIO RAARHPR

0

1

1mm1mm

A B C D E F Ground truth Our result
G

G

Figure S4: Comparisons of the reconstruction performance with different phase retrieval
strategies. (A to E) Reconstructions of the letter ‘S’ with various phase retrieval algorithms,
including the algorithm Gerchberg-Saxton (GS), Error Reduction (ER), Hybrid Input Output
(HIO), Hybrid Projection Reflection (HPR), Relaxed Averaged Alternating Reflectors (RAAR).
Note that the iterative process of (A) to (E) does not employ the sparse constraint and the adap-
tive shrink-wrap support (see section of Image Reconstruction and Fig. 3D). (F) The ground
truth target. (G) The results obtained from the proposed method. Scale bars: 1 mm ((F), (G)).

6 Complex targets imaging via active intensity interferome-
try.

In this proof of concept, we have demonstrated two-dimensional superresolution imaging over

kilometers range with millimeters precision via the proposed active intensity interferometry.

Higher-fidelity complex target reconstruction is anticipated by improving the sampling rate on

the interferometric plane and multiplying the number of baselines/telescopes. To demonstrate

this, complex targets (the targets ‘satellite’ and ‘UFO’) with varying reflectivity levels imaged
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under a 247 cm baseline with a 1 cm sampling interval were tested, and the corresponding

results are depicted in Fig. S5. Since the intensity interferometry connects telescopes only

electronically, it is practically insensitive to atmospheric turbulence and optical imperfections,

permitting observations over very long baselines and through large airmasses, as well as at short

optical wavelengths. With kilometer baselines, sufficient sampling frequencies, and advanced

algorithms, tantalizing results are expected to open the window toward new scientific results.

0

1
Ground truth ReconstructionGround truth

PSNR 15.83dB PSNR 13.42dB

Reconstruction

0

1

1mm1mm1mm1mm

Figure S5: Numerical evaluations of the imaging capability of complex targets with varying
levels of reflectivity. (A), (C), Ground truth of the simulated targets. (B), (D), Reconstruction
results from single-shot data acquisition via the active intensity interferometer. In both situa-
tions, the reconstructed irradiance is nearly identical to the true value. The virtual baseline shifts
from 1 to 247 cm with a fixed interval of δ = 1 cm. The remaining parameters are the same as
in the experiment. With sufficient Fourier space sampling, our technique has the capacity to
observe complex targets as well as recover their surfaces with varying reflectivity levels. Scale
bars: 1 mm ((A) to (D)).

7 Theory Part I. Theory of multiple laser emitters with ther-
mal nature.

We model our imaging system based on statistical optics. As shown in Fig. 1 in the main text,

suppose our optical system consists of n laser emitters with angular frequency ω numbered 1 ∼

n in the source plane, a target that is a scattering sample of a particular structure in the object

plane, and two movable detectors Da and Db in the detection plane. Detectors Da and Db always

use the same polarization measurement in the experiment, then we can denote the electric fields
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they measure on this polarization component at time t as Ea(t) and Eb(t), respectively. For

simplicity, we only consider the case of far-field illumination and detection, that is, the distance

between the target and the emitters or detectors is much greater than the Fraunhofer distance

2D2/λ, where λ is the laser wavelength and D is the maximum value among laser beam waists,

detector apertures and target size.

If D is much smaller than the atmospheric coherence length, we can approximate each

emitter’s illumination light and its scattered light scattered by the target as an intensity- and

phase-modulated plane wave. To describe these plane waves, we denote ki as the wave vector

from the i-th emitter to the target, and denote ka and kb as the wave vectors from the target to the

detector Da and Db, respectively. Combining the above approximations and further ignoring all

CW laser delays due to the time-of-flight which is much smaller than the atmospheric coherence

time, we can approximately express Ea(t) and Eb(t) as

Ea,b(t) =
n∑

i=1

√
Ii(t)e

i(ϕi(t)−ωt)T (ki,ka,b)Ta,b(t). (6)

Here, Ii(t) and ϕi(t) represent the intensity and phase of the plane wavefront formed at the

target at time t by the illumination light from the ith emitter, T (kin,kout) is the target’s trans-

mission matrix between the kin input field and kout output field and Ta(t), Tb(t) are the field

propagation coefficients from the target to the detectors Da and Db at time t, respectively. All

the Ii(t), ϕi(t) and Ta(t), Tb(t) are treated as time-varying random variables which incorporate

the whole process of atmospheric disturbance.

Considering that it is difficult to make a complete statistical process modeling of atmo-

spheric disturbance, we approximate the impact of atmospheric disturbance as the following two

simple statistical assumptions. The first assumption is that all the Ii(t), ϕi(t) and Ta(t), Tb(t) are

independent of each other. Note that this assumption clearly does not hold when the distances

between different emitters or detectors are smaller than the atmospheric coherence length, so
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we need to avoid this in the experiment. The second assumption is that all the ϕi(t) are Gaussian

random processes. Let the notation ⟨...⟩t denote the time average over a sufficiently long time.

Define ϕi ≡ ⟨ϕi(t)⟩t and ∆ϕi(t) ≡ ϕi(t)− ϕi, using the properties of Gaussian distribution it’s

easy to prove that

⟨ei(ϕi(t)−ϕj(t))⟩t = ei(ϕi−ϕj)− 1
2
⟨(∆ϕi(t)−∆ϕj(t))

2⟩t . (7)

In this way, if ⟨(∆ϕi(t) −∆ϕj(t))
2⟩t ≫ 1 when i ̸= j, we can further have an approximation

of

⟨ei(ϕi(t)−ϕj(t))⟩t = δij ≡
{

1 i = j
0 i ̸= j

. (8)

This approximation is valid when the distance between emitters is much greater than the at-

mospheric coherence length. In fact, the ⟨(∆ϕi(t) − ∆ϕj(t))
2⟩t ≈ 1 condition can be used

as a definition of atmospheric coherence length. For example, the Kolmogorov turbulence

model (27, 28) expected that

⟨(∆ϕi(t)−∆ϕj(t))
2⟩t = 6.88(

rij
r0

)
5
3 , (9)

where rij is the distance between the i-th emitter and the j-th emitter, r0 is the Fried parameter,

which can be used as a representation of the atmospheric coherence length.

Define Ia(t) ≡ |Ea(t)|2 and Ib(t) ≡ |Eb(t)|2 as the intensities measured by detectors Da

and Db at time t, respectively, after using the above assumptions, the time-averaged intensity

can be expressed as

⟨Ia,b(t)⟩t = ⟨|Ea,b(t)|2⟩t = ηa,b

n∑
i=1

Ii|T (ki,ka,b)|2, (10)

where ηa,b ≡ ⟨|Ta,b(t)|2⟩t and Ii ≡ ⟨Ii(t)⟩t. Define c
(2)
i ≡ ⟨I2i (t)⟩t/Ii

2 − 1, we further have the
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intensity correlation function

⟨∆Ia(t)∆Ib(t)⟩t ≡ ⟨Ia(t)Ib(t)⟩t − ⟨Ia(t)⟩t⟨Ib(t)⟩t

= ηaηb[
∑
i ̸=j

Ii IjT (ki,ka)T (kj,kb)T
∗(ki,kb)T

∗(kj,ka)

+
n∑

i=1

c
(2)
i Ii

2|T (ki,ka)|2|T (ki,kb)|2],

(11)

It can be seen that for a particular target, both the time-averaged intensity and the intensity

correlation function have a particular value determined by the transmission matrix T (kin,kout)

of the scattering sample. Now we consider an ensemble of scattering samples with the same

geometric surface but different internal microstructure. The fully developed speckle model

proposed by Goodman et al. predicts that if the sample surface is sufficiently rough compared

to the wavelength of light, for each (kin,kout) pair, the transmission coefficient T (kin,kout)

behaves as a circular complex Gaussian random variable under different ensembles (40).

We next demonstrate that this statistical property of the transmission matrix is the key factor

causing speckle-like noise in the experimental data. Let the notation ⟨...⟩e denote the ensemble

average, and the notation ⟨...⟩t,e ≡ ⟨⟨...⟩t⟩e denote the ensemble average of a time average

quantity. Using the moment theorem (41) for complex Gaussian random variables, we have the

ensemble-averaged intensity correlation function

⟨∆Ia(t)∆Ib(t)⟩t,e = ηaηb[
∑
i ̸=j

Ii Ij⟨T (ki,ka)T
∗(ki,kb)⟩e⟨T (kj,kb)T

∗(kj,ka)⟩e

+
∑
i ̸=j

Ii Ij⟨T (ki,ka)T
∗(kj,ka)⟩e⟨T (kj,kb)T

∗(ki,kb)⟩e

+
n∑

i=1

c
(2)
i Ii

2
(⟨|T (ki,ka)|2⟩e⟨|T (ki,kb)|2⟩e + |⟨T (ki,ka)T

∗(ki,kb)⟩e|2)].

(12)

To further obtain an explicit expression of the above formula, we need to study the coherence

function of the form ⟨T (kin1,kout1)T
∗(kin2,kout2)⟩e, where kin1 = kin2 or kout1 = kout2. For

the first case, the classical coherence theory based on the van Cittert-Zernike theorem gives (42)

⟨T (kin,kout1)T
∗(kin,kout2)⟩e ∝

∫
ρ(r)e−i(kout1−kout2).rdr, (13)
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which is the Fourier transform of the intensity distribution on the output surface of the target.

So let

⟨T (kin,kout1)T
∗(kin,kout2)⟩e = ηf(kout1 − kout2), (14)

where η is a real constant and f is the normalized Fourier function, that is,

f(∆k) =
∫
ρ(r)e−i∆k.rdr∫

ρ(r)dr
. (15)

For the second case, we assume that

⟨T (kin1,kout)T
∗(kin2,kout)⟩e = ηh(kin1 − kin2), (16)

where h is a function that satisfies h(0) = f(0) = 1. For surface scattering, classical coherence

theory simply predicts h = f , but for volume scattering, the physical mechanism here is much

more complicated. Some modern studies on speckle have found that the function h is related to

the optical memory effect. Both theory (25) and experiment (26) show that h will decay to 0

when |ki − kj| is large, and we will not discuss the relevant details here. Substituting Eq. (14)

and Eq. (16) into Eq. (10) and Eq. (12), we obtain

⟨Ia,b(t)⟩t,e = ηa,b η
n∑

i=1

Ii (17)

and

⟨∆Ia(t)∆Ib(t)⟩t,e = ηaηb η
2[

n∑
i=1

c
(2)
i Ii

2
+
∑
i ̸=j

Ii Ij|h(ki − kj)|2

+ (
n∑

i=1

c
(2)
i Ii

2
+
∑
i ̸=j

Ii Ij)|f(ka − kb)|2],
(18)

respectively. In our experiment, the quantity we measure is the normalized intensity correlation

function c
(2)
ab , which is defined as

c
(2)
ab ≡

⟨∆Ia(t)∆Ib(t)⟩t
⟨Ia(t)⟩t,e⟨Ib(t)⟩t,e

. (19)
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According to Eq. (17) and Eq. (18), the ensemble average of c(2)ab is

⟨c(2)ab ⟩e = c0 + c1|f(ka − kb)|2, (20)

where

c0 =

∑n
i=1 c

(2)
i Ii

2
+
∑

i ̸=j Ii Ij|h(ki − kj)|2

(
∑n

i=1 Ii)
2

, (21)

and

c1 =

∑n
i=1 c

(2)
i Ii

2
+
∑

i ̸=j Ii Ij

(
∑n

i=1 Ii)
2

. (22)

To quantify the level of speckle-like noise, we further calculate σ(c(2)ab ), which is the standard

deviation of c(2)ab , defined as

σ(c
(2)
ab ) ≡

√
⟨(c(2)ab − ⟨c

(2)
ab ⟩e)2⟩e. (23)

If the optical memory effect of the scattering sample is neglected, we can show that

σ(c
(2)
ab ) =

√
d0 + d1|f(ka − kb)|2 + d2|f(ka − kb)|4, (24)

where

d0 =

∑n
i=1 3(c

(2)
i Ii

2
)2 +

∑
i ̸=j(Ii Ij)

2

(
∑n

i=1 Ii)
4

, (25)

d1 =

∑n
i=1 14(c

(2)
i Ii

2
)2 +

∑
i ̸=j(12c

(2)
i Ii

3
Ij + 2Ii

2
Ij

2
) +

∑
i ̸=j,j ̸=k,k ̸=i 2Ii

2
Ij Ik

(
∑n

i=1 Ii)
4

, (26)

and

d2 =

∑n
i=1 3(c

(2)
i Ii

2
)2 +

∑
i ̸=j(4c

(2)
i Ii

3
Ij + 3Ii

2
Ij

2
) +

∑
i ̸=j,j ̸=k,k ̸=i 2Ii

2
Ij Ik

(
∑n

i=1 Ii)
4

. (27)

For the derivation details of the above formula, see Section 8.

To better understand these results from a physical perspective, we consider two simplified

cases. The first case is to use only one laser emitter for illumination, that is, n = 1, then the

ensemble average and the standard deviation of c(2)ab can be simplified as

⟨c(2)ab ⟩e = c
(2)
1 (1 + |f(ka − kb)|2) (28)
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and

σ(c
(2)
ab ) = c

(2)
1 (3 + 14|f(ka − kb)|2 + 3|f(ka − kb)|4)

1
2 , (29)

respectively. In the ideal situation without atmospheric disturbance, c(2)1 = 0, then c
(2)
ab =

⟨c(2)ab ⟩e = σ(c
(2)
ab ) = 0 can be further obtained, which is in line with the expectation that no

intensity interference signal can be detected under ideal coherent light illumination. When

atmospheric disturbance can cause an autocorrelation coefficient c(2)1 that cannot be ignored, an

intensity interference signal proportional to c
(2)
1 on average can actually be measured. However,

since σ(c(2)ab ) is also proportional to c
(2)
1 , the level of speckle-like noise is almost the same as the

signal (easy to prove that
√
3 < σ(c

(2)
ab )/⟨c

(2)
ab ⟩e <

√
5), resulting in a very low SNR.

The second case is when there is more than one emitter but all emitters have identical

properties and the optical memory effect of the scattering sample is neglected. We assume

I1 = I2 = ... = In and c
(2)
1 = c

(2)
2 = ... = c

(2)
n = c is an autocorrelation coefficient, then we

have the expressions

⟨c(2)ab ⟩e =
c

n
+

n− 1 + c

n
|f(ka − kb)|2 (30)

and

σ(c
(2)
ab ) = [

n− 1 + 3c2

n3
+

2n2 + (12c− 4)n+ 14c2 − 12c+ 2

n3
|f(ka − kb)|2

+
2n2 + (4c− 3)n+ 3c2 − 4c+ 1

n3
|f(ka − kb)|4]

1
2 ,

(31)

respectively. We can see that as the number of laser emitters n increases, ⟨c(2)ab ⟩e will approach

|f(ka−kb)|2, and σ(c
(2)
ab ) will decrease to 0 at a rate of O(1/

√
n), that is, the speckle-like noise

will gradually disappear. When n approaches infinity, our theory and the classical HBT theory

based on ideal thermal light sources will give consistent predictions.
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8 Theory Part II. Detailed derivation of the σ(c
(2)
ab ).

To simplify the calculation of σ(c
(2)
ab ), we first introduce the notation X1 ∼ Xn, which are

defined as

Xi ≡ IiT (ki,ka)T
∗(ki,kb) (∀i ∈ {1, 2, ..., n}). (32)

Then c
(2)
ab can be rewritten as

c
(2)
ab =

∑
i ̸=j XiX

∗
j +

∑n
i=1 c

(2)
i |Xi|2

η2(
∑n

i=1 Ii)
2

. (33)

We also introduce notations D and Cov to represent variance and covariance under ensemble

statistics, that is, if X and Y are random variables, we define

D(X) ≡ ⟨X2⟩e − ⟨X⟩2e,

Cov(X, Y ) ≡ ⟨XY ⟩e − ⟨X⟩e⟨Y ⟩e.
(34)

In this way, σ(c(2)ab ) can be expressed as

σ(c
(2)
ab ) =

√
D(

∑
i ̸=j XiX∗

j +
∑n

i=1 c
(2)
i |Xi|2)

η2(
∑n

i=1 Ii)
2

=

√
D(

∑
i ̸=j XiX∗

j ) + 2Cov(
∑

i ̸=j XiX∗
j ,
∑n

i=1 c
(2)
i |Xi|2) +D(

∑n
i=1 c

(2)
i |Xi|2)

η2(
∑n

i=1 Ii)
2

(35)

Using the momentum theorem (41), we can simply prove that for any i = 1 ∼ n, Xi has the

following properties:

⟨Xi⟩e = ηIif(ka − kb),

⟨X2
i ⟩e = 2η2Ii

2
f 2(ka − kb),

⟨|Xi|2⟩e = η2Ii
2
(1 + |f(ka − kb)|2),

⟨Xi|Xi|2⟩e = 2η3Ii
3
f(ka − kb)(2 + |f(ka − kb)|2),

⟨|Xi|4⟩e = 4η4Ii
4
(1 + 4|f(ka − kb)|2 + |f(ka − kb)|4).

(36)
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On the other hand, if the optical memory effect of the scattering sample is neglected, it means

⟨T (kin1,kout1)T
∗(kin2,kout2)⟩e = 0 (∀kin1 ̸= kin2). (37)

It can be immediately proved that X1 ∼ Xn are independent of each other, that is, any multi-

variate moment can always be decomposed into the form of the product of univariate moments,

and its mathematical expression is

⟨
n∏

i=1

Xαi
i X∗βi

i ⟩e =
n∏

i=1

⟨Xαi
i X∗βi

i ⟩e, (38)

where α1 ∼ αn and β1 ∼ βn are any non-negative integers.

Using the above conclusions, we can do the following calculations:

D(
∑
i ̸=j

XiX
∗
j ) =

∑
i ̸=j

(D(XiX
∗
j ) + Cov(XiX

∗
j , XjX

∗
i ))

+
∑

i ̸=j,j ̸=k,k ̸=i

Cov(XiX
∗
j , (Xi +Xj)X

∗
k +Xk(X

∗
i +X∗

j ))

=
∑
i ̸=j

η4Ii
2
Ij

2
(1 + 2|f(ka − kb)|2 + 3|f(ka − kb)|4)

+
∑

i ̸=j,j ̸=k,k ̸=i

η4Ii Ij(Ii + Ij)Ik(|f(ka − kb)|2 + |f(ka − kb)|4),

Cov(
∑
i ̸=j

XiX
∗
j ,

n∑
i=1

c
(2)
i |Xi|2) =

∑
i ̸=j

Cov(XiX
∗
j , c

(2)
i |Xi|2 + c

(2)
j |Xj|2)

=
∑
i ̸=j

η4Ii Ij(c
(2)
i Ii

2
+ c

(2)
j Ij

2
)(3|f(ka − kb)|2 + |f(ka − kb)|4),

D(
n∑

i=1

c
(2)
i |Xi|2) =

n∑
i=1

D(c
(2)
i |Xi|2)

=
n∑

i=1

η4(c
(2)
i Ii

2
)2(3 + 14|f(ka − kb)|2 + 3|f(ka − kb)|4)

(39)

Substituting them into Eq. (35) yields the expression of σ(c(2)ab ).
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9 Theory Part III. Data acquisition simulation of the active
intensity interferometry.

This chapter will discuss how to construct an algorithm for simulating c
(2)
ab sampling based on

the aformentioned statistical optical model. For simplicity, we take all physical quantities to be

dimensionless quantities, and only simulate the case where all laser emitters are symmetrically

equivalent, that is, η = 1 (dimensionless), I1 = I2 = ... = In = 1 (dimensionless) and

c
(2)
1 = c

(2)
2 = ... = c

(2)
n = c (autocorrelation coefficent). Substituting them into Eq. (33), we

have

c
(2)
ab =

|
∑n

i=1Xi|2 + (c− 1)
∑n

i=1 |Xi|2

n2
, (40)

where Xi = T (ki,ka)T
∗(ki,kb) for any i = 1 ∼ n and all the T (ki,ka,b) ∼ CN (0, 1)

are complex standard normal random variables. We futher ignore the optical memory effect of

the scattering sample, then according to the discussion in the previous chapter, all the Xi are

independent random variables. In this case, the algorithm only needs to independently sample

the random variable X a total of n times to obtain X1 ∼ Xn, and then generate a simulating

sample of the c
(2)
ab .

Now we discuss how to construct an algorithm to sample X . We rewrite X as X = c1c
∗
2,

where c1 ∼ CN (0, 1) and c2 ∼ CN (0, 1) satisfy ⟨c1c∗2⟩e = f(ka − kb). Using the linear

combination of circular complex Gaussian random variables still satisfying the properties of

circular complex Gaussian distribution, we can sample c1 and c2 in the following way:

{
c1 =

√
1− |f(ka − kb)|2z1 + f(ka − kb)z2

c2 = z2
. (41)

Here, z1 ∼ CN (0, 1) and z2 ∼ CN (0, 1) are independent of each other. On a computer

that can only executes the programs with real numbers, the program can independently sample
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x ∼ N (0, 1/2) and y ∼ N (0, 1/2) and let z = x + iy be used as a sampling of a complex

standard normal random variable. Combining all of the above, we finally construct an algorithm

for sampling c
(2)
ab .

10 Estimation and Optimization of SNR in Coincidence Count-
ing Measurement

In addition to the speckle-like noise discussed in the previous sections, for a practical intensity

interferometer, the randomness of the coincidence counting measurement will also introduce

noise into the intensity interference signal. For classical stellar intensity interferometers, the

SNR has been shown to be estimated as (14)

SNR ∼ r∆τ

√
T

∆t
, (42)

where r is the count rate of the photon detectors (number of photons per unit time), ∆τ is the

coherence time of the light source, ∆t is the time bin for coincidence counting (or the time

resolution of the photon detectors) and T is the integration time. Eq. (42) uses two important

assumptions in the derivation process, one is that the time resolution of the photon detectors are

much larger than the coherence time of the light source, that is, ∆t ≫ ∆τ , and the other is the

Poisson noise approximation when the photon count rate is low, that is, r∆τ ≪ 1. These two

assumptions are generally valid for stellar intensity interferometers whose observation targets

are weak and broad-spectrum light sources.

However, for active intensity interferometry, both assumptions may not hold because of the

use of pseudothermal illumination. Let us first consider only the case where the first assumption

does not hold. When ∆t ≫ ∆τ , the visibility of the intensity interference signal is of ∆τ/∆t

magnitude, but when ∆t ≪ ∆τ , the maximum visility will be exactly 1. So reconsidering the

derivation process of Eq. (42) in the origin article (14), when ∆t ≪ ∆τ , the SNR need to be

40



estimated as

SNR ∼ r
√
T∆t. (43)

Combining the above two different boundary conditions, it can be found that the SNR is

maximized when ∆t and ∆τ are of the same order of magnitude.

In addition, when the count rate increases, the SNR will also increase proportionally, but it

cannot be infinitely improved. When r2∆τ∆t ≫ 1, on average, r2∆τ∆t coincidence events

will occur every ∆τ time, and they are almost all correlated. That is to say, every r2∆τ∆t

consecutive coincidence events can only be approximately combined into one “effective” coin-

cidence event. Therefore, the SNR given by Eq. (42) or Eq. (43) is overestimated by a factor

of r
√
∆τ∆t considering that the SNR is proportional to the square root of the total coincidence

rate. Ultimately, the theoretical maximum value of SNR can be expressed as

max(SNR) ∼

{
r
√
T∆τ ∆t ≈ ∆τ when r∆τ ≪ 1√

T
∆τ

. 1
r2∆τ

≪ ∆t≪ ∆τ when r∆τ ≫ 1
. (44)

In the experiment, we have time bin ∆t = 2 ms, integration time T = 2 s, count rate

r ≈ 104 Hz and ∆τ is the atmospheric coherence time, which is measured to be about 27 ms as

shown in Fig. S6. The value of ∆t satisfies the condition of the maximizing the SNR given by

Eq. (44), and it is calculated that SNR∼10.
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Figure S6: Estimation of atmospheric coherence time. The second-order temporal coherence
is calculated from the illumination intensity sequence measured by a high frame rate camera
placed near the target. Using a model of second-order temporal coherence decaying exponen-
tially with time delay, we fitted the atmospheric coherence time to approximately 27 ms.

42


	Simulations.
	Computational retrieval method.
	Imaging performance vs. number of laser emitters.
	Different emissions vs acquisition frames.
	Comparisons among different phase retrieval algorithms.
	Complex targets imaging via active intensity interferometry.
	Theory Part I. Theory of multiple laser emitters with thermal nature.
	Theory Part II. Detailed derivation of the (cab(2)).
	Theory Part III. Data acquisition simulation of the active intensity interferometry.
	Estimation and Optimization of SNR in Coincidence Counting Measurement

