
Graph Neural Networks for Vulnerability Detection: A
Counterfactual Explanation

Zhaoyang Chu∗
School of Computer Science and

Technology, Huazhong University of
Science and Technology, China
chuzhaoyang@hust.edu.cn

Yao Wan∗†
School of Computer Science and

Technology, Huazhong University of
Science and Technology, China

wanyao@hust.edu.cn

Qian Li
School of Electrical Engineering,
Computing and Mathematical

Sciences, Curtin University, Australia
qli@curtin.edu.au

Yang Wu∗
School of Computer Science and

Technology, Huazhong University of
Science and Technology, China
wuyang_emily@hust.edu.cn

Hongyu Zhang
School of Big Data and Software

Engineering, Chongqing University,
China

hyzhang@cqu.edu.cn

Yulei Sui
School of Computer Science and

Engineering, University of New South
Wales, Australia

y.sui@unsw.edu.au

Guandong Xu
School of Computer Science,

University of Technology Sydney,
Australia

guandong.xu@uts.edu.au

Hai Jin∗
School of Computer Science and

Technology, Huazhong University of
Science and Technology, China

hjin@hust.edu.cn

ABSTRACT

Vulnerability detection is crucial for ensuring the security and relia-
bility of software systems. Recently, Graph Neural Networks (GNNs)
have emerged as a prominent code embedding approach for vulner-
ability detection, owing to their ability to capture the underlying
semantic structure of source code. However, GNNs face significant
challenges in explainability due to their inherently black-box nature.
To this end, several factual reasoning-based explainers have been
proposed. These explainers provide explanations for the predic-
tions made by GNNs by analyzing the key features that contribute
to the outcomes. We argue that these factual reasoning-based ex-
planations cannot answer critical what-if questions: “What would
happen to the GNN’s decision if we were to alter the code graph into
alternative structures?” Inspired by advancements of counterfac-
tual reasoning in artificial intelligence, we propose CFExplainer, a
novel counterfactual explainer for GNN-based vulnerability detec-
tion. Unlike factual reasoning-based explainers, CFExplainer seeks
the minimal perturbation to the input code graph that leads to a
change in the prediction, thereby addressing the what-if questions

∗Also with National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China.
†Yao Wan is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3652136

for vulnerability detection. We term this perturbation a counterfac-
tual explanation, which can pinpoint the root causes of the detected
vulnerability and furnish valuable insights for developers to un-
dertake appropriate actions for fixing the vulnerability. Extensive
experiments on four GNN-based vulnerability detection models
demonstrate the effectiveness of CFExplainer over existing state-
of-the-art factual reasoning-based explainers.

CCS CONCEPTS

• Software and its engineering→ Software reliability.

KEYWORDS

Vulnerability detection, graph neural networks, model explainabil-
ity, counterfactual reasoning, what-if analysis.

ACM Reference Format:

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui,
Guandong Xu, and Hai Jin. 2024. Graph Neural Networks for Vulnerability
Detection: A Counterfactual Explanation. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3650212.3652136

1 INTRODUCTION

Software vulnerabilities, which expose weaknesses in a program,
present a significant risk to data integrity, user privacy, and overall
cybersecurity [29, 31, 66]. As of now, the Common Vulnerabilities
and Exposures (CVE) [18] has reported tens of thousands of software
vulnerabilities annually. Thus, vulnerability detection, which aims
to automatically identify potentially vulnerable code, plays a pivotal
role in ensuring the security and reliability of software.

Existing efforts on vulnerability detection primarily fall within
two main categories: static analysis-based approaches [16, 45, 49]
and deep learning-based approaches [20, 30, 31, 66]. Traditional

ar
X

iv
:2

40
4.

15
68

7v
1 

 [
cs

.S
E

] 
 2

4 
A

pr
 2

02
4

https://doi.org/10.1145/3650212.3652136
https://doi.org/10.1145/3650212.3652136


ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

CVE-2016-10190

Generating Explanations

static int http_read_stream(

  URLContext *h, uint8_t *buf, int size) 

{

HTTPContext *s = h->priv_data;

  ...

  if (s->chunksize >= 0) {

    if (!s->chunksize) {

      ...

      s->chunksize = strtoll(line, NULL, 16);

      ...

    }

    size = FFMIN(size, s->chunksize);

  }

  int len;

  len = s->buf_end - s->buf_ptr;

  if (len > 0) {

    if (len > size) len = size;

    memcpy(buf, s->buf_ptr, len);

    ...

  } else {

    ...

    len = ffurl_read(s->hd, buf, size);

    ...

  }

  ...

}

1

2

3

4

5

6

7

8

Code Graph
black-box 

GNNs

Vulnerable

Open

Vulnerability Detection

2

5

4 7

8

6

3

1

Why my written code is 

detected as vulnerable?

Factual Reasoning

The selected sub-graph (①, ⑤, ⑦, and ⑧) is the key 

feature that contributed to the detected vulnerability.
2

5

4 7

8

6

3

1

5

7

8

1

The chunksize, passed from ④, causes a miscalculation 

of size at ⑤, which in turn triggers the vulnerability at ⑦

and ⑧. Thus, please inspect the value of chunksize in ④. 

Analysis of What-If

2

5

4 7

8

6

3

1 2

5

4 7

8

6

3

1 2

5

4 7

8

6

3

1

2

5

4 7

8

6

3

1

(a)

(b) (c) (d)

Figure 1: Illustration of factual reasoning-based explanation (right middle) and what-if analysis (right bottom).

static analysis-based approaches (e.g., SVF [45] and Infer [1]) rely on
human experts to manually define specific rules for detecting vul-
nerabilities. Recently, deep learning-based approaches, exemplified
by pioneering works such as VulDeePecker [31] and Devign [66],
have made remarkable strides, largely attributed to their capacity to
learn comprehensive code representations, thereby enhancing the
detection capabilities across diverse vulnerabilities. Among these
approaches, Graph Neural Networks (GNNs) [6, 7, 20, 29, 66] have
recently attracted substantial attention, owing to their capacity to
capture intricate structural information of code, e.g., syntax trees,
control flows, and data flows.

Despite the significant progress made by GNNs in vulnerability
detection, existing detection systems suffer from the explainability
issues due to the black-box and complicated nature of deep neural
networks. Given a predicted result, developers are often confused
by the following question: “Why my code is detected as vulnerable?”
From our investigation, existing studies [15, 21, 29] on explainable
vulnerability detection are typically factual reasoning-based explain-
ers. The core idea of these explainers is to identify key features in
the input data (e.g., sub-graphs in the code graph) that contribute to
the final predictions. The selected features are commonly regarded
as factual explanations, as they derive from empirical input data
and serve as factual evidence for particular outcomes.

Here, we contend that those factual reasoning-based explana-
tions, which merely delineate the features or sub-graphs contribut-
ing to the identified vulnerability, are not convincing enough. One
reason is that developers remain uncertain about the actual in-
fluence of the code segments, which constitute the explanation
sub-graph, on the detection result. In other words, the factual
reasoning-based explanations cannot answer “What would hap-
pen to the detection system’s decision if we were to alter these code
segments into alternative structures?” This perspective of what-if is
often associatedwith a human cognitive activity that imagines other
possible scenarios for events that have already happened [39]. This

motivates us to develop a novel paradigm for analyzing detected
vulnerabilities in source code - what-if analysis. In our cases, what-
if analysis explores hypothetical code instances with alternative
structures. This approach aims to identify potential changes that
would fix the vulnerability, thereby providing a better explanation
of the root causes and factors contributing to its existence.

WhyWhat-If Analysis? A Motivating Example. We use Fig-
ure 1 as an example to illustrate the advantage of analyzing what-if
in explaining vulnerability detection compared to factual reasoning-
based explanations. This example involves a heap-based buffer
overflow vulnerability in the FFmpeg project1, reported by CVE-
2016-101902, which allows remote Web servers to execute arbitrary
code via a negative chunk size in an HTTP response. Specifically,
this vulnerability arises from misuse of the strtoll function for
parsing chunksize from HTTP responses into int64_t format,
without properly validating for negative values ( 4○). Then, a nega-
tive chunksize can result in an erroneous calculation in the FFMIN
function, producing a negative size for buffer operations ( 5○). This
negative size potentially triggers out-of-bounds write operations,
ultimately leading to a heap buffer overflow ( 7○ and 8○). In this
example, the vulnerability detection system parses the code snippet
into a semantic code graph (e.g., Abstract Syntax Tree (AST), Control
Flow Graph (CFG), Data Flow Graph (DFG), or Program Dependency
Graph (PDG)). Here, without loss of generality, we consider the
parsed code graph as a DFG for better illustration.

The vulnerability detection systems employ GNNs to model the
DFG and yield a prediction outcome that classifies the input code
snippet as vulnerable. To explain the prediction of “vulnerable”,
the factual reasoning-based explanation identifies a compact sub-
graph in the code graph ( 1○, 5○, 7○, and 8○) as the key feature
that contributes to the detected vulnerability. This allows develop-
ers to recognize segments 7○ and 8○, which involve buffer write
1https://github.com/FFmpeg/FFmpeg
2https://www.cvedetails.com/cve/CVE-2016-10190

https://github.com/FFmpeg/FFmpeg
https://www.cvedetails.com/cve/CVE-2016-10190


Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation ISSTA ’24, September 16–20, 2024, Vienna, Austria

operations ( 1○ and 5○ are not involved), as potentially vulnera-
ble blocks. However, the explanation provided is inadequate for
guiding code rectification to alter the detection system’s decision,
leaving developers to manually check variables such as len, size,
and chunksize to identify the actual cause of the vulnerability.

In contrast, to investigate the context of vulnerability occur-
rences, what-if analysis proactively and iteratively explores di-
verse hypothetical code structures (e.g., (a), (b), (c), and (d)), by
inputting each into the detection system to observe varied predic-
tion outcomes. Taking structure (a) as an example, it is evident that
removing the data-flow dependencies 5○→ 7○ and 5○→ 8○, while
retaining 6○→ 7○, leads to a prediction of “non-vulnerable”. It sug-
gests that calculating size at 5○ may be a vulnerability source,
while the computation of len at 6○ does not contribute to the vul-
nerability. Through iterative exploration for subsequent structures
(b), (c), and (d), what-if analysis functions as an “optimization” pro-
cess, eventually “converging” to a minimal change that alters the
detection system’s decision, i.e., only removing 4○→ 5○ in structure
(d). The minimal change highlights the data flow 4○→ 5○ as the
root cause, which passes potentially incorrect chunksize, result-
ing in a miscalculation of size at 5○ and in turn triggering the
buffer overflow at 7○ and 8○. Consequently, developers receive an
actionable insight, i.e., directly inspecting the value of chunksize
at 4○ for potential errors. Overall, we can conclude that the what-if
analysis essentially simulates the interactions between developers
and the vulnerability detection system during debugging, methodi-
cally identifying the root causes of the detected vulnerabilities and
guiding developers to effective solutions.

Our Solution and Contributions. Recent advances of counterfac-
tual reasoning in artificial intelligence [3, 26, 27, 33, 47, 48, 54, 60]
shed light on the possibility of applying what-if analysis for GNN-
based vulnerability detection. A counterfactual instance represents
an instance that, while closely similar to the original instance, is
classified by the black-box model in a different class. Thus, counter-
factual reasoning aims to identify minimal changes in input features
that can alter outcomes, thereby addressing the what-if questions.

Building upon this motivation, we propose CFExplainer, the
first explainer to introduce counterfactual reasoning for enhanc-
ing the explainability of GNNs in vulnerability detection. Given a
code instance, CFExplainer aims to identify a minimal perturba-
tion to the code graph input that can flip the detection system’s
prediction from “vulnerable” to “non-vulnerable”. CFExplainer
formulates the search problem for counterfactual perturbations
as an edge mask learning task, which learns a differentiable edge
mask to represent the perturbation. Based on the differentiable edge
mask, CFExplainer builds a counterfactual reasoning framework
to generate insightful counterfactual explanations for the detection
results. Extensive experiments on four representative GNNs for
vulnerability detection (i.e., GCN, GGNN, GIN, and GraphConv)
validate the effectiveness of our proposed CFExplainer, both in
terms of vulnerability-oriented and model-oriented metrics.

The key contributions of this paper are as follows.

• To the best of our knowledge, we are the first to discuss the
what-if question and introduce the perspective of counterfactual
reasoning for GNN-based vulnerability detection.

• We propose a counterfactual reasoning-based explainer, named
CFExplainer, to generate explanations for the decisions made
by the GNN-based vulnerability detection systems, which can
help developers discover the vulnerability causes.

• We conduct extensive experiments on four GNN-based vulnera-
bility detection systems to validate the effectiveness of CFEx-
plainer. Our results demonstrate that CFExplainer outper-
forms the state-of-the-art factual reasoning-based explainers.

2 BACKGROUND

In this section, we begin by introducing essential preliminary knowl-
edge necessary for a better understanding of our model. Subse-
quently, we present a mathematical formulation of the problem
under study in this paper.

2.1 GNN-based Vulnerability Detection Model

Suppose thatwe have a set of𝑁 code snippetsD = {𝐶1,𝐶2, . . . ,𝐶𝑁 },
and each code snippet 𝐶𝑘 is associated with a ground-truth la-
bel 𝑌𝑘 ∈ {0, 1}, which categorizes the code snippet as either non-
vulnerable (0) or vulnerable (1). The goal of vulnerability detection
is to learn a mapping function 𝑓 (·) that assigns a code snippet to
either a non-vulnerable or vulnerable label.

Current deep learning-based approaches follow a fundamen-
tal pipeline wherein the semantics of the source code are embed-
ded into a hidden vector, which is then fed into a classifier. Re-
cently, GNNs have been designed to capture the semantic structures
of source code, e.g., ASTs, CFGs, DFGs, and PDGs. Given a code
graph𝐺𝑘 of𝐶𝑘 , GNN typically follows a two-step message-passing
scheme (i.e., aggregate and update) at each layer 𝑙 to learn node
representations for 𝐺𝑘 .

Firstly, GNN generates an intermediate representation m𝑙
𝑖
for

each node 𝑖 in 𝐺𝑘 by aggregating information from its neighbor
nodes, denoted by N(𝑖), using an aggregation function:

m𝑙𝑖 = Aggregation({h𝑙−1𝑗 | 𝑗 ∈ N (𝑖)}) , (1)

where h𝑙−1
𝑗

denotes the representation of node 𝑗 in the previous
layer. Subsequently, the GNN updates the intermediate representa-
tion m𝑙

𝑖
for each node 𝑖 via an update function:

h𝑙𝑖 = Update(m𝑙𝑖 , h
𝑙−1
𝑖 ) . (2)

For a 𝐿-layer GNN, the final representation of the node 𝑖 is h𝐿
𝑖
. To

obtain a graph representation h𝑘 for the code graph 𝐺𝑘 , a readout
function (e.g., graph mean pooling) is applied to integrate all the
node representations of 𝐺𝑘 :

h𝑘 = Readout({h𝐿𝑖 }) . (3)

Finally, the graph representation h𝑘 is fed into a classifier (e.g.
Multi-Layer Perception (MLP)) followed by a Softmax function to
calculate the probability distribution of non-vulnerable and vulner-
able classes, as follows:

𝑃 (𝑐 | 𝐺𝑘 ) = Softmax(MLP(h𝑘 )) , (4)

where 𝑃 (𝑐 | 𝐺𝑘 ) is the predicted probability of the code snippet
𝐶𝑘 that belongs to each class in {0, 1}, i.e., 𝐶𝑘 is vulnerable or not.



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

The GNN model can be optimized by minimizing the binary cross-
entropy loss between the predicted probabilities and the ground-
truth labels, allowing it to learn from both non-vulnerable and
vulnerable code instances in the training set.

As the model trained, in the testing phase, when presented with
a code snippet 𝐶𝐾 accompanied by its code graph 𝐺𝑘 , the trained
GNN model 𝑓 (·) is employed to compute the predicted probability
𝑃 (𝑐 | 𝐺𝑘 ) for each class. The resulting estimated label 𝑌𝑘 for 𝐶𝑘 is
determined by selecting the class with the highest probability:

𝑌𝑘 = argmax
𝑐∈{0,1}

𝑃 (𝑐 | 𝐺𝑘 ) . (5)

Investigated GNNs for Vulnerability Detection. In this study,
we investigate four widely used GNNs for vulnerability detection.
These GNNs employ various implementations of theAggregation(·)
and Update(·) functions to capture structural code information for
vulnerability detection.
⊲ Graph Convolutional Network (GCN) [25] generalizes the idea
of convolutional neural networks to graphs. It aggregates neighbor
node representations by summing them and utilizes an MLP to
update the aggregated node representations.
⊲ Gated Graph Neural Network (GGNN) [28] utilizes a Gated
Recurrent Unit [8] to control information flow through edges when
updating the aggregated node representations.
⊲ Graph Isomorphism Network (GIN) [56] introduces the con-
cept of graph isomorphism to ensure permutation invariance. It
employs a graph isomorphism operator to update the aggregated
node representations.
⊲ GraphConv [36] incorporates higher-order graph structures at
multiple scales to enhance GNN’s expressive power.

2.2 Model Explainability: The Problem

Suppose that we have a trained GNN model 𝑓 (·) and its prediction
𝑌𝑘 on the target code 𝐶𝑘 represented by a code graph 𝐺𝑘 . In this
paper, we explore the explainability of GNNs within a black-box
setting, recognized as a more challenging context for exploring
model interpretability, where access to model parameters, training
data, and gradients of each layer is unavailable. In the black-box
setting, we constrain the explainer to derive the prediction prob-
ability 𝑃 (𝑐 | 𝐺𝑘 ) exclusively by querying the model 𝑓 (·) with the
code graph 𝐺𝑘 as the input.

Under the aforementioned scenario, the factual reasoning-based
explainers provide explainability by identifying key features that
contribute to the model’s prediction. For example, Li et al. [29]
propose to seek a compact sub-graph 𝐺𝑆

𝑘
that maintains the same

prediction result as using the whole code graph 𝐺𝑘 . They opti-
mize the explainer by maximizing the probability of predicting the
original estimated label 𝑌𝑘 when the input graph is limited to the
sub-graph 𝐺𝑆

𝑘
, defined as:

max
𝐺𝑆
𝑘

𝑃 (𝑌𝑘 | 𝐺𝑆
𝑘
) . (6)

On the contrary, counterfactual reasoning provides explainability
by generating counterfactual instances to address what-if ques-
tions. For the given code graph 𝐺𝑘 , we generate its counterfactual
instance by introducing a subtle perturbation to it, resulting in a
new graph 𝐺̃𝑘 . The perturbed graph 𝐺̃𝑘 differs minimally from the

original𝐺𝑘 but is classified in a different class, i.e., 𝑓 (𝐺̃𝑘 ) ≠ 𝑓 (𝐺𝑘 ).
As a result, counterfactual reasoning aims to identify a minimal
perturbation to𝐺𝑘 that alters the decision of the detection system.
Wemathematically formulate the counterfactual reasoning problem
as follows:

min
𝐺̃𝑘

𝑑 (𝐺̃𝑘 ,𝐺𝑘 ) ,

s.t., argmax
𝑐∈{0,1}

𝑃 (𝑐 | 𝐺̃𝑘 ) ≠ 𝑌𝑘 ,
(7)

where 𝑑 (·, ·) represents a distance metric that quantifies the differ-
ences between 𝐺̃𝑘 and 𝐺𝑘 , e.g., the number of edges removed by
the perturbation.

3 PROPOSED CFEXPLAINER

In this section, we propose a counterfactual reasoning-based ex-
plainer, named CFExplainer, for GNN-based vulnerability detec-
tion. CFExplainer comprises several key components: (1) Code
Graph Perturbation. CFExplainer employs a differentiable edge
mask to represent the perturbation to the code graph, which trans-
forms the discrete search task for counterfactual perturbations into
a continuous learning task for edge masks. (2) Counterfactual
Reasoning Framework. Based on the differentiable edge mask,
CFExplainer constructs a counterfactual reasoning framework
and designs a differentiable loss function to make this framework
optimizable, as illustrated in Figure 2. (3) Counterfactual Ex-
planation Generation. After optimization for the counterfactual
reasoning framework, CFExplainer generates counterfactual ex-
planations for the detection system’s predictions. We will elaborate
on each component of CFExplainer in the following.

3.1 Code Graph Perturbation

In our scenario, vulnerabilities often arise from incorrect or in-
consistent structural relations in the source code, such as control
and data flow flaws. Thus, for the given code graph 𝐺𝑘 , we focus
on perturbing its graph structures (i.e., edges), represented by the
adjacency matrix A𝑘 ∈ {0, 1}𝑛×𝑛 , rather than perturbing the node
features X𝑘 ∈ R𝑛×𝑑 , where 𝑛 is the number of nodes in 𝐺𝑘 and 𝑑
represents the feature dimension. Note that the code graph 𝐺𝑘 is a
directed graph, hence, A𝑘 is unsymmetrical.

One straightforward approach for generating counterfactual per-
turbations is through greedy search, which iteratively edits the code
graph by removing or re-adding edges. However, its practicality
is limited by the vast size of the search space, leading to ineffi-
ciency [3]. Although heuristic strategies can potentially explore
the search space more efficiently, identifying the optimal counter-
factual instance with precision is challenging. Specifically, there is
no guarantee that the counterfactual perturbation identified is the
minimal one necessary.

Edge Mask-based Perturbation. To overcome these limitations,
inspired by prior work [29, 33, 58], we adopt the edge masking
technique. This technique treats the searching for counterfactual
perturbations as an edge mask learning task. The idea is that a
perturbed graph 𝐺̃𝑘 can be derived by masking out edges from the
original code graph 𝐺𝑘 , as follows:

Ã𝑘 = A𝑘 ⊙ M𝑘 , (8)



Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation ISSTA ’24, September 16–20, 2024, Vienna, Austria

ˆ
kY

kY

pred

Prediction 

Loss Item

(d) Vulnerability Detection(a) Source Code

static int 

http_read_stream(URLContext *h, 

uint8_t *buf, int size) 

{

HTTPContext *s = h->priv_data;

 ...

 if (s->chunksize >= 0) {

  if (!s->chunksize) {

   ...

   s->chunksize = strtoll(line, 

     NULL, 16);

   ...

  }

  size = FFMIN(size, s->chunksize);

 }

 ...

}

(c) Graph Neural Networks

Code Graph kG kA

(b) Code Graph Perturbation

ˆ( )k M

Perturbed Code Graph kG kA

dist

Distance 

Loss Item

Figure 2: An overview of our proposed counterfactual reasoning framework.

where Ã𝑘 is the perturbed version ofA𝑘 ,M𝑘 ∈ {0, 1}𝑛×𝑛 is a binary
edge mask matrix, and ⊙ denotes element-wise multiplication. If
an element M𝑘,𝑖 𝑗 = 0, it indicates the edge (𝑖, 𝑗) is masked out
in A𝑘 . As directly learning the binary edge mask matrix M𝑘 is
not differentiable, we relax M𝑘 to continuous real values, which
is M̂𝑘 ∈ R𝑛×𝑛 . Then, as illustrated in Figure 2(b), the perturbed
adjacency matrix is generated by:

Ã𝑘 = A𝑘 ⊙ 𝜎 (M̂𝑘 ) , (9)

where𝜎 (·) represents the sigmoid function that maps the edgemask
into the range [0, 1], allowing a smooth transition between the pres-
ence and absence of edges. As a result, starting from a randomly
initialized edge mask matrix, M̂𝑘 can be optimized via gradient
descent. This approach enables a quicker and more precise deter-
mination of the minimal counterfactual perturbation compared to
search-based strategies.

3.2 Counterfactual Reasoning Framework

We build a counterfactual reasoning framework to generate expla-
nations for the predictions made by the GNN-based vulnerability
detection system. The core idea of our proposed framework is to
identify a minimal perturbation to the code graph that flips the
detection system’s prediction. This is achieved by addressing a
counterfactual optimization problem, which will be formulated in
the following.

Suppose that we have a trained GNN model (whose weight pa-
rameter W is fixed and inaccessible) and the code graph 𝐺𝑘 for the
target code snippet𝐶𝑘 . We first apply the edge mask M̂𝑘 on the code
graph 𝐺𝑘 to generate a perturbed graph, i.e., 𝐺̃𝑘 . Subsequently, as
shown in Figure 2, we feed the original and perturbed code graphs
into the GNN model to produce respective estimated labels:

𝑌𝑘 = GNN(A𝑘 ,X𝑘 | W) ,
𝑌̃𝑘 = GNN(Ã𝑘 ,X𝑘 | W) .

(10)

where X𝑘 denotes the features of the nodes in 𝐺𝑘 . To identify a
minimal counterfactual perturbation, we learn the edge mask M̂𝑘

based on the optimization objective of the counterfactual reasoning
problem. Specifically, we reformulate Eq. (7) as follows:

min
M̂𝑘

𝑑 (Ã𝑘 ,A𝑘 ) , s.t., 𝑌̃𝑘 ≠ 𝑌𝑘 . (11)

Here, the constraint part aims to ensure that the new prediction
𝑌̃𝑘 is different from the original prediction 𝑌𝑘 , while the objective
part aims to encourage that the perturbed adjacency matrix Ã𝑘 is
as close as possible to the original adjacency matrix A𝑘 .

Direct optimization of Eq. (11) is challenging since both its ob-
jective and constraint parts are non-differentiable. To address this,
we design two differentiable loss function items to make the two
parts optimizable, respectively.

Prediction Loss Item. To satisfy the constraint condition in Eq. (11),
we design a prediction loss item L𝑝𝑟𝑒𝑑 to encourage the detection
system towards producing a different prediction when the original
code graph 𝐺𝑘 is perturbed into 𝐺̃𝑘 , as follows:

L𝑝𝑟𝑒𝑑 = 𝑃 (𝑌𝑘 | Ã𝑘 ,X𝑘 ) . (12)

This loss item aims to minimize the likelihood that the perturbed
graph 𝐺̃𝑘 will maintain the original prediction 𝑌𝑘 , thereby maxi-
mizing the chances of achieving an altered prediction outcome.

Distance Loss Item. To address the objective part in Eq. (11), we
utilize binary cross entropy as a differentiable distance function
to quantify the divergence between the original and perturbed
adjacency matrixes, which is formulated as follows:

L𝑑𝑖𝑠𝑡 = BinaryCrossEntropy(Ã𝑘 ,A𝑘 ) . (13)

This distance function is chosen for its efficacy in measuring the
difference between two probability distributions. In our case, we
consider the presence and absence of edges in the graph as binary
classes, thus conceptualizing Ã𝑘 as the estimated distribution of
edges and A𝑘 as the actual distribution. During optimization, L𝑑𝑖𝑠𝑡
ensures that Ã𝑘 remains as close as possible toA𝑘 , thus determining
a minimal counterfactual perturbation to the code graph 𝐺𝑘 .

Overall Loss Function. We integrate the above two loss items
into an overall loss function to optimize them collaboratively:

L = 𝛼 · L𝑝𝑟𝑒𝑑 + (1 − 𝛼) · L𝑑𝑖𝑠𝑡 , (14)

where 𝛼 is a hyper-parameter that regulates the trade-off between
the prediction loss item and the distance loss item. Higher 𝛼 priori-
tizes changing the prediction outcome, potentially at the expense of
a larger perturbation, whereas lower 𝛼 focuses more on minimizing
the perturbation. Based on the overall loss function, we optimize



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

the counterfactual reasoning framework using the gradient descent
algorithm and the Adam optimizer [24]. Note that our framework
operates in the black-box setting, indicating that the process of
counterfactual reasoning focuses solely on updating the edge mask
M̂𝑘 to find the optimal perturbation while holding the underlying
GNN model’s parameters fixed.

3.3 Counterfactual Explanation Generation

Utilizing an optimized counterfactual reasoning framework, we
generate counterfactual explanations to explain the predictions
made by the vulnerability detection systems.

Generating Optimal Counterfatual Explanation. After opti-
mization, we obtain the optimal edge mask M̂∗

𝑘
. In this mask ma-

trix, higher values indicate their corresponding edges should be
preserved while lower values indicate their corresponding edges
should be removed to reverse the detection system’s decision. To
form the final explanation, we employ a hyper-parameter 𝐾𝑀 to
control the number of edges to be perturbed, i.e., taking the 𝐾𝑀
edges with the lowest mask values. Then, we obtain the optimal
counterfactual perturbed graph 𝐺̃∗

𝑘
by removing the 𝐾𝑀 selected

edges and derive a sub-graph:

𝐺𝑆∗
𝑘

= 𝐺𝑘 − 𝐺̃∗
𝑘
. (15)

As a result, the optimal counterfactual explanation takes the fol-
lowing form: the derived sub-graph 𝐺𝑆∗

𝑘
is the most critical factor

on the detection result, that if removed, then the code would not be
predicted as vulnerable.

Deriving Diverse Counterfactual Explanations. In real-world
scenarios, developers may need diverse counterfactual explanations
to explore and understand the context of the detected vulnerability.
To achieve this, we build a narrowed search space based on the
sub-graph 𝐺𝑆∗

𝑘
. Within this space, we employ exhaustive search

to methodically explore and filter various edge combinations in
𝐺𝑆∗
𝑘

whose removal would alter the detection system’s prediction.
This process generates a set of diverse counterfactual explanations,
each offering insights into the detected vulnerability from different
perspectives. Moreover, such diversity provides developers with
multiple actionable options to address the detected vulnerability.

4 EXPERIMENTAL SETUP

In this section, we begin by presenting the dataset, the baseline
explainers for comparison, and the implementation details. Subse-
quently, we introduce two types of evaluation metrics to quantita-
tively evaluate the effectiveness of our proposed CFExplainer.

4.1 Dataset

Aligning with previous studies [14, 20, 21, 29], we conduct our ex-
periments on the widely-used vulnerability dataset, Big-Vul [13].
Linked to the public CVE database [18], Big-Vul comprises extensive
source code vulnerabilities extracted from 348 open-source C/C++
GitHub projects, spanning from 2002 to 2019. It encompasses a
total of 188,636 C/C++ functions, including 10,900 vulnerable ones,
covering 91 various vulnerability types. Unlike other existing vul-
nerability datasets (i.e., Devign [66] and Reveal [6]) which only
provide vulnerability labels at the function level, Big-Vul offers

more detailed, statement-level code changes derived from original
git commits. These code changes for fixing vulnerabilities are cru-
cial in our study. They enable us to build ground-truth labels for
quantitatively evaluating the quality of the generated explanations
(see Section 4.4).

To enhance the dataset’s quality, we follow the cleaning proce-
dure proposed by Hin et al. [20]. Specifically, we remove comment
lines from the code and ignore purely cosmetic code changes (e.g.,
changes to whitespace). We also exclude improperly truncated or
unparsable code snippets. Additionally, following the practices of
previous research [14, 20], we perform random undersampling for
non-vulnerable code snippets to obtain a balanced dataset. In this
work, we employ an open-source code analysis tool, Joern [2, 57], to
parse each code snippet into a PDG,which serves as the input for the
GNN-based detection model. PDG is a commonly used graph repre-
sentation for code in vulnerability detection research [14, 20, 21, 29],
which takes code statements as nodes and control-flow or data-flow
dependencies as edges. Finally, the dataset is randomly divided into
training, validation, and testing sets with a ratio of 8:1:1. Note that
the explainers only generate explanations for the detection model’s
predictions on the test set.

4.2 Baselines

To provide a comparative analysis, we investigate six prominent
factual reasoning-based GNN explainers as our baselines:
• GNNExplainer [33] seeks a crucial sub-graph by maximizing
the mutual information between the original GNN’s prediction
and the sub-graph distribution.

• PGExplainer [34] learns an edge mask predictor based on the
mutual information loss used in [33]. It accesses the training set
to train the edge mask predictor.

• SubgraphX [63] employs the Monte Carlo tree search algo-
rithm [44] to efficiently identify important sub-graphs with a
node pruning strategy.

• GNN-LRP [40] decomposes the GNN’s prediction scores into
the importance of various graph walks using a higher-order
Taylor decomposition and returns a set of most important graph
walks as an explanation.

• DeepLIFT [43] is another decomposition-based explainer but
originally designed for image classification. A previouswork [62]
extends it to explain GNNmodels, denoted asDeepLIFT-Graph.

• GradCam [41] is a popular gradient-based explainer for image
classification. It backpropagates the prediction scores to compute
the gradients, which are then used to approximate the input
importance. The previous work [62] adapts it for explaining
GNN models, denoted as GradCam-Graph.
For the hyper-parameters of these baseline explainers, we adopt

the implementation provided by previous research [21, 62]. Note
that PGExplainer, GNN-LRP, DeepLIFT-Graph, andGradCam-Graph
do not operate in the black-box setting, as they require access to
model parameters, training data, and gradient information of GNNs.

4.3 Implementation Details

Our implementation comprises two main components: training
GNN-based vulnerability detection models and generating explana-
tions for the detection model’s predictions.



Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: The performance of the reimplemented GNN-based

vulnerability detection models.

GNN Core Acc (%) Pr (%) Re (%) 𝐹1 (%)

GCN 72.05 60.39 44.81 51.44
GGNN 71.89 59.43 47.08 52.54
GIN 72.16 58.71 53.08 55.75
GraphConv 70.98 56.61 52.11 54.27

4.3.1 GNN-based Vulnerability Detection. In our experiments, we
reimplement four vulnerability detection models employing dif-
ferent GNN cores (i.e., GCN, GGNN, GIN, and GraphConv). Each
detection model adopts a two-layer GNN architecture with a hid-
den dimension of 256, followed by graph mean pooling to derive
graph-level representations. The graph-level representations are
then input to a two-layer MLP classifier for vulnerability detec-
tion. In the model, we utilize GraphCodeBERT’s token embedding
layer [19] to initialize node features for the input code graph. ReLU
activation functions are used after each layer, except for the final
one, to introduce non-linearity. Based on the binary cross-entropy
loss, we train each detection model using the Adam optimizer [24]
for 50 epochs, with a learning rate of 0.005 and a batch size of 64.
As shown in Tabel 1, following prior research [7, 29, 31], we evalu-
ate the performance of the reimplemented detection models using
Accuracy, Precision, Recall, and 𝐹1 score. The results show that all
four detection models achieve an Accuracy over 70%, a Precision
over 55%, a Recall over 40%, and an 𝐹1 score over 50%. Among them,
GCN excels in Precision, while GIN leads in Accuracy, Recall, and
𝐹1 score. Overall, these models exhibit similar performance with
high Precision and relatively low Recall.

4.3.2 Explanation Generation. For the implementation of our pro-
posed CFExplainer, we train it using Adam to minimize the loss
function described in Section 3.2 for 800 epochs at a learning rate
of 0.05. Note that, for each code snippet sample, CFExplainer is
trained individually to explain the detection model’s prediction. We
set the hyper-parameter 𝐾𝑀 to 8 by default and use the same 𝐾𝑀
value to control the size of the explanation sub-graphs generated
by the factual reasoning-based explainers for fair comparison. In
addition, in Section 5.3, we conduct a parameter analysis on the
hyper-parameter 𝛼 , exploring values from 0.1 to 0.9 to understand
its influence on CFExplainer’s performance. It should be noted
that the explainers aim to provide explanations by identifying the
critical factors that contribute to the detected vulnerability. Thus,
it is meaningless to explain the non-vulnerable code snippets and
unfair to explain the code snippets that are incorrectly detected
as vulnerable. As a result, we only consider explaining vulnerable
code snippets that are correctly detected.

4.4 Evaluating the Explainability

In this section, we introduce two types of metrics to evaluate the
quality of the generated explanations quantitatively.

4.4.1 Vulnerability-oriented Evaluation Metric. Evaluating counter-
factual explanations in code is challenging due to the difficulty in ob-
taining standardized ground truth. Previous research [10] has relied

on manual labeling for evaluation, which is costly, not easily scal-
able, and lacks standardization. Fortunately, the Big-Vul dataset mit-
igates this issue by providing detailed statement-level fixes within
git commits, which accurately reflect the changes addressing vul-
nerabilities. We utilize these commits to construct standardized
ground-truth labels for our generated counterfactual explanations.

In the vulnerability-oriented evaluation, following methodolo-
gies established in vulnerability detection research [13, 20, 21, 29],
we adopt the statements that are deleted or modified in the commit
(marked with “-” signs) as ground-truth labels. Specifically, we
extract all the statements from the vulnerable version of the code to
build a binary ground-truth vector, denoted as 𝑆 = [𝑠1, 𝑠2, . . . , 𝑠𝑟 ],
where 𝑠𝑖 = 1 indicates the 𝑖-th statement is deleted or modified
in the fixed version, and 𝑠𝑖 = 0 otherwise. Correspondingly, we
construct a binary explanation vector Δ = [𝛿0, 𝛿1, . . . , 𝛿𝑟 ], where
non-zero values in Δ represent the corresponding statements in-
cluded in the generated explanation sub-graph. The comparison of
Δ with the ground-truth vector 𝑆 allows for a quantitative evalua-
tion of how accurately the generated explanations identify critical
statements associated with the vulnerability.

Consider a given set of 𝑀 vulnerable code snippets denoted as
{𝐶1,𝐶2, . . . ,𝐶𝑀 } for evaluation. For each code snippet, an expla-
nation is deemed correct if it encompasses the deleted or altered
statements. Consequently, we compute the Accuracy score by de-
termining the percentage of accurate explanations among all gener-
ated explanations. Moreover, we calculate the Precision and Recall
scores for each code snippet by comparing the explanation vector
Δ and the ground-truth vector 𝑆 :

Precision =

∑𝑟
𝑖=1 𝑠𝑖 · 𝛿𝑖∑𝑟
𝑖=1 𝛿𝑖

, Recall =
∑𝑟
𝑖=1 𝑠𝑖 · 𝛿𝑖∑𝑟
𝑖=1 𝑠𝑖

. (16)

In our scenario, Precision measures the proportion of statements
in the explanation that are relevant and accurately pertain to the
vulnerability. On the other hand, Recall measures the proportion of
ground-truth statements that are accurately included in the expla-
nation. Additionally, we compute 𝐹1 as the harmonic mean of the
two scores to evaluate the overall performance. The formula for F1
is given as follows:

𝐹1 =
2 · Precision · Recall
Precision + Recall

. (17)

Finally, we calculate the average scores of Precision, Recall, and 𝐹1
across all code snippets.

4.4.2 Model-oriented EvaluationMetric. The vulnerability-oriented
evaluation metrics primarily focus on assessing the consistency
between the generated explanations and the root causes of the de-
tected vulnerabilities. However, these metrics cannot quantify to
what extent the generated explanations really influence the detec-
tion system’s decisions. Thus, inspired by previous research [47, 48],
our model-oriented evaluation borrows insights from causal infer-
ence theory and introduces Probability of Necessity (PN) [17] to
fill this gap. Intuitively, for an explanation 𝐸 that is generated to
explain prediction 𝑃 , if 𝐸 does not happen then 𝑃 will not happen,
we say 𝐸 is a necessary explanation for supporting the prediction 𝑃 .
The core idea of PN is that: if we imagine a counterfactual world
where the explanation sub-graph 𝐺𝑆

𝑘
did not exist in the original

code graph𝐺𝑘 , then whether the corresponding code snippet 𝐶𝑘



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

Table 2: Comparison for the vulnerability-oriented evaluation results of explainers.

Explainer GCN GGNN GIN GraphConv

Acc (%) Pr (%) Re (%) 𝐹1 (%) Acc (%) Pr (%) Re (%) 𝐹1 (%) Acc (%) Pr (%) Re (%) 𝐹1 (%) Acc (%) Pr (%) Re (%) 𝐹1 (%)

GNNExplainer 59.06 13.68 41.26 17.29 61.25 13.94 45.54 18.76 53.37 12.14 34.42 15.09 53.12 12.81 37.54 16.31
PGExplainer 42.39 11.70 26.41 13.71 53.98 13.78 38.12 17.31 44.79 11.20 30.08 13.93 46.25 12.42 31.98 15.17
SubGraphX 43.12 12.44 27.29 13.77 41.52 12.53 27.60 14.48 36.81 11.29 23.14 12.59 42.50 12.64 26.60 14.09
GNN-LRP 56.00 13.31 38.52 16.49 59.86 13.32 44.19 17.83 54.94 14.20 39.54 17.54 48.74 12.51 34.85 15.52
DeepLIFT-Graph 50.00 12.88 33.14 15.61 55.36 14.39 39.83 17.84 47.24 12.89 32.84 15.58 49.69 12.48 34.85 15.43
GradCam-Graph 44.93 12.93 27.69 14.54 56.06 13.22 41.04 17.23 44.17 13.62 30.03 15.64 41.88 11.73 28.91 13.96
CFExplainer 61.23 13.84 42.84 17.84 61.25 14.13 44.30 18.48 60.12 14.36 42.29 18.03 53.75 12.77 38.36 16.32

Note: We highlight the best score in bold and the second best score in underlined in each column.

would not be detected as vulnerable? This is critical for under-
standing the causal impact of the explanations on the prediction
outcomes. Following this idea, we define PN as the proportion of the
generated sub-graph explanations that are necessary to influence
the detection system’s predictions, as follows:

PN =
1
𝑀

𝑀∑︁
𝑘

𝑝𝑛𝑘 , where 𝑝𝑛𝑘 =

{
1, if 𝑌 ′

𝑘
≠ 𝑌𝑘 ,

0, else ,
(18)

where𝑌 ′
𝑘
= argmax𝑐∈{0,1} 𝑃 (𝑐 | 𝐺𝑘−𝐺𝑆𝑘 ) represents the prediction

result for the code snippet𝐶𝑘 when the explanation sub-graph𝐺𝑆𝑘 is
removed from the original code graph 𝐺𝑘 . If removing 𝐺𝑆

𝑘
changes

the prediction 𝑌𝑘 , the explanation is considered necessary.

5 EXPERIMENTAL RESULTS

To evaluate the performance of our counterfactual reasoning ap-
proach, we address the following Research Questions (RQs):
• RQ1: Vulnerability-oriented Evaluation. How well does CF-
Explainer perform in comparison with state-of-the-art factual
reasoning-based explainers in identifying the root causes of the
detected vulnerabilities?

• RQ2:Model-oriented Evaluation.Howwell does CFExplainer
perform in comparison with state-of-the-art factual reasoning-
based explainers in generating explanations that really influence
the detection model’s decision?

• RQ3: Influence of Hyper-parameter 𝛼 . How do different set-
tings of the trade-off hyper-parameter 𝛼 impact the performance
of CFExplainer ?

5.1 RQ1: Vulnerability-oriented Evaluation

One of the key objectives of explainers in our context is to accu-
rately identify the root causes of detected vulnerabilities. The effec-
tiveness of our proposed CFExplainer, in comparison to factual
reasoning-based explainers, is quantitatively showcased in Table 2,
which reports the vulnerability-oriented evaluation results on four
GNN-based detection models: GCN, GGNN, GIN, and GraphConv.
These results reveal that CFExplainer outperforms the baseline
explainers in most scenarios, demonstrating the effectiveness of
our counterfactual reasoning approach. Across the four GNN-based
detection models, CFExplainer achieves average improvements
of 24.32%, 12.03%, 28.22%, and 14.29% in Accuracy, 7.93%, 4.43%,

14.36%, and 2.72% in Precision, 32.28%, 12.47%, 33.51%, and 18.19%
in Recall, 17.10%, 7.18%, 19.71%, and 8.22% in 𝐹1 score over the
factual reasoning-based explainers.

Among all baseline explainers, the perturbation-based GNNEx-
plainer exhibits relatively good performance by directly searching
for a crucial sub-graph that significantly contributes to the vulnera-
bility detected by GNNs. Besides, the decomposition-based methods
(i.e., GNN-LRP and DeepLIFT-Graph) directly decompose the detec-
tion model’s predictions into the importance of edges in the code
graph and select the most important edges as an explanation, re-
sulting in slightly inferior performance compared to GNNExplainer.
However, the other two perturbation-based methods (i.e., PGEx-
plainer and SubGraphX) and the gradient-based GradCam-Graph
method perform relatively poorly. This is because PGExplainer’s
mask predictor may suffer from the distribution shift between the
training and test sets, while SubGraphX’s node pruning strategy
may be not compatible with our scenario of perturbing edges in the
code graph. GradCam-Graph utilizes gradient values to measure
the edge importance, leading to an explanation sub-graph that cor-
relates with the detection model’s hidden information rather than
the actual vulnerabilities. In contrast to these factual reasoning-
based explainers, CFExplainer aims to address what-if questions
by seeking a minimal perturbation to the code graph that alters the
detection model’s prediction from “vulnerable” to “non-vulnerable”.
Through this exploration, CFExplainer delves deeply into the con-
text where the vulnerability occurs, revealing causal relationships
between code structures and detection outcomes, thereby discover-
ing the root causes of the detected vulnerabilities.

Answer to RQ1: CFExplainer exhibits superior effective-
ness in vulnerability-oriented evaluation, outperforming
state-of-the-art factual reasoning-based explainers.

5.2 RQ2: Model-oriented Evaluation

Compared to vulnerability-oriented evaluation, model-oriented
evaluation focuses on assessing the necessity of the generated ex-
planations for supporting the detection model’s predictions. As
illustrated in Figure 3, CFExplainer demonstrates superior per-
formance over state-of-the-art factual reasoning-based explainers
across four GNN-based detection models. Notably, the PN curve



Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation ISSTA ’24, September 16–20, 2024, Vienna, Austria

0 2 4 6 8 10 12 14 16 18 20
KM

0

6

12

18

24

30

36

42

48

54

60

P
N

(%
)

GCN

0 2 4 6 8 10 12 14 16 18 20
KM

0

6

12

18

24

30

36

42

48

54

60

GGNN

0 2 4 6 8 10 12 14 16 18 20
KM

0

7

14

21

28

35

42

49

56

63

70

GIN

0 2 4 6 8 10 12 14 16 18 20
KM

0

8

16

24

32

40

48

56

64

72

80

GraphConv

GNNExplainer PGExplainer SubGraphX GNN-LRP DeepLIFT GradCam CFExplainer

Figure 3: Comparison for the model-oriented evaluation results of explainers.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
15.50

15.85

16.20

16.55

16.90

17.25

17.60

17.95

18.30

18.65

F1 (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
15.0

19.5

24.0

28.5

33.0

37.5

42.0

46.5

51.0

55.5

PN (%)

GCN GGNN GIN GraphConv

Figure 4: A parameter analysis on the hyper-parameter 𝛼 .

for CFExplainer consistently encompasses those of the baseline
explainers under various 𝐾𝑀 settings, visually indicating its effec-
tiveness. Unlike factual reasoning-based explainers that identify
crucial sub-graphs but fall short in determining their actual in-
fluence on detection outcomes, CFExplainer targets a minimal
change to the code graph that alters the prediction. This approach
ensures the identification of edges that are truly necessary for the
prediction outcome. This distinction is crucial in understanding
CFExplainer’s ability to provide more accurate and essential expla-
nations. Moreover, we can observe that as the value of𝐾𝑀 increases,
the PN scores of all explainers generally show improvement. This
improvement can be attributed to that with a higher 𝐾𝑀 value,
more crucial edges necessary for supporting the detection result
are identified and included in the generated explanation sub-graph.

Answer to RQ2: CFExplainer demonstrates superior per-
formance in model-oriented evaluation, outperforming
state-of-the-art factual reasoning-based explainers.

5.3 RQ3: Influence of Hyper-parameter 𝛼

Understanding the impact of the trade-off hyper-parameter 𝛼 is
crucial for optimizing CFExplainer’s performance in generating
counterfactual explanations. The hyper-parameter 𝛼 plays a pivotal
role in balancing the emphasis between the prediction loss item
and the distance loss item. We conduct the parameter analysis on
CFExplainer by varying 𝛼 from 0.1 to 0.9 while keeping other
hyper-parameters fixed.

As shown in Figure 4, 𝛼 significantly influences the effectiveness
of the counterfactual explanation generated by CFExplainer. We
can see that with the increase in 𝛼 , the differences between the
predictions using the perturbed graph and the original graph are
more encouraged, thereby pushing the explanation to be more
counterfactual, which leads to dramatic performance improvements.
However, after 𝛼 reaches its optimal value, the performance begins
to decline because CFExplainer tends to generate a counterfactual
larger perturbation to the code graph that may fail to identify the
most critical factor influencing the detection system’s prediction.
Based on our parameter analysis, we set 𝛼 = 0.9 for GCN and
GraphConv, 𝛼 = 0.8 for GGNN, and 𝛼 = 0.5 for GIN. These values
are chosen to ensure optimal performance across different models,
accommodating their unique characteristics and sensitivities to the
balance between prediction and distance loss.

Answer to RQ3: The trade-off hyper-parameter 𝛼 has a
significant impact on CFExplainer’s performance. Opti-
mal settings vary across models, with 𝛼 = 0.9 for GCN and
GraphConv, 𝛼 = 0.8 for GGNN, and 𝛼 = 0.5 for GIN.

5.4 Case Study

We conduct a case study to qualitatively assess the effectiveness of
CFExplainer compared to factual reasoning-based explainers, as
shown in Figure 5. This case study involves a specific code com-
mit of the nfs_printfh function in the print-nfs.c file from the
tcpdump project3. The added lines are indicated with a “+” sign,
while the deleted lines are marked with a “-” sign. This commit ad-
dresses a buffer over-read vulnerability of the NFS parser, reported
by CVE-2017-130014. This vulnerability arises from the original
code failing to ensure that the source string sfsname is shorter
than the destination buffer temp ( 20 ). As a result, strncpy could
copy more characters than temp can safely contain, without null-
terminating it immediately after the last copied character ( 21 ). This
leads to potential buffer over-reads when temp is later accessed as a
string. To address this vulnerability, the code should copy no more
than temp can hold and must explicitly null-terminate the buffer
after the last character copied from sfsname. The fix introduced in

3https://github.com/the-tcpdump-group/tcpdump
4https://www.cvedetails.com/cve/CVE-2017-13001

https://github.com/the-tcpdump-group/tcpdump
https://www.cvedetails.com/cve/CVE-2017-13001


ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

CVE-2017-13001 Generating Explanations

GNNExplainer

CFExplainer

PGExplainer

SubGraphX GNN-LRP

DeepLIFT GradCam

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

nfs_printfh(netdissect_options *ndo,

  register const uint32_t *dp, const u_int len)

{

  my_fsid fsid; uint32_t ino; const char *sfsname = NULL; char *spacep;

  if (ndo->ndo_uflag) {

    u_int i; char const *sep = "";

    ND_PRINT((ndo, " fh["));

    for (i=0; i<len; i++) {

      ND_PRINT((ndo, "%s%x", sep, dp[i])); sep = ":";}

    ND_PRINT((ndo, "]"));

    return;

  }

  Parse_fh((const u_char *)dp, len, &fsid, &ino, NULL, &sfsname, 0);

  if (sfsname) {

-   static char temp[NFSX_V3FHMAX+1];

+   char temp[NFSX_V3FHMAX+1]; u_int stringlen;

-   strncpy(temp, sfsname, NFSX_V3FHMAX);

-   temp[sizeof(temp) - 1] = '\0';

+   stringlen = len;

+   if (stringlen > NFSX_V3FHMAX) stringlen = NFSX_V3FHMAX;

+   strncpy(temp, sfsname, stringlen);

+   temp[stringlen] = '\0';

 

    spacep = strchr(temp, ' ');

    if (spacep) *spacep = '\0';

    ND_PRINT((ndo, " fh %s/", temp));

  } else {

    ND_PRINT((ndo, " fh %d,%d/", 

      fsid.Fsid_dev.Major, fsid.Fsid_dev.Minor));

  }

 

  if(fsid.Fsid_dev.Minor == 257)

    ND_PRINT((ndo, "%s", fsid.Opaque_Handle));

  else

    ND_PRINT((ndo, "%ld", (long) ino));

}

20 1

21

12 6

9

1420 1

21

12 6

9

14

17

104

27

20 21

1

15

14
27

10

20 21

7

15

2 31

9

14 27

10

20

21

7

15

2

31

9

14 27

4

20 29

32

15

35

1036

9

6

35 36

420 14

27
29

32
15

1096

35 1

38

28 27

4

6

36

1015

7

35 1

38

28 27

4

6

10

714 27

4

20 21

1

15

6

1012

14

10

4 12

7

1

2

69

14

10

4

12

7

1

2

6

9

4 14

10

20 21

1

2

9 31

15

(a)

4 14

10

20 21

1

2

9 31

15

(b)

4 14

10

20 21

1

2

9 31

15

(c)

4 14

10

20 21

1

2

9 31

15

(d)

4 14

10

20 21

1

2

9 31

15

(e)

4 14

10

20 21

1

2

9 31

15

(f)

Figure 5: A case study on the CVE-2017-13001 vulnerability in the tcpdump project.

the commit ensures that the length of the data copied does not ex-
ceed NFSX_V3FHMAX ( 23 ) and that temp is correctly null-terminated
after the copy ( 25 ), preventing any over-read.

In this case study, we observe that factual reasoning-based ex-
plainers like GNN-LRP and GradCam fail to identify the vulnerabil-
ity cause ( 20 and 21 ) in their generated explanation sub-graphs.
While other factual reasoning-based explainers effectively point
out 20 or 21 , their generated explanations also contain a few code
statements unrelated to the vulnerability. This dilutes the clarity of
the explanations, leaving developers to manually check the code to
find out the actual vulnerability cause. Conversely, CFExplainer
excels by generating a set of diverse counterfactual explanations to
help developers understand the context of the detected vulnerability.
For example, in structure (c), CFExplainer identifies that removing
the program dependencies 2○→ 1○, 20→ 1○, and 21→ 1○ alters
the detection result. This directly leads developers to the critical
statements 20 and 21 , which involve buffer operations ( 1○ and
2○ are not involved), and identifies them as potential areas of the
vulnerability. Further, through the analysis of the minimal coun-
terfactual perturbation as in structure (f), CFExplainer offers an
actionable insight, i.e., inspecting the null-terminating operation at
21 for potential errors.

6 THREATS TO VALIDITY

The threats to the validity of our work are discussed as follows.

On the GNN performance. The effectiveness of the counterfac-
tual explainer is heavily influenced by the detection performance
of the GNN model. Since our explainer generates explanations by
perturbing the code graph instance, it relies on a reliable detection
model to determine whether the perturbed instance is vulnerable

or not. If the detection model has learned biased patterns and fails
to produce the correct detection result for the perturbed instance,
it can undermine the effectiveness of the explainer. Thus, to ensure
the optimal performance of the explainer, we recommend using it
in conjunction with GNN-based detection models that exhibit ideal
detection performance. By combining the counterfactual explainer
with high-performing detection models, we can enhance the overall
effectiveness and reliability of the explanation process.

On the perturbation of code graphs. Our current counterfactual
explainer is primarily based on graph theory principles and does
not specifically consider the unique features of vulnerabilities. In
our future work, we plan to enhance our explainer by incorporating
perturbation algorithms specifically tailored to the vulnerabilities
in code graphs. This will enable us to achieve a more specialized
counterfactual explainer, which can better capture the underlying
characteristics of vulnerabilities and provide more accurate insights
into the behavior of GNN-based vulnerability detection models.

7 RELATEDWORK

In this section, we review the related literature about vulnerability
detection and localization, explainability in software engineering,
and counterfactual reasoning in GNNs.

7.1 Vulnerability Detection and Localization

Vulnerability detection plays a crucial role in ensuring the security
and reliability of software systems. Existing efforts in vulnerability
detection can be generally divided into two main approaches: static
analysis-based [16, 45, 49] and deep learning-based [6, 7, 31, 66]
approaches. Traditional static analysis-based approaches require
human experts to manually define specific rules, which suffers



Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation ISSTA ’24, September 16–20, 2024, Vienna, Austria

from efficiency issues. On the other hand, deep learning-based
approaches have gained increasing interest in vulnerability detec-
tion, due to their strong capability in representing the semantics
of source code. However, compared with static analysis-based ap-
proaches, the deep learning-based approaches cannot provide a
fine-grained analysis of which lines of the code may cause the
detected vulnerabilities.

Although fault localization techniques like spectrum-basedmeth-
ods [11, 23] and delta debugging [64, 65] could be employed to locate
vulnerable code statements, their effectiveness relies on either the
availability of extensive test suites or numerous time-consuming
testing executions. Recently, several deep learning-based line-level
detection methods [12, 14, 20, 30, 67] have been proposed to pre-
dict which statements in the code are vulnerable. However, these
methods not only require large training samples to train the deep-
learning models but also lack explainability in why certain state-
ments are predicted as vulnerable. Consequently, explainable ap-
proaches have attracted increasing attention in vulnerability detec-
tion. Existing explainable approaches are mainly based on factual
reasoning, which aims to find the input features that play a crucial
role in the detection model’s prediction [15, 21, 29, 68]. However,
these approaches are limited in their ability to provide further in-
sights on how to alter the detection model’s prediction, especially
when the code is predicted as vulnerable. In contrast to the previous
work, CFExplainer introduces counterfactual reasoning to identify
what input features to change would result in a different prediction,
thereby providing actionable guidance for developers to address
the detected vulnerabilities.

7.2 Explainability in Software Engineering

Explainability poses a challenging issue in software engineering,
especially due to the increasing dependence of developers on us-
ing the predictions provided by deep learning models to optimize
their codes. Recently, many efforts have been made to improve
the explainability of deep learning models in software engineer-
ing [5, 9, 10, 38, 42, 46, 51]. For instance, Cito et al. [9] focused
on global explainability, which aims to find specific input data
types on which the model exhibits poor performance. Sharma et al.
[42] introduced a neuron-level explainability technique to iden-
tify important neurons within the neural network and eliminate
redundant ones. Wan et al. [50] addressed the structural informa-
tion of source code under a multi-modal neural network equipped
with an attention mechanism for better explainability. Wan et al.
[51] investigated the explainability of pre-trained language models
of code (e.g., CodeBERT and GraphCodeBERT), which conducts
a structural analysis to explore what kind of information these
models capture. Furthermore, several factual reasoning approaches
have been proposed recently. For example, AutoFocus [5] employed
attention mechanisms to rate and visualize the importance of code
elements. Zou et al. [68] proposed an explainable approach based on
heuristic searching, aiming to identify the code tokens contributing
to the vulnerability detector’s prediction. In addition, two previous
studies [38, 46] proposed model-agnostic explainers based on pro-
gram simplification techniques, which aims to simplify the input
code while preserving the model’s prediction results, inspired by
the delta debugging algorithms [64, 65]. Counterfactual reasoning
has also been explored by a recent work [10], similar to our work.

However, this work focused on perturbing the plain text input of
code to generate counterfactual explanations, in contrast to our
work focusing on perturbing the graph input of code.

7.3 Counterfactual Reasoning in GNNs

Recently, several studies have explored the use of counterfactual
reasoning to provide explanations for GNNs [3, 4, 22, 32, 33, 35,
37, 47, 52, 53, 55, 59, 61]. For example, Lucic et al. [33] generated
counterfactual explanations by identifying a minimal perturbation
to a node’s neighborhood sub-graph that would change the GNN’s
prediction on this node. Lin et al. [32] employed Granger causality
for counterfactual reasoning to learn explanations based on an auto-
encoder model via supervised learning. Bajaj et al. [4] identified
robust edge subsets whose removal would alter the GNN’s predic-
tions by learning the implicit decision regions in the graph. Ma et al.
[35] utilized a graph variational autoencoder for the optimization
and generalization of counterfactual reasoning on graphs. Tan et al.
[47] incorporated both counterfactual and factual reasoning per-
spectives from causal inference theory. Huang et al. [22] explored
global counterfactual reasoning for GNNs’ global explainability.
Furthermore, counterfactual reasoning has been applied in domain-
specific graph scenarios, such as molecular graphs [37, 55] and brain
networks [3]. While the idea of counterfactual reasoning in these
studies is similar to our work, we are the first to investigate coun-
terfactual reasoning on code graphs and provide counterfactual
explanations for the vulnerability detection task.

8 CONCLUSION

In this paper, we propose CFExplainer, a novel counterfactual
reasoning-based explainer for explaining the predictions made by
GNN-based vulnerability detection models. CFExplainer generates
counterfactual explanations by identifying the minimal perturba-
tion to the code graph that can alter the detection system’s predic-
tion, thus addressing what-if questions for vulnerability detection.
The counterfactual explanations can identify the root causes of the
detected vulnerabilities and provide actionable insights for develop-
ers to fix them. Our extensive experiments on four GNN-based vul-
nerability detection models show that CFExplainer outperforms
the existing state-of-the-art factual reasoning-based explainers.

The application of counterfactual reasoning in software engi-
neering, particularly in the domain of vulnerability detection, is
still in its early stages, offering substantial opportunities for further
exploration. The success of CFExplainer encourages us to explore
its application in broader tasks, including but not limited to bug de-
tection, code search, and code clone detection. We believe that the
principles of counterfactual reasoning can be effectively adapted to
these areas, potentially transforming the way developers interact
with and understand software systems.

Data Availability. All the experimental data and code used in this
paper are available at https://github.com/CGCL-codes/naturalcc/
tree/main/examples/counterfactual-vulnerability-detection.

ACKNOWLEDGMENT

Thiswork is supported by theMajor Program (JD) of Hubei Province
(Grant No. 2023BAA024). We would like to thank all the anonymous
reviewers for their insightful comments.

https://github.com/CGCL-codes/naturalcc/tree/main/examples/counterfactual-vulnerability-detection
https://github.com/CGCL-codes/naturalcc/tree/main/examples/counterfactual-vulnerability-detection


ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

REFERENCES

[1] 2021. Facebook Infer: a tool to detect bugs in Java and C/C++/Objective-C code.
https://fbinfer.com/.

[2] 2021. Joern - The Bug Hunter’s Workbench. https://joern.io/.
[3] Carlo Abrate and Francesco Bonchi. 2021. Counterfactual Graphs for Explainable

Classification of Brain Networks. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining (Virtual Event, Singapore) (KDD
’21). Association for Computing Machinery, New York, NY, USA, 2495–2504.

[4] Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, LanjunWang, Peter Cho-Ho Lam,
and Yong Zhang. 2021. Robust Counterfactual Explanations on Graph Neural
Networks. In Proceedings of Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual. 5644–5655.

[5] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2019. AutoFocus: Interpreting
Attention-Based Neural Networks by Code Perturbation. In Proceedings of the
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
38–41.

[6] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2022.
Deep Learning Based Vulnerability Detection: Are We There Yet? IEEE Transac-
tions on Software Engineering 48, 9 (2022), 3280–3296.

[7] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong:
Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network.
ACM Trans. Softw. Eng. Methodol. 30, 3, Article 38 (apr 2021), 33 pages.

[8] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724–1734.

[9] Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chan-
dra. 2021. Explaining Mispredictions of Machine Learning Models Using Rule
Induction. In Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 716–727.

[10] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. 2022. Coun-
terfactual Explanations for Models of Code. In Proceedings of the 44th International
Conference on Software Engineering: Software Engineering in Practice (Pittsburgh,
Pennsylvania) (ICSE-SEIP ’22). Association for Computing Machinery, New York,
NY, USA, 125–134.

[11] Higor A. de Souza, Marcos L. Chaim, and Fabio Kon. 2016. Spectrum-based
software fault localization: A survey of techniques, advances, and challenges.
arXiv preprint arXiv:1607.04347 (2016).

[12] Yangruibo Ding, Sahil Suneja, Yunhui Zheng, Jim Laredo, Alessandro Morari,
Gail Kaiser, and Baishakhi Ray. 2022. VELVET: a noVel Ensemble Learning
approach to automatically locate VulnErable sTatements. In Proceedings of 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 959–970.

[13] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (Seoul, Republic
of Korea) (MSR ’20). Association for Computing Machinery, New York, NY, USA,
508–512.

[14] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-
based Line-Level Vulnerability Prediction. In Proceedings of 2022 IEEE/ACM 19th
International Conference on Mining Software Repositories (MSR). 608–620.

[15] Tom Ganz, Martin Härterich, Alexander Warnecke, and Konrad Rieck. 2021.
Explaining Graph Neural Networks for Vulnerability Discovery. In Proceedings
of the 14th ACM Workshop on Artificial Intelligence and Security (Virtual Event,
Republic of Korea) (AISec ’21). Association for Computing Machinery, New York,
NY, USA, 145–156.

[16] Qing Gao, Sen Ma, Sihao Shao, Yulei Sui, Guoliang Zhao, Luyao Ma, Xiao Ma,
Fuyao Duan, Xiao Deng, Shikun Zhang, and Xianglong Chen. 2018. CoBOT:
Static C/C++ Bug Detection in the Presence of Incomplete Code. In Proceedings
of the 26th IEEE/ACM International Conference on Program Comprehension (ICPC).
385–3853.

[17] Madelyn Glymour, Judea Pearl, and Nicholas P. Jewell. 2016. Causal Inference in
Statistics: A Primer. John Wiley & Sons.

[18] Mianxue Gu, Hantao Feng, Hongyu Sun, Peng Liu, Qiuling Yue, Jinglu Hu, Chun-
jie Cao, and Yuqing Zhang. 2022. Hierarchical Attention Network for Inter-
pretable and Fine-Grained Vulnerability Detection. In Proceedings of the IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). 1–6.

[19] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations
with Data Flow. In Proceedings of the 9th International Conference on Learning

Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
[20] David Hin, Andrey Kan, Huaming Chen, and M. Ali Babar. 2022. LineVD:

Statement-Level Vulnerability Detection Using Graph Neural Networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories
(Pittsburgh, Pennsylvania) (MSR ’22). Association for Computing Machinery,
New York, NY, USA, 596–607.

[21] Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and
Hai Jin. 2023. Interpreters for GNN-Based Vulnerability Detection: Are We There
Yet?. In Proceedings of the 32nd International Symposium on Software Testing and
Analysis, ISSTA 2023, Seattle, Washington, United States, July 18-20, 2023.

[22] Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. 2023.
Global Counterfactual Explainer for Graph Neural Networks. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining
(Singapore, Singapore) (WSDM ’23). Association for Computing Machinery, New
York, NY, USA, 141–149.

[23] Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van Hoorn,
and David Lo. 2017. A Critical Evaluation of Spectrum-Based Fault Localization
Techniques on a Large-Scale Software System. In Proceedings of 2017 IEEE Inter-
national Conference on Software Quality, Reliability and Security (QRS). 114–125.

[24] Diederick P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic
optimization. In Proceedings of the International Conference on Learning Represen-
tations (ICLR).

[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

[26] Qian Li, Xiangmeng Wang, Zhichao Wang, and Guandong Xu. 2023. Be causal:
De-biasing social network confounding in recommendation. ACM Transactions
on Knowledge Discovery from Data 17, 1 (2023), 1–23.

[27] Qian Li, Zhichao Wang, Shaowu Liu, Gang Li, and Guandong Xu. 2021. Causal
optimal transport for treatment effect estimation. IEEE transactions on neural
networks and learning systems 34, 8 (2021), 4083–4095.

[28] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In Proceedings of the 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

[29] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability Detection with
Fine-Grained Interpretations. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Comput-
ing Machinery, New York, NY, USA, 292–303.

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. 2022.
VulDeeLocator: A Deep Learning-Based Fine-Grained Vulnerability Detector.
IEEE Transactions on Dependable and Secure Computing 19, 4 (2022), 2821–2837.

[31] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018. The Internet Society.

[32] Wanyu Lin, Hao Lan, and Baochun Li. 2021. Generative causal explanations for
graph neural networks. In Proceedings of the International Conference on Machine
Learning. PMLR, 6666–6679.

[33] Ana Lucic, Maartje A. Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and
Fabrizio Silvestri. 2022. CF-GNNExplainer: Counterfactual Explanations for
Graph Neural Networks. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 151). PMLR, 4499–4511.

[34] Dongsheng Luo, Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook,
NY, USA, Article 1646, 12 pages.

[35] Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. 2022.
CLEAR: Generative Counterfactual Explanations on Graphs. In Proceedings of
the Advances in Neural Information Processing Systems.

[36] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, andMartin Grohe. 2019. Weisfeiler and LemanGoNeural:
Higher-Order Graph Neural Networks. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence and Thirty-First Innovative Applications of Arti-
ficial Intelligence Conference and Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence (Honolulu, Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19).
AAAI Press, Article 565, 8 pages.

[37] Danilo Numeroso and Davide Bacciu. 2021. Meg: Generating molecular counter-
factual explanations for deep graph networks. In Proceedings of 2021 International
Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[38] Md Rafiqul Islam Rabin, Vincent J. Hellendoorn, and Mohammad Amin Alipour.
2021. Understanding Neural Code Intelligence through Program Simplification.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

https://fbinfer.com/
https://joern.io/


Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation ISSTA ’24, September 16–20, 2024, Vienna, Austria

Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 441–452.

[39] Neal J. Roese. 1997. Counterfactual thinking. Psychological Bulletin 121, 1 (1997),
133.

[40] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T.
Schütt, Klaus-Robert Müller, and Grégoire Montavon. 2022. Higher-Order Ex-
planations of Graph Neural Networks via Relevant Walks. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 11 (2022), 7581–7596.

[41] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. In Proceedings of 2017 IEEE
International Conference on Computer Vision (ICCV). 618–626.

[42] Arushi Sharma, Zefu Hu, Christopher Quinn, and Ali Jannesari. 2023. Interpreting
Pretrained Source-code Models using Neuron Redundancy Analyses. arXiv
preprint arXiv:2305.00875 (2023).

[43] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Im-
portant Features through Propagating Activation Differences. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW,
Australia) (ICML’17). JMLR.org, 3145–3153.

[44] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den Driess-
che, Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without
human knowledge. Nat. 550, 7676 (2017), 354–359.

[45] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction (Barcelona, Spain) (CC 2016). Association for Computing Machinery,
New York, NY, USA, 265–266.

[46] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim A. Laredo, and AlessandroMorari.
2021. Probing Model Signal-Awareness via Prediction-Preserving Input Mini-
mization. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 945–955.

[47] Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and
Yongfeng Zhang. 2022. Learning and Evaluating Graph Neural Network Expla-
nations Based on Counterfactual and Factual Reasoning. In Proceedings of the
ACMWeb Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association
for Computing Machinery, New York, NY, USA, 1018–1027.

[48] Juntao Tan, Shuyuan Xu, Yingqiang Ge, Yunqi Li, Xu Chen, and Yongfeng Zhang.
2021. Counterfactual Explainable Recommendation. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management (Virtual
Event, Queensland, Australia) (CIKM ’21). Association for Computing Machinery,
New York, NY, USA, 1784–1793.

[49] John Viega, J.T. Bloch, Yoshi Kohno, and Gary McGraw. 2000. ITS4: A static
vulnerability scanner for C and C++ code. In Proceedings of the 16th Annual
Computer Security Applications Conference. IEEE Computer Society, 257–267.

[50] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and
Philip S. Yu. 2020. Multi-modal attention network learning for semantic source
code retrieval. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (San Diego, California) (ASE ’19). IEEE Press,
13–25.

[51] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022.
What do they capture? a structural analysis of pre-trained language models
for source code. In Proceedings of the 44th International Conference on Software
Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, 2377–2388.

[52] Xiangmeng Wang, Qian Li, Dianer Yu, Qing Li, and Guandong Xu. 2024. Re-
inforced path reasoning for counterfactual explainable recommendation. IEEE

Transactions on Knowledge and Data Engineering (2024).
[53] Xiangmeng Wang, Qian Li, Dianer Yu, Zhichao Wang, Hongxu Chen, and Guan-

dong Xu. 2022. Mgpolicy: Meta graph enhanced off-policy learning for recom-
mendations. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1369–1378.

[54] Yue Wang, Yao Wan, Chenwei Zhang, Lu Bai, Lixin Cui, and Philip Yu. 2019.
Competitive Multi-agent Deep Reinforcement Learning with Counterfactual
Thinking. In 2019 IEEE International Conference on Data Mining (ICDM). 1366–
1371. https://doi.org/10.1109/ICDM.2019.00175

[55] Geemi P. Wellawatte, Aditi Seshadri, and Andrew D. White. 2022. Model agnostic
generation of counterfactual explanations for molecules. Chem. Sci. 13 (2022),
3697–3705. Issue 13.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In Proceedings of the 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

[57] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of
2014 IEEE Symposium on Security and Privacy. 590–604.

[58] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. GNNExplainer: Generating Explanations for Graph Neural Networks. In
Proceedings of the Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada. 9240–9251.

[59] Dianer Yu, Qian Li, Xiangmeng Wang, Qing Li, and Guandong Xu. 2023. Coun-
terfactual explainable conversational recommendation. IEEE Transactions on
Knowledge and Data Engineering (2023).

[60] Dianer Yu, Qian Li, Xiangmeng Wang, and Guandong Xu. 2023. Deconfounded
recommendation via causal intervention. Neurocomputing 529 (2023), 128–139.

[61] Dianer Yu, Qian Li, Hongzhi Yin, and Guandong Xu. 2023. Causality-guided
graph learning for session-based recommendation. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management. 3083–3093.

[62] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2023. Explainability in
Graph Neural Networks: A Taxonomic Survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45, 5 (2023), 5782–5799.

[63] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On Explain-
ability of Graph Neural Networks via Subgraph Explorations. In Proceedings of
the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139). PMLR,
12241–12252.

[64] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs.
In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering (Charleston, South Carolina, USA) (SIGSOFT ’02/FSE-10). Association
for Computing Machinery, New York, NY, USA, 1–10.

[65] A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

[66] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Proceedings of the Advances in Neural
Information Processing Systems, Vol. 32. Curran Associates, Inc.

[67] Deqing Zou, Yutao Hu, Wenke Li, Yueming Wu, Haojun Zhao, and Hai Jin.
2022. mVulPreter: A Multi-Granularity Vulnerability Detection System With
Interpretations. IEEE Transactions on Dependable and Secure Computing (2022),
1–12.

[68] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021.
Interpreting Deep Learning-Based Vulnerability Detector Predictions Based on
Heuristic Searching. ACM Trans. Softw. Eng. Methodol. 30, 2, Article 23 (mar
2021), 31 pages.

Received 16-DEC-2023; accepted 2024-03-02

https://doi.org/10.1109/ICDM.2019.00175

	Abstract
	1 Introduction
	2 Background
	2.1 GNN-based Vulnerability Detection Model
	2.2 Model Explainability: The Problem

	3 Proposed CFExplainer 
	3.1 Code Graph Perturbation
	3.2 Counterfactual Reasoning Framework
	3.3 Counterfactual Explanation Generation

	4 Experimental Setup
	4.1 Dataset
	4.2 Baselines
	4.3 Implementation Details
	4.4 Evaluating the Explainability

	5 Experimental Results
	5.1 RQ1: Vulnerability-oriented Evaluation
	5.2 RQ2: Model-oriented Evaluation
	5.3 RQ3: Influence of Hyper-parameter 
	5.4 Case Study

	6 Threats to Validity
	7 Related Work
	7.1 Vulnerability Detection and Localization
	7.2 Explainability in Software Engineering
	7.3 Counterfactual Reasoning in GNNs

	8 Conclusion
	References

