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Abstract— Cooperative Adaptive Cruise Control (CACC)
represents a quintessential control strategy for orchestrating
vehicular platoon movement within Connected and Automated
Vehicle (CAV) systems, significantly enhancing traffic efficiency
and reducing energy consumption. In recent years, the data-
driven methods, such as reinforcement learning (RL), have
been employed to address this task due to their significant
advantages in terms of efficiency and flexibility. However, the
delay issue, which often arises in real-world CACC systems, is
rarely taken into account by current RL-based approaches.
To tackle this problem, we propose a Delay-Aware Multi-
Agent Reinforcement Learning (DAMARL) framework aimed
at achieving safe and stable control for CACC. We model
the entire decision-making process using a Multi-Agent Delay-
Aware Markov Decision Process (MADA-MDP) and develop
a centralized training with decentralized execution (CTDE)
MARL framework for distributed control of CACC platoons.
An attention mechanism-integrated policy network is intro-
duced to enhance the performance of CAV communication and
decision-making. Additionally, a velocity optimization model-
based action filter is incorporated to further ensure the stability
of the platoon. Experimental results across various delay
conditions and platoon sizes demonstrate that our approach
consistently outperforms baseline methods in terms of platoon
safety, stability and overall performance.

I. INTRODUCTION

Connected and Automated Vehicles (CAVs) are poised
to bring revolutionary changes to the entire transportation
system. Cooperative Adaptive Cruise Control (CACC) rep-
resents a pivotal technology within CAVs, where each CAV
is required to formulate an independent driving plan [1].
Through coordination with other CAVs, the technology aims
to avoid potential collisions and achieve the objective of
string stability in CACC platoons. By adaptively coordinat-
ing the platoon through vehicle-to-vehicle communication,
CACC can significantly reduce the following distances and
speed variations while maintaining safety, thereby enhancing
traffic efficiency, alleviating congestion, and reducing energy
consumption [1]–[3].
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In recent years, CACC technology has garnered consider-
able attention from researchers, leading to extensive explo-
ration. Common methodologies include classical control the-
ory and optimization-based approaches [4], [5]. Specifically,
some studies have focused on car-following models [4] and
string stability [6], [7], modeling CACC within the context of
two-vehicle systems. Other researchers have conceptualized
CACC as an optimal control problem [5], [8]. These methods
rely on precise system modeling, which is often unavailable
[6], [7].

On the other hand, CACC platoon control has also been
conceptualized as a sequential decision-making problem and
modeled using reinforcement learning (RL) [9]–[13]. RL has
experienced rapid advancements in recent years [14], [15],
originally proposed in the control domain within the Markov
Decision Process (MDP) framework for optimal stochastic
control under uncertainty [16]. This approach demonstrates
remarkable efficiency and flexibility, making it a promising
candidate for CACC platoon control [10], [11].

Peake et al. [9] have pioneered the application of deep
reinforcement learning for CACC, enabling platoon vehicles
to adopt a robust communication protocol and facilitat-
ing vehicle training through LSTM-based policy networks.
Concurrently, Wang et al. explored the utilization of the
policy iteration method to deduce parameters for the clas-
sical Proportional-Integral (PI) controller, sidestepping the
need for direct longitudinal control [17]. Further, a novel
information reward design was proposed to bolster the safety
and robustness of the Q-learning technique [18], while [19]
introduced a policy gradient RL strategy aimed at preserving
safe longitudinal distances between vehicles.

However, it is noteworthy that, despite the significant
attention and research on RL methods for CACC control
problems, these approaches still rely on rather idealized
assumptions in their modeling, such as perfect or delay-
free communication and decision-making. This impedes the
further deployment and application of these methods in the
real world. In reality, communication delays within CACC,
sensor latency, and delays in the execution of decision actions
are common and inevitable [20]. Existing RL methods rarely
consider these time-delay issues. Particularly for multi-agent
problems like CACC, delays can exacerbate issues, as a delay
in one agent may propagate to other coupled agents. This
not only can lead to a decline in agent performance but also
may disrupt the stability of the dynamic system, potentially
causing catastrophic failures in safety-critical systems [21].

To address these challenges, we propose a Multi-Agent
Reinforcement Learning (MARL) framework that incorpo-
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rates delay awareness and an enhanced attention mecha-
nism to model the collaborative decision-making problem
in CACC systems. Initially, we consider the multiple delays
present within the CACC platoon and construct a Multi-
Agent Delay-Aware Markov Decision Process (MADA-
MDP) to model this problem. Subsequently, based on the
MADA-MDP framework, we employ a MARL approach
characterized by Centralized Training with Decentralized
Execution (CTDE) to model the entire CACC decision-
making process. In this framework, each CAV is controlled
by an independent policy network, with complete informa-
tion sharing during centralized training, while allowing for
independent decision-making by each CAV beyond neces-
sary platoon communication to enhance platoon safety. The
attention mechanism is employed in the policy network
to enhance the information processing ability of CAVs.
Furthermore, to address the complexities of platoon decision-
making, we introduce an action filter based on a velocity
optimization model to the MARL’s decision output, ensuring
platoon stability.

We validated our approach on CACC platoons of various
sizes. Compared with several baseline methods, our method
effectively handles internal platoon delay issues and demon-
strates superior performance in terms of platoon safety and
stability.

Our contributions can be summarized as follows:
• We propose a Multi-Agent Markov decision process that

considers the internal delays within CACC, and based
on this process, we formulate the CACC problem within
a CTDE MARL framework.

• We incorporate an attention mechanism-based decision-
making policy network for CAVs and design a model-
based action filter for each CAV to enhance the safety
and stability of the platoon.

• Our method is tested on fleets of various sizes within
simulation environments, and compared to benchmark
algorithms, it demonstrates outstanding performance.

…
CAV  𝟏𝟏

V2V Communication

…

ℎ𝑘𝑘
𝑣𝑣1𝑣𝑣2𝑣𝑣𝑘𝑘−1𝑣𝑣𝑘𝑘

ℎ2

CAV  𝟐𝟐CAV 𝒗𝒗 − 𝟏𝟏CAV  𝒗𝒗

Fig. 1: The overview of the CACC system.

II. PRELIMINARY

In this section, Markov Decision Processes(MDPs) under
delay conditions and multi-agent scenarios are introduced.

A. Delay-Aware Markov Decision Process

For decision systems where delay is not a consideration,
the traditional Markov process (delay-free) can be employed
for modeling. A traditional MDP is typically defined by a
quintuple: MDP = ⟨S,A, ρ, p, r⟩ [22]. Here, S denotes the
state space, A is the action space, ρ represents the initial
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Fig. 2: Comparison between (a) MDP(E), (b) DMDP(E, 1)
and (c) DMDP(E,n). n denotes the action delay step.

state distribution, p is the transition distribution, and r is the
reward function. In RL, the MDP framework is often utilized
to model the decision-making problem, with π representing
the policy of an agent. The objective of RL is to find
the optimal policy π∗ that maximizes the expected cumula-
tive reward

∑T
t=0 γ

tr(st, at). However, the traditional MDP
framework’s assumption of immediate action may lead to
policies far from optimal in decision systems with delays,
potentially causing significant performance degradation or
safety issues.

To mitigate this problem and restore the Markov property,
which means future states depend only on the current state
and action), we introduce the Delay-Aware Markov Decision
Process (DAMDP) to accommodate delays [21], [23]. The
DAMDP represents an augmented variant of the traditional
MDP, formally defined by the tuple ⟨X ,A, ρ̃, p̃, r̃⟩. Here,
X = S × Ak encapsulates the state space, augmented to
incorporate the action sequence to be executed over the
next k steps, with k ∈ N representing the delay duration.
The action space A remains consistent with that of the
original MDP. The augmented reward function is defined as
r̃(xt, ãt) = r(st, at), and the transition distribution is given
by:

p̃(xt+1|xt, ãt) =p(st+1|st, a(t)t )

k−1∏
i=1

δ(a
(t+1)
t+i − a

(t)
t+i)·

δ(a
(t+1)
t+k − ãt),

(1)

where the state vector x of DAMDP includes an action
sequence to be executed in the forthcoming k steps. The
notation a

(t2)
t1 denotes that the action is an element of xt2 ,



with the subscript indicating the time of action execution,
and the superscript specifying the reference time frame. δ is
the Dirac delta function. If y ∼ δ(· − x) then y = x with
probability one.

The action ãt, selected at time t within a DAMDP context,
is slated for execution at time t+k, thereby accommodating
the k-step action delay, such that ãt = at+k. Furthermore,
the policy network π for the agent is under continuous refine-
ment to ascertain the optimal policy, adjusting dynamically
to the intricacies introduced by the delay-aware framework.

B. Multi-Agent Delay-Aware Markov Decision Process

Given the prevalence of various types of delays in real-
world decision systems, we define the Multi-Agent Delay-
Aware Markov Decision Process (MADA-MDP) based on
DAMDP framework for subsequent modeling of CACC
vehicle platoons. The MADA-MDP is articulated as the tuple
⟨X ,A, ρ, p, r⟩, where X = S ×Ak1

1 ×· · ·×A
kN

N represents
the augmented state space, incorporating the action sequence
to be executed over the next ki steps for agent i, thereby
denoting the delay step. The action space A aligns with that
in the traditional MDP.

The transition distribution is defined as:

p(xt+1|xt, ãt) =

p
(
st+1, a

1,(t+1)
t+1 , . . . , a

1,(t+1)
t+k1

, . . . , a
N,(t+1)
t+1 , . . . , a

N,(t+1)
t+kN

|st, a1,(t)t , . . . , a
1,(t)
t+k1−1, . . . , a

N,(t)
t , . . . , a

N,(t)
t+kN−1, ãt

)
=p(st+1|st, a1,(t)t , . . . , a

N,(t)
t )

N∏
i=1

ki−1∏
j=1

δ(a
i,(t+1)
t+j − a

i,(t)
t+j )

N∏
i=1

δ(a
i,(t+1)
t+ki

− ãit),

(2)
where the policy input for agent i at time t comprises two
components: õit = (oit,obs, o

i
t,act), with oit,obs being the obser-

vation of the environment and oit,act representing a planned
action sequence of length ki for agent i, to be executed from
the current time step: oit,act = (ait, . . . , a

i
t+ki−1).

Agents i take actions ai ∈ Ai based on a policy πi : Xi×
Ai → [0, 1], interacting with the MADA-MDP environment,
which is augmented due to the extended dimensionality of
state vectors resulting from action and observation delays.
Notably, action and observation delays constitute similar
mathematical challenges, as they both introduce a mismatch
between current observations and executed actions, as proven
in literature [24]. To ensure conciseness in our study, we have
considered and transformed both the observation delay and
action delay into a mathematical formula representing action
delays.

III. PROBLEM FORMULATION FOR CACC

In this section, we introduce the vehicle dynamics model
utilized for modeling CACC systems and formalize the
CACC problem using the MADA-MDP.

A. Vehicle Dynamics

As depicted in Fig.1, we consider a platoon comprising V
CAVs traveling along a straight path. For the sake of simplic-
ity, it is assumed that all CAV in the system possess identical
characteristics, such as maximum permissible acceleration
and deceleration. The platooning system is orchestrated by
a platoon leader vehicle (PL, 1st vehicle), while the platoon
member vehicles (PMs, i ∈ {2, . . . ,V}) follow the PL. Each
PM i maintains a desired inter-vehicle distance (IVD) hi and
velocity vi relative to its preceding vehicle i − 1, adhering
to its distinct spacing policy [25]. The one-dimensional
dynamics for vehicle i are given by:

ḣi = vi−1 − vi, (3a)
v̇i = ui, (3b)

where vi−1 and ui denote the velocity of the preceding vehi-
cle and the acceleration of vehicle i, respectively. Following
the framework established in [10], the discretized vehicle
dynamics, with a sampling interval ∆t, are described by:

hi,t+1 = hi,t +

∫ t+∆t

t

(vi−1,τ − vi,τ )dτ, (4a)

vi,t+1 = vi,t + ui,t∆t. (4b)

To ensure both comfort and safety, each vehicle must
adhere to the following constraints [10]:

hi,t ≥ hmin, (5a)
0 ≤ vi,t ≤ vmax, (5b)

umin ≤ ui,t ≤ umax, (5c)

where hmin, vmax, umin, and umax represent the minimum safe
headway, maximum speed, deceleration, and acceleration
limits, respectively.

B. Problem Formulation

Considering the prevalent issue of delays stemming from
communication or decision-making processes within CACC
systems in the real world, we model this problem using
the MADA-MDP. The process is represented by the tu-
ple ⟨X ,A, ρ, p, r⟩, where X denotes the augmented state
space, A represents the action space, and the state transition
distribution p characterizes the system’s intrinsic dynamics.
Furthermore, we assume that each CAV is equipped with
the capability to communicate with the vehicles ahead and
behind via V2V communication channels.

1) State Space: The state space encapsulates the environ-
mental description. Following the definition of MADA-MDP,
the observation spaces of all CAVs are augmented as X =
S ×Ak1

1 ×· · ·×A
kN

N . Here, the original state of agent i, Si,
is defined by [v, vdiff, vh, h, u], where v denotes the current
normalized vehicle speed. vdiff = (vi−1,t − vi,t) represents
the vehicle speed difference with its leading vehicle. vh =
(v◦(h)− vi,t), h = (hi,t + (vi−1,t − vi,t)∆t− h∗)/h∗, and
u = ui,t/umax are the headway-based velocity, normalized
headway distance, and acceleration, respectively.



Action Buffer

𝒂𝒂𝒕𝒕,𝒕𝒕+𝒌𝒌−𝟏𝟏 𝒂𝒂𝒕𝒕,𝒕𝒕+𝒌𝒌

Critic 
Update

Actor 
Update

𝒂𝒂𝒕𝒕

CACC Platoon

…

Centralized Critics

…

𝑸𝑸𝟏𝟏

𝑸𝑸𝑵𝑵

Decentralized Actors

…

𝓞𝓞𝒐𝒐𝒐𝒐𝒐𝒐

𝓞𝓞𝒂𝒂𝒂𝒂𝒕𝒕

𝒂𝒂

Actor 𝟏𝟏

𝓞𝓞𝒐𝒐𝒐𝒐𝒐𝒐

𝓞𝓞𝒂𝒂𝒂𝒂𝒕𝒕

𝒂𝒂

Actor 𝑵𝑵

Fig. 3: The framework of DAMARL for CACC platoon.

2) Action Space: In the considered CACC system, the
action at ∈ A directly pertains to the longitudinal control.
The action decision output for CAV i includes three compo-
nents ai,t = (αi,t, βi,t, ûi,t), where ûi,t is the acceleration
control value output by the policy network, and αi,t, βi,t

are control parameters for the action filtering layer, which
will be elaborated upon in Section IV-C. The overall action
space comprises the combined actions of all CAVs, i.e.,
A = A1 ×A2 × · · · × A|V|.

C. Reward Function

To ensure that CAVs within the platoon simultaneously
prioritize safety, efficiency, and comfort, our reward function
is designed as follows:

Ri,t =
1

C

[
w1(hi,t − h∗)2 + w2(vi,t − v∗)2 + w3u

2
i,t

]
, (6)

where w1, w2, and w3 are weighting coefficients, and C
is the scaling coefficient. In this equation, the first two
terms, (hi,t−h∗)2 and (vi,t−v∗)2, penalize deviations from
the desired headway and speed, respectively, encouraging
the agent to closely achieve these objectives. The third
term, u2

i,t, is included to minimize sudden accelerations,
thereby promoting a smoother and more comfortable ride
for passengers.

IV. DELAY-AWARE MARL FOR CACC PLATOONS

In this section, we first introduce the framework of Delay-
Aware MARL. Subsequently, we provide a detailed descrip-
tion of the policy network and the stability enhancement
module.

A. Delay-Aware Multi Agent Reinforcement Learning

Drawing from the findings of [21], it is understood that
MDPs under delay conditions do not necessitate direct mod-
eling but can instead be directly solved through RL. Hence,
based on MADA-MDP, we propose the Delay-Aware Multi-
Agent Reinforcement Learning-CACC (DAMARL-CACC)
decision framework. This approach employs a centralized

training and decentralized execution paradigm, meaning that
the vehicle platoon does not require a central controller,
effectively mitigating the non-stationarity problem posed by
multi-agent decision-making.

For each CAV in the platoon, we introduce a centralized
Q-function Critic, based on global information, and an inde-
pendent Actor that only requires communication and partial
observations. The framework is illustrated in Fig.3. In this
framework, each CAV i is controlled by an independent
policy network πi, with π = {π1, . . . , πN} representing the
set of all policies, parameterized by θ = {θ1, . . . , θN}. The
objective function’s gradient for CAV i is updated using the
deterministic policy gradient algorithm as follows:

∇θiJ(µi) =

Ex,a∼D[∇θiµi(ai|oi)∇ai
Qµ

i (x, a1, ..., aN )|ai=µi(oi)],
(7)

where policies π, states x, and observations o are augmented
based on the MADA-MDP. In the delay-aware scenario, X
includes all CAVs’ observations and the action sequences of
all agents in the near future, X = (o1, ..., oN ), where oi is
the input to CAV i’s policy πi and consists of two parts:
oi = (oiobs, o

i
act). Here, oiobs is the ith CAV’s observation

of the environment, and oiact is the planned action sequence
of length ki for agent i starting from the current timestep,
e.g., at time t, oit,act = ait:t+ki−1. oiact is obtained from the
action buffer, serving as a bridge between the agent and the
environment.

The replay buffer D is used to record the historical
experiences of all CAVs. The centralized Q function Qµ

i for
CAV i is updated as [26]:

L(θi) = Ex,a,r,x′
[
(Qµ

i (x, a1, . . . , aN )− y)2
]
,

where y = ri + γQµ′

i (x′, a′1, . . . , a
′
N )

∣∣
a′
j=µ′

j(oj)
, and µ′ =

{µθ′
1
, . . . , µθ′

N
} representing the target policy set with softly

updated parameters θ′i to stabilize training.
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Fig. 4: The attention-based policy network with stability enhancement.

B. Attention-based Policy Network

Recent advancements have underscored the efficacy of
attention mechanisms in enabling neural networks to priori-
tize the processing of the most pertinent input information,
thereby augmenting the model’s computational efficiency
[14], [15]. In light of these findings, we have developed an
attention-based policy network for each CAV, as delineated
in Fig. 4. This network is structured around three core
components: the encoder block, the attention block, and the
decoder block.

Encoder Block: The features X of agent i are transformed
into high-dimensional vectors through the application of a
Multilayer Perceptron (MLP), with a uniform set of weights
shared across all vehicles:

Zi = MLP (Xi) (8)

Subsequently, the feature matrix is channeled into the atten-
tion block, which is composed of Nhead stacked attention
heads.

Attention Block: Each self-vehicle generates a singular
query Qi = [q0] ∈ R1×dk , aimed at identifying a subset
of vehicles based on the environmental context, where dk
denotes the output dimensionality of the encoder layer. This
query is subjected to a linear projection and juxtaposed
against a set of keys Ki = [k0i , k

1
i , . . . , k

N
i ] ∈ R(N+1)×dk ,

each encapsulating descriptive features of individual vehi-
cles. The similarity is computed using the dot product q0kTi .
The components Qi, Ki, and Vi are determined as follows:

Qi = WQZi

Ki = WKZi

Vi = WV Zi

(9)

where the dimensions for WQ and WK are configured as
(dk × dN ), and that for WV is (dv × dh). The computation
of the attention matrix involves scaling the dot product by
the inverse square root of the dimension 1√

dk
and its normal-

ization using a softmax function σ. This process facilitates
the aggregation of a set of output values Vi = [v0i , . . . , v

N
i ],

wherein each vji represents a feature derived through a shared
linear projection Lv ∈ Rdx×dk . The attention calculation for

each head is encapsulated by:

ωm
i = σ

(QiK
T
i√

dk

)
Vi (10)

The aggregated output from all M heads is unified through
a linear layer:

ωi =

M∑
m=1

ωm
i (11)

The resultant attention vector ωi =
[
ωi,1, ωi,2, . . . , ωi,|Ni|

]
quantifies the degree of attention agent i allocates to the sur-
rounding vehicle j, conforming to the cumulative summation
condition:

∑|Ni|
j=1 ωi,j = 1.

Decoder Block: Leveraging the attention-weighted fea-
tures ωi alongside the encoded state information Zi, the
decoder employs a MLP to deduce the final action vector:

ai = MLP (Zi, ωi) (12)

Then the action ai is checked by an action filter to ensure
the security and stability, which is described in the next
subsection.

C. Platoon Stability Enhancement with Model-based Con-
troller

Given MARL’s data-driven essence, we introduce an ac-
tion filter layer comprising a velocity optimization model
to enhance the safety and robustness of CACC platoons by
ensuring safe acceleration for trailing CAVs.

The velocity optimization model computes a safe accel-
eration, termed the ideal acceleration u′

i,t for the ith CAV,
based on control parameters:

u′
i,t = αi(v

◦(hi,t;h
s, hg)− vi,t) + βi(vi−1,t − vi,t), (13)

where αi and βi denote the headway gain and relative speed
gain, respectively, influencing vehicle acceleration. Here,
hs and hg symbolize the stopped and full-speed headway
distances.

The headway-based velocity strategy v◦ is defined as:

v◦(h) ≜


0, if h < hs,
1
2vmax(1− cos (π h−hs

hg−hs )), if hs ≤ h ≤ hg,

vmax, if h > hg.
(14)



This function outlines an optimal velocity based on the
current headway, with velocity set to zero for headways ≤ hs

to prevent collisions, gradually increases within hs to hg , and
is capped at vmax for headways ≥ hg , ensuring traffic flow
safety and efficiency.

The action output by each CAV at time t, ai,t =
(αi,t, βi,t, ûi,t), comprises the CAV’s acceleration control
value ûi,t, determined by the policy network, and αi,t, βi,t,
the control parameters for the action filter layer. Upon
action generation by the policy network, the action filter
layer computes the ideal acceleration u′

i,t using parameters
αi,t, βi,t and Equation (13). It then selects the acceleration
action u∗

i,t that maximizes benefits according to the reward
function:

u∗
i,t =

{
u′
i,t if R(u′

i,t) ≥ R(ûi,t),

ûi,t otherwise,
(15)

where R(·) denotes the reward function specified in Equation
(6).

For a detailed description of the entire algorithm, see
Algorithm1.

V. EXPERIMENTS AND ANALYSIS

A. Simulation Settings

Scenarios. In our study, we devise two distinct scenarios,
namely Catchup and Slowdown, to evaluate the efficacy
of our methods. In the Catchup scenario, PMs indexed by
i = 2, . . . ,V are initialized with velocities vi,0 = v∗t and
headways hi,0 = h∗

t . Conversely, the PL begins with v1,0 =
v∗t and h1,0 = a · h∗

t , where a represents a random vari-
able uniformly distributed between 3 and 4. The Slowdown
scenario, on the other hand, initializes all vehicles, indexed
by i = 1, . . . ,V , with initial velocities vi,0 = b · v∗t and
headways hi,0 = h∗

t , with b uniformly distributed between
1.5 and 2.5. Herein, v∗t linearly decreases to 15 m/s within
the first 30 seconds and subsequently remains constant. For
the dynamics model of CACC in subsection III-A, we set
hmin = 1 m, vmax = 30 m/s, umin = −2.0 m/s 2, and
umax = 2.0 m/s 2.

Delay Setting. In the real world, the predominant delays
encountered in CACC encompass communication delay τ1,
sensor delay τ2, and actuator delay τ3. We approximate the
total delay τ as the cumulative sum of these components: τ =
τ1 + τ2 + τ3. Based on settings from the literature regarding
communication and sensor delays [27], [28], we configure
the total delay τ to be 0.5 seconds.

Baselines. For comparative analysis, we select three
cutting-edge MARL algorithms as baselines, including
MADDPG [29], ConseNet [30], and NeurComm [31]. MAD-
DPG is a typical example of the CTDE approach used
in multi-agent decision-making. ConseNet and NeurComm
specifically incorporate designed communication protocols
to facilitate enhanced decision-making among agents.

B. Implementation Details

We set the hyperparameters w1, w2, and w3 in Equa-
tion (6) to -1, -1, and -0.2, respectively, with C = 15.

Algorithm 1: DAMARL for CACC

1

Inputs : Replay buffer D, Episodes M , Timesteps T , CAVs
N , Batch size B

Outputs: Updated policies θ′i and centralized critics for each
CAV i

2 Initialize the experience replay buffer D;
for episode = 1 to M do

3 Initialize the action noise Nt and the action buffer F ;
Get initial state xxx0;
for t = 1 to T do

4 for CAV i = 1 to N do
5 Obtain oi = (oiobs, o

i
act) from the environment

and F ;
Output action with stability check:
Get (ûi, αi, βi) from πθi(oi);
Calculate the ideal action by Equation (13);
Select optimal action a∗i by Equation(15);

6 end
7 Store actions a = (a1, . . . , aN ) in F ;

Pop a = (a1, . . . , aN ) from F and execute it;
get the reward r and the new state x′;
Store (xxx, a, r,xxx′)→ D;
xxx← xxx′;
for CAV i = 1 to N do

8 Randomly sample a batch of B samples
(xxxb, ab, rb,xxx′b) from D;
Set yb = rbi + γ Qπ′

i (xxx′b, a′1, . . . , a
′
N )|a′

l=π′
l(o

b
l )

;
Update centralized critics with loss
L(θi) = 1

B

∑
j

(
yb −Qπ

i (xxx
b, ab1, . . . , a

b
N )

)2
;

Update decentralized actors by ∇θiJ ≈
1
B

∑
j ∇θiπi(o

b
i )

∇ai
Qπ

i (xxx
b, ab1, . . . , a

b
N )

∣∣
ai=πi(obi )

;

9 end
10 Soft update of target networks for each agent i:

θ′i ← κθi + (1− κ)θ′i;

11 end
12 end

The simulation spans T = 60 seconds with an interaction
period ∆t = 0.1 seconds, allowing the environment to
progress ∆t seconds per MDP step. And the delay planned
action sequence length for each CAV i is calculated as:
ki = ⌊ τ

∆t⌋ = 5. The Encoder and Decoder in the attention-
based policy network are MLP with two 64×64 linear layers.
The Attention Layer has two heads and a 128 feature size.
For the model-based controller, hs = 5m and hg = 35m.
We train over 1M steps for each model, with the discount
factor γ of 0.99. The learning rates are set to 5.0 × 10−4

for the actor and 2.5 × 10−4 for the critic. Each algorithm
undergoes tripartite training with different random seeds for
generalization. All experiments run on a platform with an
Intel Xeon Silver 4214R CPU and NVIDIA GeForce RTX
3090 GPU.



(a)

(b)

Fig. 5: The average rewards of different algorithms on differ-
ent scenarios, (a)Catchup scenario; (b)Slowdown scenario.

C. Experiment Results

1) Performance Analysis: Fig.5 compares the learning
curves of our method against other baseline methods for
a CACC platoon with a size of 8. ConseNet demonstrates
relatively better performance among the baseline algorithms,
whereas MADDPG and NeurComm struggle to converge sta-
bly in the Catchup scenario. In contrast, our method exhibits
higher learning efficiency, more stable decision-making, and
superior overall performance across both scenarios.

After training completion, we assess all algorithms over
50 trials under varying initial conditions, using metrics such
as average headway, average velocity, and collision counts.
Tab.I presents these evaluation results, showing our method
consistently outperforms the other baselines across differ-
ent scenarios. Notably, in the more challenging Slowdown
scenario, MADDPG and NeurComm fail to ensure safety
throughout the tests, ConseNet performs relatively better, but
our method achieves the lowest collision rate.

Moreover, taking the Catchup scenario as an example, we
plot the headway and velocity changes of CACC vehicles
controlled by different methods. NeurComm leads to colli-
sions around 25 seconds, causing task failure. MADDPG and
ConseNet manage some level of control, yet they fall short of
achieving the optimal control target within 60 seconds. Our
method, however, achieves the target headway and velocity
in the shortest time with the best stability.

TABLE I: Comparative Analysis of Different Algorithms in
Catchup and Slowdown Scenarios.

ConseNet MADDPG NeurComm Ours

Catchup

Avg Headway (m) 27.3 25.7 27.2 27.7
Avg Velocity (m/s) 15.5 15.3 16.8 15.1
Collision Count 0 27 50 0

Slowdown

Avg Headway (m) 21.5 20.7 23.8 21.9
Avg Velocity (m/s) 19.1 21.7 25.3 18.8
Collision Count 12 50 50 3

(a)

(c)

(b)

(d)

Fig. 6: Headway and velocity curves in the Catchup scenario
with different algorithms, (a)the headway of vehicle 1; (b)the
headway of vehicle 2; (c)the velocity of vehicle 1; (d)the
velocity of vehicle 2.

2) Impact of Platoon Size: We also investigate the impact
of platoon size on our model’s performance under delay
considerations. The experiments are conducted across dif-
ferent platoon sizes (sizes={5, 8, 10}). Tab. II displays the
performance of various methods during the testing phase.

It is observed that with an increase in platoon size,
which amplifies the difficulty and complexity of coordination
among CAVs, most algorithms exhibit a performance decline
in both scenarios. However, our algorithm consistently out-
performs all other baseline methods in every scenario, with
its advantage being even more pronounced in the Slowdown
scenario.

TABLE II: Average Reward of Different Algorithms with
Various Platoon Sizes.

Platoon Size ConseNet MADDPG NeurComm Ours

Catchup

5 -13.4 -20.1 -14.8 -16.0
8 -30.9 -636.2 -667.8 -36.6
10 -390.1 -414.2 -506.5 -43.4

Slowdown

5 -23.7 -39.1 -38.7 -22.8
8 -142.7 -488.4 -750.8 -60.3
10 -132.1 -608.5 -1149.6 -48.4



VI. CONCLUSION

CACC technologies are crucial for enhancing traffic ef-
ficiency and reducing energy consumption. Existing rein-
forcement learning-based CACC control methods have not
accounted for the widespread issue of delays. To address this
challenge, we proposed a delay-aware MARL framework.
Leveraging a Delay-aware Markov Decision Process, we
introduced a CTDE MARL framework to implement dis-
tributed control of CAVs within CACC platoons. An attention
mechanism-integrated Policy network and a velocity opti-
mization model-based action filter were designed to improve
the model’s performance. Our approach was experimentally
validated on platoons of various sizes, demonstrating su-
perior performance in scenarios with delays compared to
baseline methods.

In the future, we aim to delve deeper into the specific types
of delays within CACC platoons, such as communication and
control delays, and design personalized modules to address
these delays separately. Additionally, we plan to conduct
experiments in more complex mixed traffic scenarios to
enhance the adaptability of the model.
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