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ABSTRACT
Morphological classification conveys abundant information on the formation, evolution, and environment of

galaxies. In this work, we refine the two-step galaxy morphological classification framework (USmorph),
which employs a combination of unsupervised machine learning (UML) and supervised machine learning
(SML) techniques, along with a self-consistent and robust data preprocessing step. The updated method is
applied to the galaxies with Imag < 25 at 0.2 < z < 1.2 in the COSMOS field. Based on their HST/ACS
I-band images, we classify them into five distinct morphological types: spherical (SPH, 15,200), early-type disk
(ETD, 17,369), late-type disk (LTD, 21,143), irregular disk (IRR, 28,965), and unclassified (UNC, 17,129). In
addition, we have conducted both parametric and nonparametric morphological measurements. For galaxies
with stellar masses exceeding 109M⊙, a gradual increase in effective radius from SPHs to IRRs is observed,
accompanied by a decrease in the Sérsic index. Nonparametric morphologies reveal distinct distributions of
galaxies across the Gini − M20 and C − A parameter spaces for different categories. Moreover, different
categories exhibit significant dissimilarity in their G2 and Ψ distributions. We find morphology to be strongly
correlated with redshift and stellar mass. The consistency of these classification results with expected correla-
tions among multiple parameters underscores the validity and reliability of our classification method, rendering
it a valuable tool for future studies.

Keywords: Galaxy structure (622), Astrostatistics techniques (1886), Astronomy data analysis (1858)

1. INTRODUCTION

In the realm of observational cosmology, galaxy morphol-
ogy stands out as one of the most readily accessible proper-
ties, intimately intertwined with numerous other physical at-
tributes (such as color, gas content, star formation rate, stellar
mass, and environment) of galaxies (e.g., Kauffmann et al.
2004; Omand et al. 2014; Schawinski et al. 2014; Kawin-
wanichakij et al. 2017; Gu et al. 2018; Lianou et al. 2019).
It can offer insights into the evolutionary history and assem-
bly processes of galaxies. For example, as galaxies evolve,
their morphological features may transition towards being
more bulge-dominated and compact (e.g., Martig et al. 2009;

∗ GuanWen Fang and Jie Song contributed equally to this work

Dimauro et al. 2022). Consequently, accurately estimating
galaxy morphology at each epoch within the universe is of
fundamental importance for unraveling the intricate tapestry
of galaxy evolution.

Several methods are currently available for characterizing
galaxy morphology, with one of the most direct being visual
inspection. In a pioneering study, Hubble (1926) systemat-
ically analyzed approximately 400 galaxies and categorized
them using what is now known as the “Hubble tuning fork”
classification. Furthermore, the Galaxy Zoo project engaged
the efforts of nearly half a million volunteers, resulting in
the morphological classification of over one million galaxies
(e.g., Lintott et al. 2011; Simmons et al. 2017; Willett et al.
2017; Walmsley et al. 2021). These citizen science initia-
tives have significantly expanded our knowledge of galaxy
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morphologies. However, this method is characterized by low
efficiency, high cost, and inherent subjective bias, which may
not be suitable for future large-sky surveys.

Besides visual inspection, galaxy morphological classifica-
tions can be also obtained with several features from the raw
images. This can be achieved through parametric measure-
ment, which involves modeling the galaxy’s light distribution
with an analytic function (e.g., de Vaucouleurs 1948; Sérsic
1963; Freeman 1970), and nonparametric measurement (e.g.,
Conselice et al. 2000; Conselice 2003; Lotz et al. 2004, 2008;
Conselice 2014). Using Principal Component Analysis tech-
niques and based on structural parameters (e.g., C, A, Gini,
M20, ellipticity, and Sérsic index), Scarlata et al. (2007) clas-
sified approximately 56,000 galaxies in the COSMOS (Cos-
mic Evolution Survey, Scoville et al. 2007) field into early-
type, disk, and irregular galaxies. Similarly, according to the
distribution of galaxies in the morphological structural pa-
rameter space, Cassata et al. (2007) and Tasca et al. (2009)
also obtained the morphological classification results in the
COSMOS field. This approach represents the characteristics
of galaxies using a few parameters, reducing the complexity
of describing galaxy morphology, but it also rejects the rich
information hidden beneath all the pixels, which may lead to
misclassification in some cases.

In recent years, the rapid advancement of computer tech-
nology has enabled the application of machine-learning tech-
niques for galaxy morphological classification. This include
feature-based methods (e.g., Sreejith et al. 2018; Huertas-
Company et al. 2007; Banerji et al. 2010; Gauci et al. 2010)
and image-based methods (e.g., Zhu et al. 2019; Ghosh
et al. 2020; Vega-Ferrero et al. 2021). Convolutional Neu-
ral Networks (CNNs, Schmidhuber 2015), in particular, have
demonstrated their ability to replicate human perception and
have been successfully used to determine galaxy morpho-
logical types in both the local universe (e.g., SDSS - Sloan
Digital Sky Survey, York et al. 2000, DES - Dark Energy
Survey, Dark Energy Survey Collaboration et al. 2016) and
the high-redshift universe (e.g., CANDELS - Cosmic Assem-
bly Near-infrared Deep Extragalactic Legacy Survey, Gro-
gin et al. 2011) (e.g., Dieleman et al. 2015; Zhu et al. 2019;
Ghosh et al. 2020; Vega-Ferrero et al. 2021; Cavanagh et al.
2021). However, as an SML method, CNNs require large
pre-labeled datasets as training sets, which are typically ob-
tained through visual inspection. As mentioned earlier, this
step can be time-consuming and negates some of the advan-
tages of machine learning.

UML offers an alternative approach for galaxy morpholog-
ical classification, eliminating the need for pre-labeled train-
ing sets. This characteristic renders it suitable for morpho-
logical analysis in the context of large-scale surveys (e.g.,
Schutter & Shamir 2015; Ralph 2019). Typically, UML
methods involve two key steps: (1) feature extraction from
raw images and (2) clustering galaxies with similar features.
Numerous UML methods have already found application in
various studies (e.g., Hocking et al. 2018; Fielding et al.
2022; Martin et al. 2020; Cheng et al. 2021). For instance, us-
ing a sample from the SDSS, Cheng et al. (2021) has demon-

strated the effectiveness of this UML approach for galaxy
morphological classification, providing a robust scheme.

However, many UML methods only focus on one single
clustering algorithm, potentially leading to inconsistent clus-
tering outcomes when different similarity definitions are em-
ployed, which may result in misclassification. To obtain mor-
phological classifications with high confidence, Zhou et al.
(2022) introduced a Bagging-based multi-clustering model
that incorporates three diverse clustering algorithms. This
approach, combined with convolutional autoencoding (CAE;
Massey et al. 2010) for feature extraction from images,
yielded reliable classification results at the cost of exclud-
ing disputed sources with inconsistent voting. Subsequently,
Fang et al. (2023) used the classification results from Zhou
et al. (2022) as a training set in an SML algorithm to deter-
mine the morphological types of previously rejected sources
from the same dataset. This framework that combines UML
and SML methods for morphological classification (which
is named as USmorph) can help us obtain reliable and com-
plete galaxy morphological type efficiently, which makes it
suitable for future large-field sky surveys, such as the ones
from CSST (Chinese Space Station Telescope, Zhan 2011,
2018), JWST (James Webb Space Telescope, Gardner et al.
2006), Euclid Space Telescope (Laureijs et al. 2011; Euclid
Collaboration et al. 2022), Rubin Observatory (Blum et al.
2022), and Roman Space Telescope (Spergel et al. 2015).

In this work, we conduct a pilot study for CSST to vali-
date the reliability of the algorithm developed by Zhou et al.
(2022) and Fang et al. (2023) with COSMOS I-band im-
ages since these images are high-resolution and similar to
the imaging data of the CSST. In brief, we perform our
two-step algorithm to galaxies with Imag < 25 at redshifts
0.2 < z < 1.2 in the COSMOS field to get their morpho-
logical types. Additionally, both parametric and nonpara-
metric morphologies for these galaxies are also estimated to
investigate the consistency between our classification results
and these morphological parameters. The results confirm that
our classification results align with the expected relationships
with the morphological parameters, underscoring the relia-
bility of our algorithm.

The paper’s structure is as follows: In Section 2, an
overview of the COSMOS program and our sample selec-
tion criteria are provided. Section 3 briefly introduces the
methodology employed for galaxy morphological classifica-
tion. Our classification results are presented in Section 4, fol-
lowed by the conclusion in Section 5. Throughout this work,
we adopt a flat Λ cold dark matter (ΛCDM) cosmology with
H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and ΩΛ = 0.7, along
with a Chabrier (2003) initial mass function.

2. DATA SET AND SAMPLE SELECTION

2.1. COSMOS

The COSMOS field was strategically designed to explore
the intricate connections between galaxy evolution, star for-
mation, active galactic nuclei, dark matter, and large-scale
structure within the redshift range 0.5 < z < 6. This
comprehensive survey spans a wide range of wavelengths,
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from X-ray to radio, and covers an area of approximately
2 deg2. In this study, the high-resolution images captured
by HST/ACS in the F814W filter are capitalized, encom-
passing an area of roughly 1.64 deg2 within the COSMOS
field. This dataset represents the largest continuous field ob-
served by HST ACS as yet. The original images comprise
approximately 590 pointings, with an average exposure time
of 2028 seconds per pointing. These images were meticu-
lously processed by Koekemoer et al. (2007) using the STS-
DAS Multidrizzle package (Koekemoer et al. 2003), re-
sulting in images with a pixel scale of 0.′′03 and a 5σ depth
of 27.2 AB mag within a 0.′′24 diameter aperture. In the sub-
sequent analysis, all morphological measurements are based
on these high-resolution HST I-band images.

2.2. COSMOS2020 Catalogue

The sample utilized in this study is constructed based
on the “Farmer” COSMOS2020 catalog (Weaver et al.
2022), which provides comprehensive photometric informa-
tion spanning 35 bands from ultraviolet to near-infrared.
Weaver et al. (2022) further estimated some physical prop-
erties of galaxies in this field, including photometric redshift
and stellar mass, through spectral energy distribution (SED)
fitting with galaxy models, using this enhanced photometric
dataset.

Redshifts were determined employing two distinct codes,
EAZY (Brammer et al. 2008) and LePhare (Ilbert et al.
2006). For our analysis, we adopt the LePhare-derived
redshifts, as Figure 15 of Weaver et al. (2022) illustrated
their superior reliability within the magnitude range under
consideration. Redshift estimation involves a library of 33
galaxy templates sourced from Bruzual & Charlot (2003)
and Ilbert et al. (2009). Additionally, various dust extinc-
tion/attenuation curves are employed, encompassing the star-
burst attenuation curve introduced by Calzetti et al. (2000),
the SMC extinction curve from Prevot et al. (1984), and two
variations of the Calzetti law, including the 2175 Å bump.
Then the photometric redshift (zLePh) is defined as the me-
dian value derived from the redshift likelihood function.

Subsequently, with redshift fixed to zLePh, the LePhare
fitting code was executed once more to extract stellar mass
and other pertinent physical properties. This stage considered
Bruzual & Charlot (2003) stellar populations and a range of
stellar formation histories (SFHs), including exponentially
declining SFHs and delayed τ SFHs. For additional in-depth
details, please refer to the works of Weaver et al. (2022) and
Laigle et al. (2016).

2.3. Sample Selection

In this work, we have selected galaxies from the COS-
MOS2020 Catalog based on the following criteria: (1) Imag

< 25 mag, excluding galaxies that are too faint to obtain
reliable morphological measurements; (2) 0.2 < z < 1.2,
ensuring that the morphology is estimated in the rest-frame
optical band; (3) FLAGCOMBINE = 0, which means flux
measurements are not influenced by bright stars and the ob-
jects are not on the edges of images, guaranteeing reliable
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Figure 1. The distribution of I band magnitudes in the COSMOS
field. A magnitude limit of Imag < 25 is imposed.

photometric redshift and stellar mass estimations; (4) signal
to noise ration larger than 5 (S/N > 5), ensuring a real de-
tection. Moreover, sources with bad pixels have also been
excluded. As a result, the final sample comprises a total of
99,806 galaxies. The distribution of I-band magnitudes in the
COSMOS field, along with the magnitude selection threshold
of 25, is illustrated in Figure 1.

Raw Images

Preprocessed
Images

Denoise APCT

labels

Rejected
Images labels

Data Preprocessing

as training set

SML

UML

Figure 2. Framework of the morphological classification model
employed in this work.

3. METHOD FOR MORPHOLOGICAL
CLASSIFICATION

In this section, an overview of our Usmorph algorithm
employed for galaxy morphological classification is provided
(as shown in Figure 2). This comprises three sections(data
preprocessing, UML method, and SML method), and the de-
tailed content is as follows.
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3.1. Data Preprocessing

In our previous work, Zhou et al. (2022) employed a
28×28-pixel cutout for each galaxy within the CANDELS
field. However, given that the pixel scale of the COSMOS
I-band images is 0.′′03 per pixel, which is notably finer than
the 0.′′06 pixel scale in the CANDELS field, and that the red-
shift range considered in this study is quite lower than that of
Zhou et al. (2022), larger 100 × 100-pixel cutouts are gen-
erated for galaxies in our sample, with all galaxies centered
in each cutout. To ensure that this cutout is sufficiently large
to encapsulate adequate information for the majority of se-
lected galaxies, we have checked that the half-light radius
of approximately 97% of the galaxies in our sample is less
than 0.12 arcsec (equivalent to 40 pixels). To prevent an ex-
cessively large cutout size, we have also checked and found
that approximately 11% of galaxies have a half-light radius
greater than 0.09 arcsec (30 pixels). To balance the train-
ing time and ensure most of the source information, we think
this size is reasonable when considering that most cutouts
(96%) contain only one galaxy. Moreover, before the fol-
lowing steps, a max-min normalization pretreatment is also
applied to each cutout, following the methods described in
Zhou et al. (2022).

We update the UML method developed in Zhou et al.
(2022) by introducing some data preprocessing steps, en-
hancing the reliability of our results. Previously, some stud-
ies had shown that the distribution of image S/N can af-
fect the performance of machine learning since noise can
disturb image features and lead to misclassifications (Liu
et al. 2022). Fortunately, Nazaré et al. (2018) had demon-
strated that this problem can be overcome with noise reduc-
tion. CAE is demonstrated to be highly effective in noise
reduction via automatically extracting image features and re-
constructing images with the extracted features (e.g., Masci
et al. 2011; Fang et al. 2023; Dai et al. 2023). In the CAE
process, operations of convolution and pooling encode the
pixels and give encoded features with a lower dimension.
Then, denoised results can be obtained by applying deconvo-
lution and unpooling to these features. To make our classifi-
cation results more reliable, we also perform noise reduction
with CAE to enhance the image quality of our samples. In
our CAE algorithm, we consider 2 layers during the encod-
ing process, each layer consisting of convolution and max-
pooling operations. Then, through a fully connected layer,
we represent the features of galaxies as a 40-dimensional
vector. The decoding process is the inverse of the encod-
ing process, and the configurations used during encoding and
decoding are identical. An schematic diagram of this process
can be found in Figure 2 of Zhou et al. (2022). We build
our algorithm based on TensorFlow1(Abadi et al. 2016).
During the convolution operations, the channel size is set to
16 with a kernel size of 5 × 5. Subsequently, in the max-
pooling process, a 2 × 2 pixel block is consolidated into a

1 https://www.tensorflow.org

single pixel. Due to memory constraints, the batch size is
set to 8. The activation function is the Rectified Linear Unit
function (Agarap 2018), while the loss function is the Mean
Square Error (Lehmann & Casella 2006). We also employ
a learning rate scheduler (Exponential Decay, Li & Arora
2019) to dynamically adjust our learning rate, starting with
an initial value of 3 × 10−4. We do not use batch normal-
isation, or dropout, or regularisation in this work. We train
our program for 32 epochs, extending the training by approx-
imately 10 additional epochs beyond the point where the val-
idation loss plateaued to get a better denoising effect. Figure
3 provides a visual comparison before and after noise reduc-
tion: in the left column, raw images of randomly selected
galaxies from our sample are presented, and in the middle
column, the results after noise reduction are showcased. It is
evident that the image quality is substantially improved after
noise reduction while retaining the essential morphological
features.

Furthermore, a number of groups point out that the stan-
dard CNN models have poor robustness to rotations of im-
ages, which may lead to misclassification of the galaxy mor-
phological type after rotation (e.g., Chiu et al. 2018; Yao et al.
2019). To overcome this shortcoming, Fang et al. (2023) pro-
posed an adaptive polar coordinate transformation (APCT)
method in the data preprocessing procedure. Compared to
traditional data augmentation and conventional polar coor-
dinate unwrapping, Fang et al. (2023) found that APCT can
significantly improve the accuracy of CNNs when images are
rotated. Moreover, by ignoring information about image ori-
entation, APCT can make models focus on other more impor-
tant features of galaxies, which makes it an important prepro-
cessing method. Here we provide a brief introduction to this
method (see Fang et al. 2023 for more details). Essentially,
the pixels with the maximum and minimum flux values in
the images are identified as the brightest and darkest points,
respectively. Subsequently, the line connecting the bright-
est and darkest points is designated as the polar axis. Then,
the axis is rotated counterclockwise by an increment of 0.05
rad each time. For each discrete rotation, the axis traverses
numerous pixels of the raw images. By stacking the pixels
along this rotating axis while rotating, the entire image can
be unfolded into polar coordinates. Finally, the images are
mirrored to highlight morphological features since CNN is
more sensitive to information at the center of the image. To
make our results rotationally invariant, We apply this method
to our samples. In the right column of Figure 3, we present
the corresponding results after implementing APCT.

3.2. UML Process

After completing the data preprocessing steps, we apply
the UML method, as outlined in Zhou et al. (2022), to ob-
tain classification results for some of our samples. The UML
method comprises two main steps: (1) Using the images
processed with noise reduction and APCT, relevant features

https://www.tensorflow.org
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CAE APCT

z = 0.47

z = 0.37

z = 1.11

z = 0.66

Figure 3. Some examples of image preprocessing, the left column displays original images of four randomly selected galaxies, the middle
column shows the corresponding denoised images, and the right column displays images that have undergone a polar coordinate transformation.
The redshift information of these chosen galaxies is shown in the first column.

are extracted with CAE2, then these extracted 40-dim fea-
tures are used for the next step; (2) a bagging-based multi-
clustering approach is employed to cluster galaxies with sim-
ilar features into distinct groups. In this second step, three
different clustering models are employed simultaneously: the
k-means clustering algorithm (Hartigan & Wong 1979), the
agglomerative clustering algorithm (Murtagh 1983; Murtagh
& Legendre 2014), and the Balanced Iterative Reducing
and Clustering using Hierarchies (BIRCH) algorithm (Zhang
et al. 1996). The sample is clustered into 50 categories by
each model separately. By setting the K-means labels as the
primary labels, we assign labels to the groups of other mod-
els according to the highest frequency of the K-means label
in that group. Then, the “majority wins” strategy is used in
voting. The sources that the three models reach a consensus
in voting are retained, while those that do not reach a con-
sensus are discarded. This voting strategy can improve the
clustering quality, thereby leading to a more reliable classi-
fication, as demonstrated in Zhou et al. (2022) and liu et al.
(2023).

After removing galaxies with inconsistent voting results,
36,604 galaxies are neatly grouped into 50 groups. The mor-
phological type of these 50 groups is determined through
post-hoc visual inspection for label alignment (refer to liu
et al. 2023 for further details). Specifically, owing to the

2 In the preprocessing part, we use CAE to perform noise reduction. In this
step, we run CAE once more to extract features.The configuration of CAE
used here for feature extraction is the same as the one used for noise reduc-
tion

high purity of the clustering, galaxies within each group ex-
hibit similar features. Consequently, the morphological type
for a particular group can be obtained by visually inspecting
only a subset of galaxies from that group. In this study, we
randomly select 100 galaxies from each group for visual in-
spection. By evaluating the overall morphological features of
these randomly selected 100 samples simultaneously, we cat-
egorize each group into one of five types: SPH, ETD, LTD,
IRR, and UNC. Finally, these 36,604 galaxies are classi-
fied into five distinct categories: SPHs (8233), ETDs (5322),
LTDs (6320), IRRs (9468), and UNCs (7261). Figure 4 illus-
trates an example of this process.

3.3. SML Process

By excluding 63,202 sources with inconsistent voting re-
sults, a set of 36,604 galaxies with reliable morphological la-
bels are obtained through our UML clustering process. Then
these 36,604 well-classified sources are used as a training set
to conduct SML for the remaining 63,202 galaxies. Based
on the findings of Fang et al. (2023), who demonstrated that
GoogLeNet performs well in classifying deep-field galaxies,
we employ the GoogLeNet algorithm (Szegedy et al. 2015)
as a supervised classification model.

To prevent overfitting, the labeled galaxies are randomly
divided into a 9:1 ratio of training set (32,944) and validation
set (3660), following the same proportion as in Fang et al.
(2023). To ensure the robustness of our GoogleNet model,
we also examined the distribution of morphological types in
the training and validation sets. The results are shown in Fig-
ure 5, from which it can be clearly seen that these two sets
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Group ID: 8 Type: SPH Group ID: 12 Type: ETD Group ID: 9 Type: LTD

Group ID: 22 Type: IRR Group ID: 29 Type: UNC

Cluster into 50 Groups

Randomly Selected 100 Galaxies

Visual Inspection

Group ID: 8 Group ID: 12

Group ID: 9

Group ID: 22 Group ID: 29

Figure 4. Illustration of the post-hoc visual inspection for label alignment. 100 galaxies are randomly selected from each group (only 64
galaxies are selected for Group 9 because the total number of galaxies in this group is less than 100) for visual inspection. Since galaxies
within each group share similar features, we are able to quickly categorize each group into five types (SPH, ETD, LTD, IRR, and UNC) by
simultaneously assessing the overall morphological features of these selected galaxies.

SPH ETD LTD IRR UNC0

5%

10%

15%

20%

25%

30%

F
ra

ct
io

n

training set
validation set

Figure 5. The distribution of galaxy morphological types in the
training and validation sets.

have the same distribution of morphological types. Addi-
tionally, we have also examined the distribution of the train-
ing set and validation set in some other physical parameter
(including M∗, redshift, and some other morphological pa-
rameters) space and find that they alao exhibit similar distri-
butions. Figure 6 displays the precision and recall rates of
the GoogLeNet model, which is estimated based on the val-
idation set. It is evident that the overall accuracy rate is ap-
proximately 94%, indicating that GoogLeNet performs well
in classifying galaxies of all types. With this SML method,

Table 1. The number of galaxies classified into different types

TYPE SPH ETD LTD IRR UNC TOTAL

UML 8233 5322 6320 9468 7261 36,604

SML 6967 12,047 14,823 19,497 9868 63,202

TOTAL 15,200 17,369 21,143 28,965 17,129 99,806

we obtain morphological classifications for the remaining
63,202 galaxies.

4. RESULTS AND DISCUSSION

4.1. Overall morphological classification results

In preparation for future large-scale surveys, there is a
growing demand for efficiently obtaining morphological in-
formation for a significant number of galaxies within a short
time frame. In this study, we have successfully classified
the morphologies of approximately 100,000 galaxies in the
COSMOS field using I-band images, which include 15,200
SPHs, 17,369 ETDs, 21,143 LTDs, 28,965 IRRs, and 17,129
UNCs. Detailed classification results are shown in Table 1.
The whole task (both UML and SML) is completed within
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Figure 6. The left and middle panels represent the precision and recall of the GoogleNet model, with both overall precision and recall exceeding
94%, indicate that the GoogleNet model can effectively distinguish between different types of galaxies. The right panel represents the general
confusion matrix.

SPH ETD LTD IRR UNC

SPH ETD LTD IRR UNC

SPH ETD LTD IRR UNC

Figure 7. Some examples of the final classification results. From left to right, they are SPHs, ETDs, LTDs, IRRs, and UNCs.

less than one day, which means this method has potential for
application in future large-field sky surveys.

To test our classification, we conduct visual inspections on
a randomly sampled subset of samples from the final results.
The visual examination confirms that SPHs tend to be com-
pact and bulge-dominated, whereas LTDs exhibit extended
structures with disk dominance. Some LTDs also display
prominent spiral arm structures. ETDs are characterized by
their relatively less compact form with a bright nuclear re-
gion and a disk component. IRRs encompass galaxies with
irregular structures or merger signatures. UNCs are typically

galaxies that cannot be confidently identified due to poor
S/Ns. Some examples of the classification results are pre-
sented in Figure 7, which demonstrates the effectiveness of
our algorithm in distinguishing galaxies with different mor-
phological types.

Furthermore, the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) technique is adopted to assess the classifi-
cation results, which maps high-dimensional data into a two-
or three-dimensional space, making it suitable for visualiza-
tion and inspection (van der Maaten & Hinton 2008). To en-
hance clarity, 5000 randomly selected galaxies are presented
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Figure 8. The t-SNE diagram of randomly selected 5000 galax-
ies from the final classification result, where red, green, blue, cyan,
and grey represent SPHs, ETDs, LTDs, IRRs, and UNCs, respec-
tively. Additionally, unless otherwise stated, the same color scheme
is adopted in the following analyses. The solid lines of different
colors in the figure represent the corresponding 1 sigma contours.
Different types of galaxies exhibit distinct boundaries on the t-SNE
diagram, indicating that our classification algorithm can effectively
distinguish between different types of galaxies.

using the t-SNE technique in Figure 8, which is based on
the extracted 40-dim features in the UML process. Con-
sidering that the axes do not have corresponding physical
meanings, here we simply use “Reduced Dimension 1” and
“Reduced Dimension 2” to represent the axis labels. The
solid lines of different colors in the figure represent the cor-
responding 1 sigma contours. This figure reveals distinct
boundaries between different galaxy types, indicating that
each class of galaxies in our classification indeed possesses
distinct characteristics. We note that LTDs appear to be di-
vided into two parts in the t-SNE diagram, which may be at-
tributed to projection effects. There is also overlaps between
different groups. This may also be caused by the morpholog-
ical similarities between different groups, which is expected
by galaxy evolution scenario. Since the t-SNE diagram can
only provide a qualitative overview of the results, we will
further validate our classification results in the following sec-
tions.

4.2. Test of Morphological Parameters

The structural parameters of galaxies are closely related
to their morphological types. For example, it is commonly
accepted that elliptical galaxies tend to have Sérsic index
greater than 2, while disk galaxies typically exhibit Sérsic in-
dex less than 2 (e.g., Fisher & Drory 2008; Blanton & Mous-
takas 2009). Nonparametric structural parameters also offer
valuable insights into galaxy morphological types, as differ-

ent galaxy categories often occupy distinct positions in pa-
rameter space (e.g., Lotz et al. 2008; Yao et al. 2023).

In this section, we investigate the classification results us-
ing galaxy morphological parameters. Since extensive re-
searches have already explored the correlations between mor-
phologies and other morphological parameters (e.g., Gu et al.
2018; Zhou et al. 2022; Dai et al. 2023), our analysis fo-
cuses exclusively on massive galaxies with stellar masses ex-
ceeding 109M⊙. We exclude the UNCs subclass from our
analysis due to the difficulty in measuring morphological pa-
rameters for these galaxies, primarily stemming from their
relatively low S/Ns.

4.2.1. Parametric Measurements

In this study, the measurements of parametric morphology
for galaxies in the COSMOS field are conducted using the
GALAPAGOS software (Barden et al. 2012; Häußler et al.
2022), which serves as a wrapper for both SExtractor
(Bertin & Arnouts 1996) and GALFIT (Peng et al. 2002).
The software utilizes a single Sérsic model to fit the surface
brightness profile of each galaxy and measure their Sérsic in-
dex and effective radius (re).

To ensure the reliability of our analysis and eliminate the
influence of galaxies that cannot be fully covered by our
100 × 100 pixel cutout, we excluded galaxies for which the
estimated re exceeded 40 pixels. This removal affects less
than 5% of our galaxy sample, demonstrating that it had no
significant impact on our results.

The left panel of Figure 9 illustrates the distribution of
effective radius for four galaxy subclasses: SPHs, ETDs,
LTDs, and IRRs. The median effective radius for these sub-
classes are 1.77, 2.33, 3.18, and 3.90 kpc, respectively. No-
tably, SPHs tend to have smaller sizes compared to the other
subclasses, and the effective radius increases in the order
from SPHs to ETDs, LTDs, and IRRs. The right panel of Fig-
ure 9 presents the distributions of Sérsic indices for the same
four galaxy subclasses. SPHs exhibit a higher degree of com-
pactness with a median Sérsic index of 4.34, whereas ETDs,
LTDs, and IRRs have median Sérsic index of 1.94, 1.18, and
0.88, respectively. In summary, the distributions of Sérsic in-
dex and effective radius for different galaxy types align with
our expectations regarding the relationships between galaxy
types and structural parameters.

4.2.2. Nonparametric Measurements

Since the morphological structures of high-redshift galax-
ies are likely to be irregular, it can be challenging to fit the
brightness distribution of these high-redshift galaxies with
empirical functions. Therefore, some nonparametric mor-
phological parameters are developed to describe various fea-
tures of galaxies. The most widely used parameters are CAS
statistics. C (concentration) is developed to quantify the
concentration of light within a galaxy’s central region com-
pared to its outer regions (e.g., Bershady et al. 2000; Con-
selice 2003). A (asymmetry) could characterize the degree of
asymmetry exhibited by a galaxy after a 180◦ rotation (e.g.,
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Conselice et al. 2000; Conselice 2003). S (clumpiness) rep-
resents the proportion of light in a galaxy that is distributed
in clump patterns. Besides the CAS system, the Gini−M20

system has also been adopted in many works. Gini coeffi-
cient represents the distribution of light within a galaxy and
a higher value indicates a more unequal distribution (e.g.,
Lotz et al. 2004, 2008). M20 (the normalized second-order
moment of the brightest 20% of the galaxy’s flux) indicates
whether light is concentrated in a galaxy, and a more concen-
trated result (a more negative M20) does not imply that light
is central concentration, instead, the light may be concen-

trated in any location within the image (e.g., Lotz et al. 2004,
2008). More recently, a new suit of parameters was intro-
duced by Freeman et al. (2013), that includes M (multimode,
which quantifies the area ratio between two most “promi-
nent” clumps within a galaxy), I (intensity, which represents
the light ratio between the two brightest subregions within
a galaxy.), and D (Deviation, which represents the distance
between the image light-weighted center and the brightest
peak.)

Rodriguez-Gomez et al. (2019) had developed a python
package statmorph for calculating the nonparametric
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morphology of galaxies, including Gini, M20, C, A, S, M,
I, and D. Based on this package, Yao et al. (2023) had op-
timized the code with Cython (Behnel et al. 2011) and
increased the calculation speed by one order of magni-
tude, which is suitable for the large-scale survey. In ad-
dition, Yao et al. (2023) had also incorporated some addi-
tional optional parameters into statmorph, including the
color dispersion (ξ; Papovich et al. 2003), Multiplicity (Ψ;
Law et al. 2007), and the second gradient moment (G2;
Rosa et al. 2018). The improved code has been named
statmorph csst. The reliability of statmorph has
been extensively validated in previous studies. Yao et al.
(2023) conducted tests to compare measurement results be-
tween statmorph csst and the original statmorph.
The results, presented in their Appendix 1, indicate that the
optimization has virtually no impact on the measured results
of morphological parameters, underscoring the reliability of
statmorph csst. In this study, the nonparametric struc-
tural parameters of galaxies in the COSMOS field are esti-

mated using the statmorph csst code, which requires
only a few hours of computational time.

Considering that the measurement of nonparametric struc-
tural parameters is influenced by S/Ns, previous studies (e.g.,
Lotz et al. 2004, 2006, Treu et al. 2023, Yao et al. 2023) have
shown that reliable measurements of these parameters can be
obtained when the average S/N per pixel (⟨S/N⟩) exceeds 2.
Thus, we focused our analysis on galaxies with ⟨S/N⟩ greater
than 2 in this part. The detailed method of obtaining ⟨S/N⟩ is
described in Section 4.3.2 of Rodriguez-Gomez et al. (2019).

In Figure 10, we present the distribution of four galaxy
subclasses in the Gini-M20 (left) and C-A (right) parame-
ter spaces. Since these parameters are widely used in many
studies, we do not introduce the definitions of these param-
eters, which have been carefully described in Section 4 of
Rodriguez-Gomez et al. (2019). The contours in this figure
represent 50% of the specified galaxies. Different colored
diamonds correspond to the median parameter values for dif-
ferent types of galaxies, with error bars indicating the corre-
sponding standard deviations. It is evident from the left panel
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that galaxies transition from SPHs to IRRs with a gradual
decrease in Gini and a simultaneous increase in M20, which
aligns with our common understandings of Gini and M20 for
different galaxy types. When focusing on the C-A space, nu-
merous studies have shown that more compact galaxies tend
to have larger C coefficients, while more symmetric galaxies
tend to have smaller A coefficients. From the right panel, it is
evident that the more compact and symmetric SPHs exhibit
larger C values and smaller A values, while the more dif-
fuse and irregular IRRs exhibit smaller C values and larger
A values, although the difference between A values is small.
This is consistent with some previous studies (e.g., Lotz et al.
2004, 2006; Conselice et al. 2008; Conselice 2014). These
findings support the consistency of our classification results
with nonparametric parameters.

In addition to these commonly used parameters, some less
commonly used but also useful parameters are estimated. In
Figure 11, we present the distribution of G2 (left panel) and
Ψ (right panel) parameters for different types of galaxies.

The G2 is designed by Rosa et al. (2018) to distinguish
between elliptical and spiral galaxies based on the symme-
try of the flux gradient. By denoting the flux at coordinates
(xi, xj) in an image as I(xi, xj), the local gradient vectors
V (i, j) at (xi, xj) can be estimated by calculating the first-
order partial of I(xi, xj), assuming that the distance between
adjacent pixels in the same direction is 1. Based on a given
tolerance for norm and phase, symmetric pairs are defined as
those that are concentric and have the same modulus and a
phase shifted by π. Then, asymmetric vectors vk can be ob-
tained after removing all the symmetric pairs from the local
gradient vectors. Thus, the G2 coefficient is defined as:

G2 =
VA
V

×

(
2−

|ΣVA

k=1vk|
ΣVA

k=1|vk|

)
(1)

where V is the number of local gradient vectors and VA is the
number of asymmetric vectors. |ΣVA

k=1vk| is the modulus of
the sum of asymmetric vectors, while ΣVA

k=1|vk| is the sum of
the modulus of asymmetric vectors.

The left panel of Figure 11 displays the distribution of G2

for different galaxy subclasses. Similar to Figure 9, the bars
at the top indicate the median values of G2 for each subclass.
Galaxies exhibit increasing asymmetry in their flux gradient
from SPHs to IRRs, with median G2 values of 0.39, 1.19,
1.68, and 1.80 for SPHs, ETDs, LTDs, and IRRs, respec-
tively. With a sample from SDSS, Rosa et al. (2018) found
that elliptical and spiral galaxies exhibit a clear bimodal dis-
tribution in G2, where the G2 value of spiral (elliptical)
galaxies is typically larger (smaller) than 1. Assuming that
SPHs are elliptical galaxies and LTDs are spiral galaxies, a
similar trend has also been seen in this work. However, ETDs
exhibitG2 values that span a wide range, possibly due to their
combined bulge and disk structures. Therefore, for galaxies
at middle redshift (z∼1), G2 coefficient is also available to
distinguish between bulge– and disk–dominated galaxies, but
for galaxies with interim morphologies, it should be treated
more carefully.

Furthermore, Ψ was introduced by Law et al. (2007) to
describe how the light distribution of galaxies can be decom-
posed into apparent components, similar to M20. In general,
galaxies that appear more clumpy tend to have larger Ψ val-
ues. By using flux as a proxy for “mass”, the “potential en-
ergy” of the observed flux distribution is defined as:

ψactual =
∑
i

∑
j

XiXj

rij
(2)

where Xi and Xj are fluxes of the ith and jth pixels, and rij
is the distance (in pixels) between the ith and jth pixels. Then
the pixels of raw images are rearranged in a circular configu-
ration that the brightest pixel is at the center, and the flux of
the other pixels gradually decreases with distance, which is
considered the most compact configuration. The distance be-
tween the ith and jth pixels on this rearranged map is repre-
sented as r

′

ij . Then the “potential energy” of this rearranged
flux distribution is:

ψcompact =
∑
i

∑
j

XiXj

r
′
ij

. (3)

The Ψ coefficient is then defined as:

Ψ = 100 log10
ψcompact

ψactual
. (4)

The distribution of the Ψ parameter is displayed in the right
panel of Figure 11. There is an increasing trend of Ψ from
SPHs to IRRs. The median Ψ values are 0.53, 1.06, 1.34, and
1.72 for SPHs, ETDs, LTDs, and IRRs, respectively. Consid-
ering that IRRs are much more clumpy than SPHs, this figure
demonstrates that our classification is consistent with Ψ.

4.3. Test of Physical Properties

Many studies have already shown that there is a close
connection between galaxy morphologies and their physi-
cal properties. It is now widely agreed that as the stel-
lar mass increases, galaxies become more bulge–dominated
(e.g., Cheng et al. 2020; Du et al. 2021), and galaxies at
higher redshift are more likely irregular (e.g., Tohill 2021;
Kartaltepe et al. 2023). In this section, we also select galax-
ies with stellar masses larger than 109M⊙ to study the re-
lationship between galaxy morphologies and their physical
properties.

In Figure 12, the number fractions of galaxies for each
morphology class are presented as a function of stellar mass
at three different redshift bins (panel a: 0.2 < z < 0.6; panel
b: 0.6 < z < 0.9; and panel c: 0.9 < z < 1.2). The
symbols, including diamonds, squares, stars, and triangles,
represent the fractions of SPHs, ETDs, LTDs, and IRRs, re-
spectively, within different stellar mass bins.

In each panel, it is evident that as the stellar mass of galax-
ies increases, the proportions of SPHs and ETDs gradually
rise, while the proportions of LTDs and IRRs decrease. Sim-
ilar results were also shown in the work of Huertas-Company
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et al. (2013), where at the high-mass end, galaxies are domi-
nated by early-type morphology, while at the low-mass end,
galaxies are dominated by late-type morphology. Combining
with our earlier discussion (Section 4.1) where both SPHs
and ETDs exhibit a nuclear bulge structure, while LTDs and
IRRs do not have such a structure, this trend suggests that an
increase in galaxy stellar mass is accompanied by an increase
in bulge dominance.

Comparing the results across different panels, it’s also
clear that with increasing redshift, the proportion of IRRs
continues to increase, while the proportion of SPHs de-
creases, especially for galaxies with larger M∗. Buitrago
et al. (2013) found a similar trend, with the proportions of
SPHs was approximately 40% for massive galaxies at z ∼ 1,
but this proportion increased to 60% at z ∼ 0.2. This might
indicate that over cosmic time, galaxies tend to evolve to-
ward more regular morphologies. However, at the lower
mass end, the change in the ratio of IRRs to SPHs is less
pronounced, with SPHs comprising approximately 10% and
IRRs approximately 30%. This difference could be attributed
to lower-mass galaxies being more susceptible to perturba-
tions, such as tidal interactions, ram pressure, and stellar
feedback, which can lead to a more irregular appearance. In
summary, these results underscore the complex interplay be-
tween galaxy morphology, stellar mass, and redshift.

5. SUMMARY

In this work, utilizing the galaxy morphology classifica-
tion algorithm (USmorph) that combines UML and SML
methods, as proposed by Zhou et al. (2022) and Fang et al.
(2023), we classify nearly 100,000 galaxies in the COSMOS
field into five categories: SPHs (15,200), ETDs (17,369),
LTDs (21,143), IRRs (28,965), and UNCs (17,129) using
HST/ACS I-band images. In visual inspection, SPHs exhibit
a clear bulge-dominated structure, while LTDs display a clear
disk structure. ETDs show a disk structure but have bulge
components as well. IRRs include galaxies with irregular
structures or merger evidence, while galaxies that could not
be confidently identified due to poor S/Ns are classified as
UNCs.

Furthermore, we estimate the morphological parameters of
these galaxies and find that the relationship between our clas-
sification results and galaxy morphological parameters for

massive galaxies is consistent with our expectations. In brief,
as galaxies transition from IRRs to SPHs, their Sérsic in-
dex gradually increases, and their effective radius decreases.
When considering nonparametric morphologies, more com-
pact galaxies (e.g., SPHs) exhibit larger Gini and C coeffi-
cients, while more diffuse galaxies (e.g., IRRs) exhibit larger
M20, A, and Ψ coefficients. In addition, G2 has also been
proven to effectively distinguish SPHs from LTDs. More-
over, the relationship between galaxy morphology and their
physical properties is investigated using our classification re-
sults. A clear relationship was observed between the mor-
phology of galaxies and their stellar mass and redshift. Rel-
evant information is catalogued in the electronic version of
the article, and we show a part of the catalog in Table 2.

The forthcoming CSST will be launched in 2024. With a
2-meter aperture and a large field of view, CSST is planned
to conduct a 15,000 deg2 multi-band deep field survey with
an expected 5σ depth of r = 26.0 mag and a 400 deg2 ultra-
deep field survey with an expected 5σ limiting magnitude
of r = 27.2 mag (Zhan 2011, 2018). This will provide us
with a large number of high-resolution images. Meanwhile,
the USmorph algorithm can classify about 30,000 galaxies
per hour, which could meet the requirements of the CSST
surveys. This will help us better utilize future CSST image
data for studying galaxy morphology.
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Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. 2011, in
Artificial Neural Networks and Machine Learning – ICANN
2011, ed. T. Honkela, W. Duch, M. Girolami, & S. Kaski, Vol.
6791 (Berlin, Heidelberg: Springer Berlin Heidelberg), 52–59,
doi: 10.1007/978-3-642-21735-7 7

Massey, R., Stoughton, C., Leauthaud, A., et al. 2010, Monthly
Notices of the Royal Astronomical Society, 401, 371,
doi: 10.1111/j.1365-2966.2009.15638.x

Murtagh, F. 1983, The Computer Journal, 26, 354,
doi: 10.1093/comjnl/26.4.354

Murtagh, F., & Legendre, P. 2014, Journal of Classification, 31,
274, doi: 10.1007/s00357-014-9161-z
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