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Abstract

To accurately capture the variability in human
judgments for subjective NLP tasks, incorpo-
rating a wide range of perspectives in the anno-
tation process is crucial. Active Learning (AL)
addresses the high costs of collecting human an-
notations by strategically annotating the most
informative samples. We introduce Annotator-
Centric Active Learning (ACAL), which incor-
porates an annotator selection strategy follow-
ing data sampling. Our objective is two-fold:
(1) to efficiently approximate the full diversity
of human judgments, and (2) to assess model
performance using annotator-centric metrics,
which emphasize minority perspectives over
a majority. We experiment with multiple an-
notator selection strategies across seven sub-
jective NLP tasks, employing both traditional
and novel, human-centered evaluation metrics.
Our findings indicate that ACAL improves data
efficiency and excels in annotator-centric per-
formance evaluations. However, its success de-
pends on the availability of a sufficiently large
and diverse pool of annotators to sample from.

1 Introduction

A challenging aspect of natural language under-
standing (NLU) is the variability of human judg-
ment and interpretation in subjective tasks (e.g.,
hate speech detection) (Plank, 2022). While hu-
mans can navigate subjectivity naturally, most ma-
chine learning methods are insensitive to individual
differences (Sandri et al., 2023) and underrepre-
sented perspectives (van der Meer et al., 2024).

Modern NLU approaches are commonly trained
and tested on annotated datasets. In a subjective
task, each data sample is typically labeled by a
set of annotators, and differences in annotation are
reconciled through aggregation techniques (e.g.,
majority voting), resulting in a single “gold label”
(Uma et al., 2021). This approach, though effective
for training ML algorithms, neglects the labels of
minorities, which becomes problematic, especially,
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Figure 1: Active Learning (AL) approaches (left) use
a sample selection strategy to pick samples to be an-
notated by an oracle. The Annotator-Centric Active
Learning (ACAL) approach (right) extends AL by in-
troducing an annotator selection strategy to choose the
annotators who annotate the selected samples.

in the case of sensitive subjective tasks.

Subjectivity has been addressed by modeling the
full distribution of annotations for each data sam-
ple as opposed to aggregating them (Plank, 2022).
However, resources for such approaches are scarce,
as most datasets do not (yet) make fine-grained an-
notation details available (Cabitza et al., 2023), and
representing a full range of perspectives is contin-
gent on obtaining annotations from a diverse crowd
(Bakker et al., 2022).

One way of accounting for a limited annotation
budget is to use Active Learning (Settles, 2012,
AL). Given a pool of unannotated data samples,
AL employs a sample selection strategy to select
maximally informative samples for training, retriev-
ing the corresponding annotations from a ground
truth oracle (e.g., a single human expert). How-
ever, in subjective tasks there is no such oracle,
instead we rely on a set of available annotators.
Given this practical constraint, we argue that infor-
mativeness for AL manifests in both samples and
annotations, as the model should also be guided
to reflect the distribution of annotations. Demand-
ing all available annotators to annotate all selected
samples would provide a truthful representation of
the annotation distribution, but is often unfeasible,
especially if the pool of annotators is large. Thus,
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deciding which annotator(s) should annotate the
selected samples is as critical as selecting which
samples to annotate.

We introduce Annotator-Centric Active Learn-
ing (ACAL) to account for annotation diversity in
subjective tasks. In ACAL, the sample selection
strategy of traditional AL is followed by an annota-
tor selection strategy as Figure 1 shows. For each
data sample selected through the sample selection
strategy, the annotator selection strategy selects an
annotator from the available annotators. We make
the following contributions: (1) We create ACAL,
extending the AL approach to optimize for diver-
sity among annotators when learning soft labels in
subjective tasks. (2) We introduce a suite of an-
notator-centric evaluation metrics to measure both
representativeness and diversity. (3) We demon-
strate our approach’s effectiveness on three diverse
datasets with subjective tasks—hate speech detec-
tion, moral value classification, and safety judg-
ments.

Our experiments show that ACAL works to bet-
ter approximate the distribution of human judg-
ments with a lower annotation budget. However,
this effectiveness requires a large pool of diverse
annotators, as is the case for one of our datasets.
In other cases, the differences between ACAL
and traditional AL become smaller. Through our
annotator-centric evaluation, we show that task
agreement and the number of available annotations
both influence the effectiveness of ACAL, hinting
at a direct trade-off between learning from a major-
ity versus being sensitive to minority annotations.

2 Related work

We review related works on annotator disagree-
ment and active learning. Our work is novel in
combining these fields to (1) represent annotation
distributions through soft labels, (2) incorporate
annotator selection strategies in the active learn-
ing loop, and (3) evaluate with annotator-centric
metrics next to traditional evaluation.

2.1 Learning with annotator disagreement

Modeling annotator disagreement is garnering in-
creasing attention (Aroyo and Welty, 2015; Uma
et al., 2021; Plank, 2022; Cabitza et al., 2023). For
instance, some aggregation methods can lead to a
fairer representation than simple majority (Hovy
et al., 2013; Tao et al., 2018). Alternatively, the
full annotation distribution can be modeled using

soft labels (e.g., Peterson et al., 2019; Müller et al.,
2019; Fornaciari et al., 2021; Collins et al., 2022).
Other approaches leverage annotator-specific in-
formation, e.g., by including individual classifica-
tion heads per annotator (Davani et al., 2022), em-
bedding annotator-specific behavior (Mokhberian
et al., 2023), or encoding the annotator’s socio-
demographic information (Beck et al., 2023).

Yet, representing annotator diversity remains
challenging. Standard calibration metrics under
human label variation may be unsuitable, espe-
cially when the variation is high (Baan et al.,
2022). Trade-offs ought to be made between col-
lecting more samples or more annotations (Gruber
et al., 2024). Further, solely measuring differences
among sociodemographic traits is not sufficient to
fully capture opinion diversity (Orlikowski et al.,
2023). To this end, we represent diversity based
on which annotators have annotated, what they an-
notated, and how they have annotated. We experi-
ment with different annotator selection strategies to
reveal what aspects impact task performance and
annotation budget.

2.2 Active Learning

AL enables a supervised learning model to achieve
high performance with a few training examples
if chosen judiciously (Settles, 2012). In a typical
AL scenario, a vast collection of unlabeled data
is available, and an oracle (e.g., a human expert)
can be asked to annotate this unlabeled data. A
sampling strategy is employed to iteratively (and
smartly) select the next batch of unlabeled data for
annotation by the oracle (Ren et al., 2021).

AL has found widespread application in the field
of NLP (Zhang et al., 2022). Two main strategies
are employed, either by selecting the unlabeled
samples on which the model prediction is most
uncertain (Zhang et al., 2017), or by selecting sam-
ples that are most representative of the unlabeled
dataset (Erdmann et al., 2019; Zhao et al., 2020).

The combination of AL and annotator diversity
is a novel direction that has not garnered much at-
tention yet. Existing work proposes to align model
uncertainty with annotator uncertainty (Baumler
et al., 2023), whereas others adapt annotator-
specific classification heads in AL settings (Wang
and Plank, 2023), or select texts to annotate based
on annotator preferences (Kanclerz et al., 2023).

Existing methods ignore a crucial part of learn-
ing with human variation: the diversity among an-



notators. We focus on which annotators should
annotate, such that it best informs us about the
underlying label diversity.

3 Method

First, we define the soft-label prediction task we
use to train a supervised model. Then, we introduce
the traditional AL and the novel ACAL approaches.

3.1 Soft-Label prediction
Consider a dataset composed of triples (xi, aj , yij),
where xi is a data sample (i.e., a piece of text) and
yij ∈ C is the class label assigned by annotator
aj . The multiple labels assigned to a sample xi
by the different annotators are usually combined
into an aggregated label ŷi. For training with soft
labels, the aggregation typically takes the form of
maximum likelihood estimation (Uma et al., 2021):

ŷi(x) =

∑N
i=1[xi = x][yij = c]∑N

i=1[xi = x]
(1)

In our experiments, We use a passive learning
approach that uses all available {xi, ŷi} to train a
model fθ with cross-entropy loss as a baseline.

3.2 Active Learning
AL imposes a sampling technique for inputs xi,
such that the most informative sample(s) are picked
for learning. In a typical AL approach, a set of
unlabelled data points U is available. At every iter-
ation, a sample selection strategy S selects samples
xi ∈ U to be annotated by an oracle O that pro-
vides the ground truth label distribution ŷi. The
selected samples and annotations are added to the
labeled data D, with which the model fθ is trained.
Alg. 1 provides an overview of the procedure. In
our sample selection strategies, a batch of data of
a given size B is queried at each iteration. In our
experiments, we compare the following strategies:

Algorithm 1: AL approach.
input :Unlabeled data U , Data sampling

strategy S, Oracle O
D0 ← {}
for n = 1..N do

sample data points xi from U using S
obtain annotation ŷi for xi from O
Dn+1 = Dn + {xi, ŷi}

train fθ on Dn+1

end

Random (SR) selects a B samples uniformly at
random from U .
Uncertainty (SU ) predicts a distribution over
class labels with fθ(xi) for each xi ∈ U . Select the
B samples with the highest prediction entropy (i.e.,
the samples on which the model is most uncertain).

3.3 Annotator-Centric Active Learning

The ACAL approach builds on the AL approach.
In contrast to AL, which retrieves an aggregated
annotation ŷi, ACAL employs an annotator selec-
tion strategy T to select one annotator and their
annotation for each selected data point xi. Alg. 2
describes the ACAL approach.

Algorithm 2: ACAL approach.
input :Unlabeled data U , Data sampling

strategy S, Annotator sampling
strategy T

D0 ← {}
for n = 1..N do

sample data points xi from U using S
sample annotators aj for xi using T
obtain annotation yij from aj for xi
Dn+1 = Dn + {xi, yij}
train fθ on Dn+1

end

We propose annotator selection strategies that
include annotations from diverse annotators. The
strategies vary in the type of information used to
represent differences between annotators, and in-
clude what or how the annotators have annotated
thus far. We test the following strategies:
Random (TR) selects one random annotator aj .
Label Minority (TL) considers only the labels
that annotators have assigned. Given a new sample
xi, TL selects the available annotator that has the
largest bias toward the minority label compared
to the other available annotators, i.e., who has an-
notated other samples with the minority label the
most. The minority label is selected as the class
with the smallest annotation count in the available
dataset Dn thus far.
Semantic Diversity (TS) considers only informa-
tion on what each annotator has annotated so far
(i.e., the samples that they have annotated). Given
a new sample xi selected through S , TS selects the
available annotator for whom xi is semantically the
most different from what the annotator has labeled
so far. To measure this difference for an annotator



Dataset Task (dimension) Num.
Samples

Num.
Annotators

Num.
Annotations

Avg. Annotations
per item

DICES Safety Judgment 990 172 72,103 72.83
MFTC Morality (care) 8434 23 31310 3.71
MFTC Morality (loyalty) 3288 23 12803 3.89
MFTC Morality (betrayal) 12546 23 47002 3.75

MHS
Hate Speech (dehumanize,
genocide, respect)

17282 7807 57980 3.35

Table 1: Overview of the datasets and tasks employed in our work.

aj , we employ a sentence embedding model to mea-
sure the cosine distance between the embeddings
of xi and embeddings of all the samples annotated
by aj . We then take the average of all semantic
similarities. The annotator with the lowest average
similarity score is selected.
Representation Diversity (TD) selects the anno-
tator that has the lowest similarity with the other
annotators available for that item. We create a sim-
ple representation for each annotator based on the
items together with the respective label that they
have annotated, followed by computing the pair-
wise cosine similarity between all annotators.

4 Experimental Setup

We describe the experimental setup for the compar-
isons between ACAL strategies. In all our experi-
ments, we employ a TinyBERT model (Jiao et al.,
2019) to reduce the number of trainable parameters.
Appendix A includes a detailed overview of the
computational setup and hyperparameters. We will
provide our codebase upon publication.

4.1 Datasets

Table 1 introduces the three datasets that we use,
with variation in domain, annotation task (in ital-
ics), annotator count, and annotations per instance.

The DICES Corpus (Aroyo et al., 2023) is com-
posed of 990 conversations with an LLM where
172 annotators provided judgments on whether a
generated response can be deemed safe (3-way
judgments: yes, no, unsure). We perform a multi-
class classification with the scores.

The MFTC Corpus (Hoover et al., 2020) is
composed of 35K tweets that 23 annotators anno-
tated with any of the 10 moral elements from the
Moral Foundation Theory (Graham et al., 2013).
We select the elements of loyalty (lowest annotation
count), care (medium count), and betrayal (high-

est count) and perform three binary classifications
to predict the presence of the respective elements.
As most tweets were labeled non-moral (i.e., with
no moral element), we balanced the datasets by
subsampling the non-moral class.

The MHS Corpus (Sachdeva et al., 2022)
consists of 50K social media comments on
which 8K annotators judged three hate speech
aspects—dehumanize (low inter-rater agreement),
respect (medium agreement), and genocide (high
agreement)—on a 5-point Likert scale. We per-
form a multi-class classification with the annotated
Likert scores for each task.

The datasets and tasks differ in the entropy
scores over annotations (Appendix A.5). DICES
and MHS generally have medium normalized en-
tropy scores (most lie between 0.15 < H < 0.85),
whereas the MFTC entropy scores are highly polar-
ized.

4.2 Training procedure

We test the annotator selection strategies proposed
in Section 3.3 by comparing all possible combina-
tions of the two different sample selection strategies
(SR and SU ) with the annotator selection strategies
(TR, TL, TS , and TD). At each round, we use S to
select B unique samples from the unlabeled data
pool U . We empirically select B to be the smallest
between 5% of the number of available annotations
and the number of unique samples in the training
set. For each selected sample xi, we use T to select
one annotator and retrieve their annotation yij .

To populate the annotation history for the an-
notation selection strategies, we perform a single
warmup round with B randomly selected annota-
tions before starting the ACAL iterations (Zhang
et al., 2022). We report our training progress results
on a validation set with 3-fold cross-validation,
showing the average to account for stability across



random data splits (into 80% train, 10% validation,
and 10% test) and initialization. Then, we select
the model iteration that led to the best performance
(according to JS) on the validation set and evaluate
it using a separate test set.

We compare our work with traditional Oracle-
based AL approaches (SRO and SUO), which use
the data sampling strategies but obtain all possi-
ble annotations for each sample (following Alg. 1).
Moreover, we employ a passive learning (PL) ap-
proach as an upper bound by training the model on
the full dataset, thus observing all available sam-
ples and annotations. Our baselines follow the
analogous cross-validation setup.

4.3 Evaluation metrics

The ACAL strategies aim to guide the algorithm to
model a representative distribution of the annota-
tor’s perspectives while reducing human annotation
effort. To this end, we evaluate the model both with
a traditional evaluation metric and a metric aimed
at comparing predicted and annotated distributions:
Macro F1-score (F1) For each sample in the test
set, we select the label predicted by the model with
the highest confidence, determine the golden la-
bel through a majority agreement aggregation, and
compute the resulting macro F1-score.
Jensen-Shannon Divergence (JS) The JS mea-
sures the divergence between the distribution of
label annotation and prediction (Nie et al., 2020).
We report the average JS for the samples in the test
set to measure how well the algorithm can model
the annotation distribution.
Next, since our proposed annotator selection strate-
gies aim to promote diversity, we introduce novel
annotator-centric evaluation metrics. First, we re-
port the average among annotators. Second, in line
with Rawls’ principle of maximum fairness (Rawls,
1973), the result for the worst-off annotators:
Per-annotator F1 (F a

1 ) We compute the F1 for
each annotator in the test set using their annota-
tions as golden labels, and average it.
Per-annotator JS (JSa) We compute the JS for
each annotator in the test set using their annotations
as target distribution, and average it.
Worst per-annotator F1 (Fw

1 ) We compute the
F1 for each annotator in the test set using their
annotations as golden labels, and report the aver-
age of the lowest 10% (to mitigate noise).
Worst per-annotator JS (JSw) We compute the
JS for each annotator in the test set using their

annotations as target distribution, and report the
average of the lowest 10% (to mitigate noise).

These evaluation metrics allow us to measure the
trade-offs between modeling the majority agree-
ment, a representative distribution of annotations,
and accounting for minority voices. We report
these metrics on the validation set (as progress
over the AL iterations) and test set (by using the
best-performing model on the validation set), as
described in Section 4.2.

5 Results

5.1 Test sets results

See Figure 2 for the performance of the DICES,
MFTC, and MHS, respectively. For MFTC, we
initially focus on care, since it is the task with
neither the most nor least amount of data. For
MHS, we start with dehumanize, since it saw the
most medium-level disagreement. The rest of the
results can be observed in Appendix B.

Combining our results across datasets, we see
that data characteristics influence whether ACAL
can learn performant models efficiently. In particu-
lar, we see that for DICES and MHS, ACAL may
learn models that perform well using less data (38%
and 62% reduction at best, respectively). Con-
versely, for MFTC, there is little impact of using
ACAL over PL (5.6% less data used). A similar pat-
tern holds when comparing ACAL to AL, though
AL seems to be a strong baseline for MHS, where
random sample selection leads to more efficient
data usage (60%). AL with uncertainty sampling is
more efficient for MFTC (13%).

When we compare the performance metrics, we
see that the distributions obtained through ACAL
are consistently closer to the ground truth distribu-
tion in DICES, as measured by JS than PL and AL.
However, this pattern is not visible for MFTC and
MHS. In terms of majority-voted F1, ACAL again
leads to better scores in both DICES and MHS.
Since DICES and MHS are datasets with moderate
disagreement, we may benefit from using ACAL
in such scenarios. Further, if the dataset contains
a large number of annotators per sample, annota-
tor selection strategies are shown to pick a more
informative set of annotators to learn from.

We highlight some further dataset-specific find-
ings that shed light on the differences between the
annotator selection strategies in ACAL. First, in
DICES, we see that for three out of four annota-
tor sampling strategies (TR, TD, TL), the choice of
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Figure 2: Test set evaluation of the ACAL, AL, and passive approaches across the three dataset/task combinations.
For JS, strategies further to the bottom left are more data efficient (x-axis) and perform better (y-axis). For F1, the
top left contains well-performing, data-efficient approaches.

data sampling strategy has no impact on the per-
formance of the model due to the low number of
samples to choose from. Furthermore, only TD per-
forms worse in terms of JS, overrepresenting out-
lier annotators. This hints that selecting annotators
based on the average embedding of the annotated
content strongly emphasizes diverging label behav-
ior. Second, MFTC was annotated by a limited
fixed set of annotators for whom we can construct
a rich annotation history. However, since there are
few annotators per sample to pick from, ACAL
cannot leverage this information effectively. Again,
we see that strategies perform relatively similarly
to one another, except for the F1 scores. Third, in
MHS we observe that all strategies using random
sample selection require less data. Since the task
has low inter-rater agreement scores, uncertainty-
based sampling wrongly attempts to sample anno-
tations for correct high-entropy predictions, while
this is an accurate distribution.

Our findings highlight that with many labels per
sample, ACAL is more data-efficient than tradi-
tional AL and passive learning in terms of overall
evaluation. However, when data characteristics dif-
fer and few annotations are available per sample,
ACAL has less of an impact. Polarized agreement
scores (either high agreement or no agreement)
make the use of ACAL and AL cause little to no
improvements over passive learning. This corrob-
orates that (AC)AL leads to improvements in spe-

cific cases (Dor et al., 2020). Furthermore, we
found conflicting results depending on the metric
used (JS and F1). We closely examine the relation-
ship between the evaluation metrics by turning to
annotator-centric evaluation, observing how ACAL
impacted predictions for individual annotators.

5.2 Annotator-centric evaluation

We show the annotator-centric evaluation metrics
in Tables 2, 3, and 4 for DICES, MFTC (care) and
MHS (dehumanize), respectively. We again de-
scribe per-dataset results. Again, for DICES and
MHS, we observe a positive effect of using ACAL
over PL, both in terms of data efficiency and fi-
nal annotator-centric behavior. For these datasets,
ACAL leads to a better representation of annotators
on average (JSa,F a

1 ), as well as a better represen-
tation of the 10% most different annotators (JSw,
Fw
1 ). Compared ACAL to AL, we mainly observe

improvements in the DICES dataset, showing less
data used and a better annotator-centric F1 score.
We observe a strong JSw for the TD strategy and
worse JSa, corroborating our earlier finding that
emphasizing diverging label behavior trades off
with the averaged evaluation scores. Interestingly,
this is not apparent in the F1 scores. For MHS,
all approaches using random data sampling (SR)
require considerably less data than passive learn-
ing. Further, since the pool of annotators for MHS
is large (7K+), there will always be some annota-



Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.432 0.186 0.167 0.453 -36.8
SRTL 0.424 0.187 0.155 0.450 -32.7
SRTS 0.442 0.186 0.164 0.447 -35.5
SRTD 0.431 0.203 0.169 0.370 -30.0
SUTR 0.432 0.186 0.167 0.453 -36.8
SUTL 0.424 0.187 0.155 0.450 -32.7
SUTS 0.439 0.187 0.184 0.447 -38.2
SUTD 0.431 0.203 0.169 0.370 -30.0

SRO 0.414 0.191 0.133 0.425 -0.1
SUO 0.384 0.192 0.117 0.427 -0.1
Passive 0.371 0.211 0.123 0.479 –

Table 2: DICES annotator-centric evaluation scores.
∆% denotes the relative change in the annotation budget
with respect to passive learning.

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.611 0.141 0.377 0.247 -1.6
SRTL 0.616 0.142 0.392 0.249 -0.4
SRTS 0.600 0.145 0.351 0.248 -1.7
SRTD 0.604 0.144 0.357 0.243 -1.7
SUTR 0.612 0.143 0.377 0.252 -5.6
SUTL 0.589 0.142 0.423 0.248 -2.5
SUTS 0.608 0.143 0.399 0.258 -1.1
SUTD 0.586 0.145 0.357 0.253 -2.5

SRO 0.586 0.141 0.392 0.255 -0.2
SUO 0.583 0.144 0.357 0.253 -12.7
Passive 0.512 0.179 0.377 0.251 –

Table 3: MFTC (care) annotator-centric evaluation
scores. ∆% denotes the relative change in the anno-
tation budget with respect to passive learning.

tors in disagreement with the output of our models,
leading to a zero score on Fw

1 .

5.3 Training plots
While the evaluation shows a pattern of efficient
data use with ACAL under certain data conditions,
it reveals little about how the metrics behave during
training or how individual annotator strategies be-
have. To this end, we provide a complete overview
of all metrics (as computed on the validation set)
during training in App. B.3. Here we describe the
major patterns reoccurring across our experiments
using examples and show six of particular interest
(Figure 3). Since the strategies only differ in what
annotations are included during training, we only
show plots related to the annotator-centric metrics.

We can see that there is an influence of both
the data sampling and annotator strategies on the
performance of the models. Only on DICES is
the choice of S irrelevant, probably due to the low
number of samples. Specifically TD deteriorates

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.315 0.394 0.000 0.489 -50.0
SRTL 0.322 0.397 0.000 0.478 -62.5
SRTS 0.313 0.397 0.000 0.480 -62.5
SRTD 0.318 0.398 0.000 0.479 -62.5
SUTR 0.322 0.389 0.000 0.508 -7.8
SUTL 0.328 0.388 0.000 0.507 -7.8
SUTS 0.326 0.388 0.000 0.506 -7.8
SUTD 0.326 0.384 0.000 0.513 -3.0

SRO 0.339 0.387 0.000 0.496 -60.1
SUO 0.331 0.390 0.000 0.497 -24.7
Passive 0.202 0.424 0.000 0.547 –

Table 4: MHS (dehumanize) annotator-centric evalu-
ation scores. ∆% denotes the relative change in the
annotation budget with respect to passive learning.

slower for the worst-off annotators than the other
strategies but does so without being able to uphold
a competitive F a

1 score. In MFTC, we see that
when using SU , performance on F a

1 dips at the
start of training. Selecting annotators for samples
with high predicted entropy initially leads to a de-
crease in average performance. The strategy seeks
to first lower the entropy for the labels already en-
countered, though some of the variation in labels is
irreconcilable. A similar reasoning holds for MHS,
where the differences between strategies are even
less impacted by the choice of T . These two plots
further underline our main finding that for ACAL
to be impactful in representing diverse annotation
perspectives, we need to ensure a (1) heterogeneous
pool of annotators, and (2) a task that facilitates
human label variation.

5.4 Change in task

In Fig. 4, we present a comparative analysis of two
annotator-centric metrics across the three distinct
tasks of MFTC and MHS, for which we have seen
the least impact of ACAL over AL and PL. We
cannot conclude that the chosen ACAL approach
(SRTS) offers a consistent improvement over sam-
pling all annotations (SRO), particularly given that
the models using ACAL occasionally require more
data to converge (Tables 8 to 11).

Initially, we hypothesized that tasks with a high
degree of subjectivity would benefit from ACAL
strategies, especially on metrics focused on the
most marginalized (worst-off) annotators. These
strategies typically involve selecting an annotator
whose patterns of annotation diverge from the ma-
jority, either in terms of their annotation behavior
or in the semantic content of their past annotations.
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Figure 3: Selected validation set performance plots.
We show progress for DICES, MFTC (care), and MHS
(dehumanize) for F a

1 and JSw.

However, as depicted in Figure 4, when ex-
amining the task of dehumanize (high entropy), it
becomes apparent that ACAL does not consistently
outperform AL. ACAL demonstrates a lower F a

1 -
score than AL for this task, and on the other hand,
a higher F a

1 -score for a task that is less subjective,
such as genocide. Similarly, when evaluating loy-
alty, which involves the moral dimension with the
highest disagreement among annotators, the lower
10% of annotators are more accurately approxi-
mated with PL. This suggests that the effectiveness
of annotation strategies varies depending on the
task’s degree of subjectivity and available pool of
annotators. The more heterogeneous the annotation
behavior, indicative of a highly subjective task, the
larger the pool of annotators required for each item
selection. However, due to the limited annotations
available per item in both datasets MFTC and MHS,
even carefully selecting specific annotators may not
adequately represent divergent annotation behavior
in general, which challenges the generalization to
unseen data. Finally, we can observe that there is
a trade-off between modeling the majority of an-
notators equally, as reflected in the F a

1 -score and
prioritizing the minority viewpoint (JSw). A bet-
ter performance in one aspect does not necessarily
guarantee superiority in the other.
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Figure 4: Relative performance across MFTC and MHS
tasks, comparing one ACAL and AL approach to PL.

6 Conclusion

We introduce Annotator-Centric Active Learning
(ACAL), an active learning approach that incorpo-
rates annotator selection strategies aimed at captur-
ing label variation among annotators. We experi-
ment with tasks across three different datasets, each
leading to different ACAL behaviors. One of these
datasets, DICES, is the most realistic application of
ACAL since the pool of possible annotators is the
largest. Here, ACAL leads to more diverse label
distributions using fewer annotations. However, we
find that the effectiveness of the ACAL paradigm
is contingent on data characteristics. These char-
acteristics include the number of annotations per
sample, the number of annotations per annotator,
and the nature of disagreement in the task annota-
tions. Our analysis shows that we can use these
conditions to help explain the often disappointing
results for AL in NLP applications.

Including annotator-centric evaluation reveals
how methods with similar averaged performance
deal with different levels of disagreement among
annotators. We show that evaluation can be en-
hanced by focusing on individual annotators, as
there is a large gap between conventional, averaged,
and worst-off performance. Furthermore, many as-
pects of our ACAL approach can be experimented
with, e.g. by swapping the order in which sam-
ples are selected (in our case first) and annotators
(second), or investigating the impact of including
annotator-specific demographic information, as it
is inconsistently predictive of annotation behavior
(Orlikowski et al., 2023; Beck et al., 2024).



Limitations

The main limitation of this work is that the ex-
periments are based on simulated active learning
which is known to bear potential issues (Margatina
and Aletras, 2023). In our study, a primary chal-
lenge arises with two of the datasets (MFTC, MHS),
which, despite having a large pool of annotators,
lack annotations from every annotator for each item.
Consequently, in real-world scenarios, the annota-
tor selection strategies for these datasets would
benefit from access to a more extensive pool of
annotators. This limitation likely contributes to the
underperformance of ACAL on these datasets com-
pared to DICES. We emphasize the need for more
datasets that feature a greater number of annota-
tions per item, as this would significantly enhance
research efforts aimed at modeling human disagree-
ment.

Since we evaluate four different annotator selec-
tion strategies and two sample selection strategies
across three datasets and seven tasks, the amount
of experiments is high. This did not allow for fur-
ther investigation of the difference using different
classification models, the extensive turning of hy-
perparameters, or even different training paradigms.
Lastly, a limitation of our annotator selection strate-
gies is that they rely on a small annotation history.
This is why we require a warmup phase for some
of the strategies, for which we decided to take
a random sample of annotations. Incorporating
more informed warmup strategies or incorporat-
ing ACAL strategies that do not rely on annotator
history may positively impact its performance and
data efficiency.

Ethical Considerations

Our goal is to approximate a good representation of
human judgments over subjective tasks. We want to
highlight the fact that the performance of the mod-
els differs a lot depending on which metric is used.
We tried to account for a less majority-focussed
view when evaluating the models which is very
important, especially for more human-centered ap-
plications, such as hate-speech detection. However,
the evaluation metrics we use do not fully capture
the diversity of human judgments. The selection of
metrics should align with the specific goals and mo-
tivations of the application, and there is a pressing
need to develop more metrics to accurately reflect
human variability in these tasks.

Our experiments are conducted on English

datasets due to the scarcity of unaggregated
datasets in other languages. In principle, ACAL
can be applied to other languages (given the avail-
ability of multilingual models to semantically em-
bed textual items for some particular strategies used
in this work). We encourage the community to en-
rich the dataset landscape by incorporating more
perspective-oriented datasets in various languages,
ACAL potentially offers a more efficient method
for creating such datasets in real-world scenarios.
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A Detailed Experimental Setup

A.1 Cross validation details

We split the data on samples, meaning that all an-
notations for any given sample are completely con-
tained in each separate split.

A.2 Hyperparameters

We report the hyperparameters for training passive,
AL, and ACAL in Tables 5, 6, and 7, respectively.
For turning the learning rate for passive learning,
on each dataset, we started with a learning rate of
1e-06 and increased it by a factor of 3 in steps until
the model showed a tendency to overfit quickly
(within a single epoch). All other parameters are
kept on their default setting.

Parameter Value

learning rate 1e-04 (constant)
max epochs 50
early stopping 3
batch size 128
weight decay 0.01

Table 5: Hyperparameters for the passive learning.

A.3 Training details

Experiments were largely run between January and
April 2024. Obtaining the ACAL results for a sin-
gle run takes up to an hour on a Nvidia RTX4070.
For large-scale computation, our experiments were
run on a cluster with heterogeneous computing in-
frastructure, including RTX2080 Ti, A100, and
Tesla T4 GPUs. Obtaining the results of all exper-
iments required a total of 231 training runs, com-
bining: (1) two data sampling strategies, (2) four
annotator sampling strategies, plus an additional
Oracle-based AL approach, (3) a passive learning
approach. Each of the above were run for (1) three
folds, each with a different seed, and (2) the seven
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Parameter Dataset (task) Value

learning rate all 1e-05
batch size all 128
epochs per
round

all 20

num rounds all 10
sample size DICES 79
sample size MFTC (care) 674
sample size MFTC (betrayal) 1011
sample size MFTC (loyalty) 263

sample size
MHS (dehumanize), MHS
(genocide), MHS (respect)

1728

Table 6: Hyperparameters for the oracle-based active
learning approaches.

Parameter Dataset Value

learning rate all 1e-05
num rounds DICES 50
num rounds MFTC (all), MHS (all) 20
epochs per
round

DICES, MHS (all) 20

epochs per
round

MFTC (all) 30

sample size DICES 792
sample size MFTC (care) 1250
sample size MFTC (betrayal) 1894
sample size MFTC (loyalty) 512

sample size
MHS (dehumanize), MHS
(genocide), MHS (respect)

2899

Table 7: Hyperparameters for the annotator-centric ac-
tive learning approaches.

tasks across three datasets. For training all our mod-
els, we employ the AdamW optimizer (Loshchilov
and Hutter, 2018). Our code is based on the Hug-
gingface library (Wolf et al., 2019), unmodified
values are taken from their defaults.

A.4 ACAL Annotator Strategy details

Some of the strategies used for selecting annotators
to provide a label to a sample
TS uses a sentence embedding model to represent
the content that an annotator has annotated. We
use all-MiniLM-L6-v21. We select annota-
tors that have not annotated yet (empty history) be-
fore picking from those with a history to prioritize

1https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.578 0.147 0.420 0.199 -1.6
SRTL 0.581 0.149 0.433 0.212 -1.6
SRTS 0.593 0.161 0.430 0.239 -5.0
SRTD 0.583 0.148 0.429 0.199 -1.6
SUTR 0.594 0.150 0.419 0.203 -2.5
SUTL 0.584 0.148 0.434 0.200 -1.3
SUTS 0.588 0.149 0.435 0.204 -1.0
SUTD 0.591 0.149 0.428 0.194 -2.6

SRO 0.589 0.147 0.431 0.195 -48.6
SUO 0.589 0.149 0.430 0.200 -0.0
passive 0.481 0.199 0.360 0.290 0.0

Table 8: MFTC (betrayal) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.

filling the annotation history for each annotator.

TL creates an average embedding for the content
annotated by each annotator and selects the most
different annotator. We use the same sentence em-
bedding model as TS . To avoid overfitting, we
perform PCA and retain only the top 10 most infor-
mative principal components for representing each
annotator.

A.5 Disagreement rates

We report the average disagreement rates per
dataset and task in Figure 5, for each of the dataset
and task combinations.

B Detailed Results Overview

B.1 Test set evaluation other MFTC and MHS
tasks

See Table 6 for the trade-off between data effi-
ciency and test-set performance for the two con-
ventional metrics (JS and F1). We include copy
the earlier mentioned results for MFTC (care) and
MHS (dehumanize) for convenience.

B.2 Annotator-Centric evaluation for other
MFTC and MHS tasks

We show the full annotator-centric metrics results
for MFTC betrayal (Table 8), MFTC loyalty (Ta-
ble 9), MHS genocide (Table 10), and MHS respect
(Table 11).
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Figure 5: Histogram of entropy score over all annotations per sample for each dataset and task combination.

B.3 Training process
In our main paper, we report a condensed version
of all metrics during the training phase of the active
learning approaches. Below, we provide a complete
overview of all approaches over all metrics. The
results can be seen in Figures 7 through 13.

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.564 0.177 0.222 0.372 -0.4
SRTL 0.563 0.176 0.222 0.374 -0.3
SRTS 0.573 0.176 0.222 0.370 -0.3
SRTD 0.551 0.175 0.222 0.373 -0.3
SUTR 0.557 0.177 0.217 0.357 -1.1
SUTL 0.541 0.177 0.222 0.355 -0.8
SUTS 0.556 0.177 0.222 0.358 -0.9
SUTD 0.558 0.177 0.222 0.358 -1.3

SRO 0.560 0.176 0.222 0.361 -29.1
SUO 0.559 0.177 0.222 0.366 -0.1
passive 0.512 0.183 0.261 0.309 0.0

Table 9: MFTC (loyalty) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.
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Figure 6: Test set evaluation of the ACAL, AL, and passive approaches across the extra two MFTC and MHS tasks.
The leftmost column is repeated from Figure 2. For JS, strategies further to the bottom left are more data efficient
(x-axis) and perform better (y-axis). For F1, the top left contains well-performing, data-efficient approaches.
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Figure 7: Validation set performance across all metrics for DICES during training.
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Figure 8: Validation set performance across all metrics for MFTC (care) during training
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Figure 9: Validation set performance across all metrics for MFTC (loyalty) during training
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Figure 10: Validation set performance across all metrics for MFTC (betrayal) during training
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Figure 11: Validation set performance across all metrics for MHS (dehumanize) during training
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Figure 12: Validation set performance across all metrics for MHS (genocide) during training
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Figure 13: Validation set performance across all metrics for MHS (respect) during training

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.700 0.227 0.000 0.560 -6.3
SRTL 0.698 0.225 0.000 0.565 -1.7
SRTS 0.700 0.224 0.000 0.566 -1.7
SRTD 0.702 0.224 0.000 0.565 -1.7
SUTR 0.711 0.229 0.000 0.549 -12.6
SUTL 0.707 0.231 0.000 0.548 -7.9
SUTS 0.709 0.231 0.000 0.548 -7.9
SUTD 0.712 0.229 0.000 0.547 -12.6

SRO 0.339 0.387 0.000 0.496 -60.1
SUO 0.331 0.390 0.000 0.497 -24.7
passive 0.700 0.245 0.000 0.570 –

Table 10: MHS (genocide) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.460 0.331 0.000 0.528 -18.8
SRTL 0.456 0.331 0.000 0.530 -18.8
SRTS 0.461 0.331 0.000 0.529 -18.8
SRTD 0.460 0.331 0.000 0.528 -18.8
SUTR 0.466 0.323 0.000 0.533 -4.9
SUTL 0.463 0.323 0.000 0.532 -4.9
SUTS 0.459 0.324 0.000 0.531 -4.9
SUTD 0.462 0.324 0.000 0.532 -4.9

SRO 0.339 0.387 0.000 0.496 -60.1
SUO 0.331 0.390 0.000 0.497 -24.7
passive 0.259 0.405 0.000 0.587 –

Table 11: MHS (respect) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.


