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Abstract

Non-linear versions of log-Sobolev inequalities, that link a free energy to its dissi-
pation along the corresponding Wasserstein gradient flow (i.e. corresponds to Polyak-
Lojasiewicz inequalities in this context), are known to provide global exponential long-
time convergence to the free energy minimizers, and have been shown to hold in various
contexts. However they cannot hold when the free energy admits critical points which
are not global minimizers, which is for instance the case of the granular media equa-
tion in a double-well potential with quadratic attractive interaction at low temperature.
This work addresses such cases, extending the general arguments when a log-Sobolev
inequality only holds locally and, as an example, establishing such local inequalities for
the granular media equation with quadratic interaction either in the one-dimensional
symmetric double-well case or in higher dimension in the low temperature regime. The
method provides quantitative convergence rates for initial conditions in a Wasserstein
ball around the stationary solutions. The same analysis is carried out for the kinetic
counterpart of the gradient flow, i.e. the corresponding Vlasov-Fokker-Planck equation.
The local exponential convergence to stationary solutions for the mean-field equations,
both elliptic and kinetic, is shown to induce for the corresponding particle systems a fast
(i.e. uniform in the number or particles) decay of the particle system free energy toward
the level of the non-linear limit.

1 Introduction

We are interested in the long-time behavior of the granular media equation

∂tρt = ∇ ·
(
σ2∇ρt + (∇V + ρt ⋆∇W ) ρt

)
(1)

or of more general McKean-Vlasov semilinear equations (see (9) below). Here, ρt is a prob-
ability density over Rd, V ∈ C2(Rd,R), W ∈ C2(Rd × Rd,R) are respectively a confining and
interaction potential, W (x, y) = W (y, x) for all x, y ∈ Rd, σ2 > 0 stands for the tempera-
ture (or diffusivity) and ρ ⋆ ∇W (x) =

∫
Rd ∇xW (x, y)ρ(y)dy. We have typically in mind the

double-well case where d = 1,

V (x) =
x4

4
− x2

2
, W (x, y) = θ(x− y)2 (2)
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for some θ ∈ R. When θ ⩽ 0 (repulsive interaction), or when θ > 0 and σ2/θ is large enough
(attractive interaction at high temperature or small interaction), there is a unique stationary
solution to (1), which is globally attractive with exponential rate. However for a fixed θ > 0
there is a phase transition at some critical temperature σ2

c > 0 such that, for σ2 < σ2
c , (1)

with (2) admits three distinct stationary solutions (one symmetric, unstable, and two non-
symmetric, stable) [46]. We are interested in this second case, and more precisely on obtaining
local convergence rates, namely to prove that solutions which start close to a stable stationary
solution converge exponentially fast to it. Among other motivations, this is an important
question both for the theoretical understanding of metastable interacting particle systems,
where the stability property of the non-linear limit drives the short-time behavior and induces
the metastable behaviour [22, 12, 3, 20, 28, 5], and for practical questions of optimization in
the Wasserstein space, for instance in the mean-field modelling of artificial neural networks
[16, 29, 36, 35] (the loss function being convex only in toy models, like one-layer networks).

To illustrate the point, let us state a result obtained with our approach in the specific
case of the symmetric double well (2). In the next statement (proven in Section 3.2.1, see
Remarks 7 and 12) as in the rest of the work we write W2 and ∥ · ∥TV respectively the L2
Wasserstein distance and total variation norm and P2(Rd) the set of probability measures on
Rd with finite second moment.

Proposition 1. Consider the granular media (1) in the case (2) with θ > 0.

1. If σ2 < σ2
c , let ρ∗ be one of the two non-symmetric stationary solutions. There exist

δ, λ, C > 0 such that for any initial condition ρ0 ∈ P2(R) with W2(ρ0, ρ∗) ⩽ δ, the
corresponding solution to (1) satisfies, for all t ⩾ 0

W2(ρt, ρ∗) + ∥ρt − ρ∗∥TV ⩽ Ce−λt .

2. If σ2 = σ2
c , denote by ρ∗ the unique stationary solution. For any ρ0 ∈ P2(R), there exists

C0 > 0 such that the corresponding solution to (1) satisfies, for all t ⩾ 0,

W2(ρt, ρ∗) + ∥ρt − ρ∗∥TV ⩽
C0

t1/3
.

Notice that, in the sub-critical case, there is no assumption on σ2 other than σ2 < σ2
c ,

namely, the result holds arbitrarily close to the critical temperature (our results also apply
in the simpler super-critical regime and provide, as soon as σ2 > σ2

c , a global quantitative
exponential convergence toward the unique stationary solution, see Remark 8). This is in
contrast to the results of [49], also concerned with quantitative local convergence of (1), which
require the temperature to be sufficiently small (for a given θ). Moreover, the Wasserstein

convergence in [49, Theorem 2.3] only gives a convergence speed of order e−λ
√
t for some λ > 0,

and additionally it requires θ > − inf V ′′, which our result does not (under this additional
assumption we get that the rate λ is uniform over σ2 ∈ (0, σ2

0] for any σ2
0 ∈ (0, σ2

c ), as in
Proposition 16). The constants δ, λ, C in Proposition 1 can be made explicit (see Remark 9),
namely the result is quantitative.

Our method is the following. As recalled in the next section, it is now well-known that
(1) can be seen as the gradient flow in the Wasserstein space of some functional. To fix ideas,
consider on Rd such a gradient flow

ẋt = −∇f(xt) .
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Let x∗ be a local minimizer of f . Assuming a Polyak-Lojasiewicz inequality, namely that there
exists η > 0 such that

0 ⩽ f(x) − f(x∗) ⩽ η|∇f(x)|2 (3)

in a neighborhood A of x∗, then by differentiating f(xt) − f(x∗) we immediately get that, as
long as xt stays within A,

f(xt) − f(x∗) ⩽ e−t/η(f(x0) − f(x∗)) (4)

and

∂t
√
f(xt) − f(x∗) ⩽ − 1

2
√
η
|∇f(xt)| ,

from which

|xt − x0| =

∣∣∣∣∫ t

0

∇f(xs)ds

∣∣∣∣ ⩽ 2
√
η (f(x0) − f(x∗)) . (5)

Using that f is continuous so that the right hand side can be made arbitrarily small by taking
x0 sufficiently close to x∗, this shows that A contains a ball centered at x∗ such that, starting
with an initial condition in this ball, the gradient flows remains in A and thus the previous
inequalities hold for all times t ⩾ 0. Assuming furthermore that x∗ is the unique critical point
of f in A, by the LaSalle invariance principle, xt converges to x∗ and then letting t → ∞ in
(5) and applying it with x0 replaced by xt gives

|x∗ − xt|2 ⩽ 4η (f(xt) − f(x∗)) ⩽ 4ηe−t/η (f(x0) − f(x∗)) ,

which proves the exponential convergence to x∗.
We show that this argument extends to the infinite dimensional settings of gradient flows

over the Wasserstein space (the lack of continuity of f with respect to the Wasserstein distance
in this case being circumvented by the regularization properties of (1) which, with the present
notations, amounts to say that x0 7→ f(xt) is continuous at x∗ as soon as t > 0). The
key new ingredient is thus the (local) dissipation inequality (3), which for elliptic McKean-
Vlasov equations as (1) corresponds to a (local) non-linear log-Sobolev inequality (LSI). Such
inequalities have been investigated in a number of works (see e.g. [11, 22, 26] and references
within) but, to our knowledge, only in cases where they are global, corresponding in the finite-
dimensional settings above to the case where (3) holds for all x ∈ Rd (for instance when f
is uniformly strongly convex). Our main contribution is thus to show that the method also
works locally and, more importantly, to show that it is indeed possible to establish such local
dissipation inequalities in some cases where the global inequality fails. More specifically, the
main results of this work are the following:

• In the general framework of gradient flows with respect to W2, under suitable regularity
conditions, the local non-linear LSI that is the analogue of (3) is shown to imply the
exponential convergence (in W2 and relative entropy) towards the local minimizer for
all initial conditions in a suitable W2 ball (this is Theorem 8).

• The same result is established in the kinetic case, i.e. for the Vlasov-Fokker-Planck
equation (this is Theorem 20).

• In the particular case of the granular media equation, when the interaction is parametrized
by some moments of the measure, a simple criterion for the local non-linear LSI is given
in Proposition 9. It is then illustrated in two cases with quadratic interactions, the
one-dimensional double-well case (Proposition 13) and the multi-well case in Rd (Propo-
sition 16).
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• Under the same conditions as Theorem 8 (or Theorem 20 in the kinetic case), the free
energy of the corresponding system of interacting particles is shown to decay fast below
the level of the limit of the non-linear limit, as stated in Proposition 21 (or Proposition 22
in the kinetic case).

This work is organized as follows. The general framework is introduced in Section 2, where
the main general result (Theorem 8) is stated and proven. Section 3 addresses the question of
establishing local non-Linear LSI, covering the granular media case (with a detailed study of
the one-dimensional double-well potential). The Vlasov-Fokker-Planck equation is studied in
Section 4, and Section 5 is devoted to interacting particle systems.

To conclude this introduction, let us mention some perspectives of this work. The gradient
descent structure underlying our study is quite flexible, as one may restrict the space over
which the free energy is minimized (e.g. tensorized distributions, Gaussian distributions,
distributions with some fixed marginals. . . ), which is of interest for variational inference [33,
32, 18], and one can modify the metric with respect to which the gradient is taken, which
amounts to add some non-constant (possibly non-linear) diffusion matrix, allowing e.g. for
slow or fast diffusion processes and congestion effects [23, 9]. We expect most of our analysis
to extend to this kind of settings. Non-asymptotic bounds for discrete-time numerical schemes
can also be obtained as in [38, 8]. Extension to time-varying temperature (for annealing or as
a surrogate to stochastic gradient descent [44]) is straightforward, following e.g. [31, 37] and
references within.

Last, let us mention that for McKean-Vlasov equations which do not necessarily write as
Wasserstein gradient flows, but under different assumptions than ours, a similar statement
to Proposition 1 was recently obtained in [19]. It provides exponential convergence when
the initial condition is in a small W1 neighborhood of a stationary solution. The method is
completely different and relies on the differentiation, in the sense of Lions derivatives, of the
drift of the underlying nonlinear SDE in the neighborhood of the considered invariant measure,
which then provides a criterion for the stability of the invariant measure.

2 Local convergence rates with log-Sobolev inequalities

The main result of this section is Theorem 8, stated and proven in Section 2.6. Before that,
the relevant notions, conditions and lemmas are gradually introduced.

2.1 General settings, assumptions and notations

We consider an energy functional E : P2(Rd) → (−∞,∞] and, for a temperature σ2 > 0, the
free energy

F(ρ) = E(ρ) + σ2H(ρ)

for ρ ∈ P2(Rd), where H(ρ) =
∫
Rd ρ ln ρ stands for the entropy (taken as +∞ if ρ is not

absolutely continuous; otherwise we also write ρ its density).

Assumption 1 (boundedness from below of the free energy). The free energy F is bounded
from below.

Given a functional G : P2(Rd) → (−∞,∞], a measurable function δG
δµ

: P2(Rd) × Rd → R
is called a linear functional derivative of G if, for all µ1, µ0 ∈ P2(Rd) with G(µ0) +G(µ1) <∞,

G(µ1) − G(µ0) =

∫ 1

0

∫
Rd

δG(µt)

δµ
(x)(µ1 − µ0)(dx)dt , (6)
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where µt = tµ1 + (1 − t)µ0.

Assumption 2 (linear functional derivative of the energy). E admits a linear functional

derivative that we denote Eρ(x) = δE(ρ)
δµ

(x). Moreover,

(i) the function (x, ρ) ∈ Rd×P2(Rd) 7→ Eρ(x) is continuous, where P2(Rd) is endowed with
the W2 distance;

(ii) for any ρ ∈ P2(Rd), Eρ ∈ C2(Rd);

(iii) for all µ0, µ1 ∈ P2(Rd) with E(µ0) + E(µ1) < ∞, x 7→ supt∈[0,1] |Eµt(x)| is in L1(µ0) ∩
L1(µ1).

The last item of Assumption 2 ensures that the integral in the right hand side of (6) is
well defined when G = E , and moreover that

lim
t→0

E(µ0 + t(µ1 − µ0)) − E(µ0)

t
=

∫
Rd
Eµ0(x)(µ1 − µ0)(dx). (7)

We are interested in the McKean-Vlasov equation

∂tρt = σ2∆ρt + ∇ · (ρt∇Eρt) , (8)

equivalently

∂tρt = ∇ ·
(
ρt∇

δF(ρt)

δµ

)
. (9)

In particular, the granular media equation (1) corresponds to the free energy

F(ρ) = σ2

∫
Rd
ρ ln ρ+

∫
Rd
V ρ+

1

2

∫
Rd×Rd

Wρ⊗2 , (10)

for which Eρ(x) = V (x) + ρ ⋆ W (x) and Assumptions 1 and 2 are satisfied as soon as, for
instance, V is convex outside a compact set and W is lower bounded with at most a quadratic
growth at infinity (other conditions can be considered, for instance in repulsive cases W may
not be bounded below but Assumption 1 still holds if V grows faster than −W at infinity)
Under suitable regularity condition, a straightforward computation gives

∂tF(ρt) = −
∫
Rd

∣∣∣∣∇δF(ρt)

δµ

∣∣∣∣2 dρt . (11)

In particular, the free energy is decreasing along time, and the stationary solutions ρ∗ are
the critical points of F , characterized by the fact that δF

δµ
(ρ∗) is constant, which, using that

δH
δµ

(ρ) = ln ρ, is equivalent to the self-consistency equation

ρ∗ ∝ exp

(
− 1

σ2
Eρ∗

)
. (12)

In cases where F satisfies a global non-linear log-Sobolev inequality, in the sense that there
exists a constant η > 0 such that

∀ρ ∈ P2(Rd) , F(ρ) − inf F ⩽ η

∫
Rd

∣∣∣∣∇δF(ρ)

δµ

∣∣∣∣2 dρ , (G-NL-LSI)

we immediately get from (11) that the free energy decays exponentially fast toward its infimum.
In particular such an inequality is clearly false when F admits critical points which are not
global minimizers, which is precisely the case we are interested in.
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Assumption 3 (local equilibrium). For any ρ ∈ P2(Rd),

Zρ =

∫
Rd

exp

(
− 1

σ2
Eρ

)
<∞.

For the granular media equation (1) with free energy given by (10), this assumption holds
if for instance W is lower bounded and ln |x| = o(V (x)) at infinity. Under Assumption 3,
denoting

Γ(ρ) = Z−1
ρ exp

(
− 1

σ2
Eρ

)
, (13)

which we call the local equilibrium as it is the stationary solution of the linear equation

∂ρ̃t = σ2∆ρ̃t + ∇ · (ρ̃t∇Eρ) ,

we can also interpret the free energy dissipation in (11) as∫
Rd

∣∣∣∣∇δF
δµ

(ρ)

∣∣∣∣2 dρ = σ4I (ρ|Γ(ρ)) ,

where I(ν|µ) stands for the Fisher information of ν with respect to µ,

I(ν|µ) =

∫
Rd

∣∣∣∣∇ ln
dν

dµ

∣∣∣∣2 dν .

We write
K = {ρ∗ ∈ P2(Rd), F(ρ∗) <∞, ρ∗ = Γ(ρ∗)}

the set of critical points of F .
In this work we are interested in cases where the local equilibria satisfy a uniform (classical)

log-Sobolev inequality, in the sense that there exist η > 0 such that

∀ν, ρ ∈ P2(Rd) , H (ν|Γ(ρ)) ⩽ ηI (ν|Γ(ρ)) , (U-LSI)

where

H(ν|µ) =

∫
Rd

ln
dν

dµ
dν

stands for the relative entropy of ν with respect to µ. Indeed, contrary to (G-NL-LSI), there
are many tools to establish (U-LSI) and it can typically hold even if F has several critical
points. For instance, for the granular media equation (1) in the double well case (2) with
attractive interaction (namely θ > 0), we can decompose V = V0 + V1 where V0 is strongly
convex and V1 is bounded, so that, for any ρ,

V + ρ ⋆ W = V0 + V1 + ρ ⋆ W

is the sum of a strongly convex potential V0 + ρ ⋆ W (with a lower bound on the curvature
independent from ρ) and a bounded potential V1 (independent from ρ), so that (U-LSI) follows
from classical Bakry-Emery and Holley-Stroock results [2]. One motivation of the present work
is to understand the difference between the uniform classical log-Sobolev inequality (U-LSI)
and the non-linear log-Sobolev inequality (G-NL-LSI).

The well-posedness for (9) for specific cases is a standard question that we do not address
here, we refer the interested reader to [1] for general considerations on Wasserstein gradient
flows.
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Assumption 4 (well-posedness and regularity of (9)). For all ρ0 ∈ P2(Rd), (9) has a unique
strong solution, continuous in time for W2, which is the gradient flow of F in the sense of [1,
Definition 11.1.1]; for all t > 0, ρt has a continuous positive density, F(ρt) and H(ρt|Γ(ρt))
are finite; for almost all times t > 0, I(ρt|Γ(ρt)) is finite and (11) holds.

The fact that the free energy, local relative entropy and Fisher information become finite
instantaneously will be stated in more quantitative ways along the study. In particular, the re-
sults stated in Section 2.5, combined with the next statement from [1], show that Assumption 4
is met in particular in the granular media case (1) in the settings of Proposition 1.

Proposition 2. In the case (10) with ∇2V ≥ λId for some λ ∈ R, W (x, y) = w(x− y) with
an even and convex function w : Rd → [0,∞) which has the doubling property w(x + y) ≤
cw(1 + w(x) + w(y)), the following holds. For any initial condition ρ0 ∈ P2(Rd), there is a
unique distributional solution to (1), which is the gradient flow of F and possesses the following
properties:

(i) for any t > 0, ρt has a density with respect to the Lebesgue measure on Rd;

(ii) ρt → ρ0 when t→ 0 in P2(Rd);

(iii) ρ· ∈ L1
loc((0,∞),W 1,1

loc (Rd));

(iv) for any 0 < s < t <∞,

F(ρs) = F(ρt) + σ4

∫ t

s

I(ρr|Γ(ρr))dr <∞.

Proof. With the present conditions on V and W the assumptions of [1, Example 11.2.7] are
satisfied, so that [1, Theorem 11.2.8] applies, which gives all the points of Proposition 2.

From now on, Assumptions 1, 2, 3 and 4 are systematically enforced.

2.2 Two known cases with global convergence

To further motivate our study, let us now highlight that it is known that (U-LSI) is in fact
sufficient to conclude (concerning the long-time behavior of the equation) in two cases: when
E is functional-convex, or when the interaction is sufficiently small (two cases which, of course,
do not allow for multiple stationary solutions).

We start with functional-convexity (to be distinguished from displacement-convexity),
which by definition means that

E(tµ0 + (1 − t)µ1) ⩽ tE(µ0) + (1 − t)E(µ1) t ∈ [0, 1] , (14)

for all µ0, µ1 ∈ P2(Rd). As stated in e.g. [16], assuming furthermore that F admits a minimizer
ρ∗ ∈ K then the latter is unique (thanks to the strict convexity of the entropy), and for all
ρ ∈ P2(Rd), the following entropy sandwich inequalities hold:

σ2H(ρ|ρ∗) ⩽ F(ρ) −F(ρ∗) ⩽ σ2H (ρ|Γ(ρ)) , (15)

see also Lemma 3 below. In particular, the second inequality, together with (U-LSI), implies
(G-NL-LSI) with η = η/σ2, hence the exponential decay of F(ρt) to its global minimum
which, by the first inequality of (15), gives the exponential convergence of H(ρt|ρ∗) to zero
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(which in turns implies the exponential convergence of ρt to ρ∗ in total variation and, be-
cause ρ∗ satisfies a classical LSI thanks to (U-LSI) and thus a Talagrand inequality [41], in
Wasserstein 2 distance).

The convexity condition (14) is known to hold in various settings, in particular for mean-
field models of one-layer neuron networks [29, 16]. In the granular media case (10), assume
that the interaction potential is of the form

W (x, y) = W0(x) +W0(y) + 2
∑
k∈N

rk(x)rk(y) − 2
∑
k∈N

ak(x)ak(y) (16)

for some functions W0, ak, rk (as in e.g. the quadratic case (2); the letters a and r refers to
attractive and repulsive by analogy with the quadratic case). Then we see that, for E(ρ) =∫

(V + 1
2
ρ ⋆ W )ρ and t ∈ [0, 1],

E(tµ0 + (1 − t)µ1) − tE(µ0) − (1 − t)E(µ1)

= t(1 − t)
∑
k∈N

[(∫
Rd
ak(µ0 − µ1)

)2

−
(∫

Rd
rk(µ0 − µ1)

)2
]
, (17)

so that (14) holds for all µ0, µ1, t if and only if ak = 0 for all k ∈ N, which corresponds to
repulsive interaction (and for quadratic potentials (2) to the case where θ ⩽ 0, i.e. W is
concave). See also [15, Section 3.1] for further examples satisfying (14).

In the general non-functional-convex cases, assuming that ρ∗ ∈ K is a global minimizer
of F , notice that the first inequality in (15) cannot hold if there is another global minimizer
ρ′ ∈ K (since we would have H(ρ′|ρ∗) > 0 while F(ρ′) = F(ρ∗)) and the second inequality
(which is the one we used to get the global non-linear LSI (G-NL-LSI) from the uniform
classical LSI (U-LSI)) cannot hold as soon as there is a critical point of F which is not a
global minimizer (since H(ρ|Γ(ρ)) = 0 when ρ ∈ K).

Second, consider the non-convex but small Lipschitz interaction settings. We assume that
µ 7→ ∇Eµ is uniformly Lipschitz, namely there exists L > 0 such that

∀ρ, ρ′ ∈ P2(Rd) , ∥∇Eρ −∇Eρ′∥∞ ⩽ LW2(ρ, ρ
′) . (Lip)

We still assume (U-LSI), which by [41] implies the uniform T2 Talagrand inequality

∀ν, ρ ∈ P2(Rd) , W2
2 (ν,Γ(ρ)) ⩽ 4ηH (ν|Γ(ρ)) . (18)

Let ρ∗ ∈ K. A classical computation shows that

∂tH(ρt|ρ∗) = −σ2I(ρt|ρ∗) +

∫
Rd

(∇Eρ∗ −∇Eρt) · ∇ ln

(
ρt
ρ∗

)
dρt .

Using the Cauchy-Schwarz, log-Sobolev and Talagrand inequalities,

∂tH(ρt|ρ∗) ⩽ −σ2I(ρt|ρ∗) + ∥∇Eρ∗ −∇Eρt∥∞
√
I(ρt|ρ∗)

⩽ −σ
2

2
I(ρt|ρ∗) +

L2

2σ2
W2

2 (ρt, ρ∗)

⩽

(
−σ

2

2η
+

2L2η

σ2

)
H(ρt|ρ∗) ,

In particular, as soon as Lη < 2σ2, we get an exponential convergence in relative entropy
(hence total variation and W2) of ρt to ρ∗, and in particular uniqueness of the critical point
ρ∗.
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2.3 Lower-bounded curvature

To revisit and generalize the two previous cases, let us consider the case where there exists a
cost functional C : P2(Rd) × P2(Rd) → (−∞,∞] with C(µ0, µ1) = C(µ1, µ0) and such that

∀µ0, µ1 ∈ P2(Rd), t ∈ [0, 1],

E(tµ0 + (1 − t)µ1) ⩽ tE(µ0) + (1 − t)E(µ1) + t(1 − t)C(µ0, µ1) . (C-curv-E)

Functional-convexity corresponds to C = 0. If C = λW2
2 for some λ ∈ R, namely if

∀µ0, µ1 ∈ P2(Rd), t ∈ [0, 1],

E(tµ0 + (1 − t)µ1) ⩽ tE(µ0) + (1 − t)E(µ1) + λt(1 − t)W2
2 (µ0, µ1) , (W2

2 -curv-E)

it can be interpreted in terms of Otto calculus by saying that the Hessian of E is lower-bounded
by −λ. In the case (16) a bound (C-curv-E) follows from (17), and if ak is Lk-Lipschitz for
all k ∈ N with λ =

∑
k∈N L

2
k < ∞, (W2

2 -curv-E) holds (in fact, a stronger inequality holds,
with W2 replaced by W1, which could be of interest in some cases; in this work we use W2

everywhere for simplicity).

Example 1. Consider (in dimension one for simplicity) the Gaussian kernel interaction po-
tential

W (x, y) = e−(x−y)2 =
∑
k∈N

(−1)ke−x
2 xkyk

k!
e−y

2

,

which appears for instance in the Adaptive Biasing Potential method [6] and more generally
in regularized approximations of processes which are influenced by the local density of particles
(e.g. [34]). It is of the form (16) with ak(x) = e−x

2
xk/

√
k! for odd k ∈ N and rk(x) =

e−x
2
xk/

√
k! for even k ∈ N. An elementary analysis and the Stirling formula shows that

∥a′k∥∞ = O(k/2k/2), which means that (W2
2 -curv-E) holds.

Example 2. Considering the settings of [17], let H be a Hilbert space with norm ∥ · ∥H,
φ : Rd → H, R : H → R and V0 : Rd → R. Consider

E(µ) =

∫
Rd
V0(x)µ(dx) +R

(∫
Rd
φ(x)µ(dx)

)
,

where the integral of an H-valued function is understood in Bochner’s sense, and we take the
convention that E(µ) = ∞ if

∫
Rd ∥φ(x)∥Hµ(dx) = ∞. As discussed in [17], this encompasses

many cases of interest in optimization, machine learning and stastistics in high dimension.
Assume that the curvature of R is lower-bounded in the sense that there exists θ > 0 such that
R + θ∥ · ∥2H is convex. This implies that (C-curv-E) holds with

C(µ0, µ1) = θ

∥∥∥∥∫
Rd
φdµ0 −

∫
Rd
φdµ1

∥∥∥∥2
H
.

This generalizes the quadratic finite-dimensional case (17). Assuming furthemore that φ is
Lipschitz continuous (namely ∥φ(x)−φ(y)∥H ⩽ ℓ|x−y| for all x, y ∈ Rd), we get (W2

2 -curv-E)
with λ = θℓ2.

The following generalizes the entropy sandwich inequality (15) when C ̸= 0.

Lemma 3. Under (C-curv-E), for all µ0, µ1 ∈ P2(Rd) and ρ∗ ∈ K,

F(µ0) ⩽ F(µ1) + σ2H (µ0|Γ(µ0)) + C(µ0, µ1) , (19)

and
F(ρ∗) + σ2H (µ0|ρ∗) ⩽ F(µ0) + C(µ0, ρ∗) . (20)
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Proof. To prove each inequality, we assume that the right-hand side is finite, otherwise the
result is trivial.

Dividing by t and sending t to zero in (C-curv-E) yields (using (7)),∫
Rd
Eµ1(µ0 − µ1) + E(µ1) ⩽ E(µ0) + C(µ0, µ1) ,

and thus, interverting the roles of µ1 and µ0,∫
Rd
Eµ1(µ0 − µ1) − C(µ0, µ1) ⩽ E(µ0) − E(µ1) ⩽

∫
Rd
Eµ0(µ0 − µ1) + C(µ0, µ1) .

Then

F(µ0) −F(µ1) ⩽
∫
Rd
Eµ0(µ0 − µ1) + C(µ0, µ1) + σ2H(µ0) − σ2H(µ1)

= σ2H (µ0|Γ(µ0)) − σ2H (µ1|Γ(µ0)) + C(µ0, µ1)

⩽ σ2H (µ0|Γ(µ0)) + C(µ0, µ1) ,

and

F(µ0) −F(µ1) ⩾
∫
Rd
Eµ1(µ0 − µ1) − C(µ0, µ1) + σ2H(µ0) − σ2H(µ1)

= σ2H (µ0|Γ(µ1)) − σ2H (µ1|Γ(µ1)) − C(µ0, µ1) .

The second term of the right hand side vanishes if µ1 ∈ K, which concludes.

This result will prove useful in our cases of interest, namely when F has several critical
points. Nevertheless, for now, in the spirit of the previous section, let us discuss how (U-LSI)
may already give a global convergence in some cases under (C-curv-E).

Indeed, assuming a Talagrand type inequality

C(µ0, ρ∗) ⩽ η′H(µ0|ρ∗)

for some η′ > 0 (which, if C ⩽ λW2
2 for some λ > 0, is implied by (U-LSI) with η′ = 4ηλ),

using (20) and then (19),

C(µ0, ρ∗) ⩽ η′H(µ0|ρ∗) ⩽
η′

σ2
(F(µ0) −F(ρ∗) + C(µ0, ρ∗))

⩽ η′H (µ0|Γ(µ0)) +
2η′

σ2
C(µ0, ρ∗) .

Hence, under the condition 2η′ < σ2 (i.e., again, high temperature or small interaction), we
obtain a non-linear transport inequality

C(µ0, ρ∗) ⩽
η′

1 − 2η′/σ2
H (µ0|Γ(µ0)) . (21)

Together with the LSI for ρ∗ and (19), this proves (G-NL-LSI), since

F(µ0) −F(ρ∗) ⩽

(
σ2 +

η′

1 − 2η′/σ2

)
H (µ0|Γ(µ0)) ⩽ η

(
σ2 +

η′

1 − 2η′/σ2

)
I (µ0|Γ(µ0)) .

Notice that, conversely, the non-linear transport inequality (21) with C = W2
2 is shown to be

a consequence of (G-NL-LSI) in [22] (see also Lemma 4 below).
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2.4 Local non-linear log-Sobolev inequalities

Consider a non-empty set A ⊂ P2(Rd) with infAF < ∞. Instead of the global condi-
tion (G-NL-LSI), the key ingredient in our approach is to obtain (local) non-linear LSI
of the form

∀ρ ∈ A , F(ρ) − inf
µ∈A

F(µ) ⩽ ησ4I (ρ|Γ(ρ)) (NL-LSI)

for some η > 0. The fact that it is possible to get this in some subsets A even in cases where
F has several critical points is the topic of Section 3. For now we assume that this holds in
some set A and we discuss its consequences.

First, since the left hand side of (NL-LSI) is non-negative and the right hand side vanishes
when ρ ∈ K, we get that

ρ∗ ∈ A ∩ K ⇒ F(ρ∗) = inf
µ∈A

F(µ) . (22)

Second, the results which were known to hold under (G-NL-LSI) still hold as long as the
solution of (9) stays within A, as we state in the next lemma. For conciseness we write

FA(ρ) = F(ρ) − inf
µ∈A

F(µ) .

For ρ0 ∈ P2(Rd), we write
TA(ρ0) = inf{t ⩾ 0, ρt /∈ A} ,

with (ρt)t⩾0 the solution to (9). The next lemma is the infinite-dimensional version of (4) and
(5) and follows the same proof.

Lemma 4. Assume that (NL-LSI) holds on A. Then, for all ρ0 ∈ A and t ⩽ TA(ρ0),

FA(ρt) ⩽ e−t/ηFA(ρ0) (23)

and
W2

2 (ρt, ρ0) ⩽ 4ηFA(ρ0) . (24)

Proof. The first inequality is straightforward from (11) and (NL-LSI). The proof of the
second inequality is the same as the proof of [22, Theorem 3.2] (although a factor 2 seems
to disappear wrongly in the latter when using the Benamou-Brenier formula, which explains
the difference with our result ; notice that our factor 4 is consistent with the classical linear
case [41], or the finite-dimensional settings (5)). Since (9) can be written as the continuity
equation

∂tρt = ∇ · (ρtvt) vt := ∇δF(ρt)

δµ
,

by the Benamou-Brenier formulation of the Wasserstein distance [7], for any 0 ≤ s < t,

W2
2 (ρs, ρt) ≤ (t− s)

∫ t

s

∫
Rd

|vr|2ρrdr = σ4(t− s)

∫ t

s

I(ρr|Γ(ρr))dr.

Thus,

W2(ρs, ρt)

t− s
≤ σ2

√
1

t− s

∫ t

s

I(ρr|Γ(ρr))dr,

so by Lebesgue’s differentiation theorem, the metric derivative of (ρt)t≥0 defined in [1, Theo-
rem 1.1.2] satisfies

|ρ′t| ≤ σ2
√

I(ρt|Γ(ρt)),
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dt-almost everywhere. Since, by [1, Theorem 1.1.2], we have on the other hand

W2(ρs, ρt) ≤
∫ t

s

|ρ′r|dr,

we get

W2(ρ0, ρt) ⩽ σ2

∫ t

0

√
I (ρs|Γ(ρs))ds .

Besides, for t ⩽ TA(ρ0),

∂tFA(ρt) = −σ4I (ρt|Γ(ρt)) ⩽ −
√
σ4I (ρt|Γ(ρt))FA(ρt)/η ,

from which√
FA(ρt) −

√
FA(ρ0) ⩽ − σ2

2
√
η

∫ t

0

√
I (ρs|Γ(ρs))ds ⩽ − 1

2
√
η
W2(ρt, ρ0) .

Rearranging the terms and using that
√
FA(ρt) ⩾ 0 concludes.

As a consequence, when (NL-LSI) holds in a set A ⊂ P2(Rd) that contains a unique critical
point ρ∗ ∈ K, in order to get the long-time convergence to ρ∗ at exponential speed starting from
an initial condition ρ0 ∈ A, it mainly remains to show that TA(ρ0) = +∞. In specific cases,
this can be shown by various means, for instance in dimension 1 by monotonicity arguments
as in [48], or in general using that the free energy decreases as in [47], etc. In the following,
we focus on a self-contained argument which establishes the exponential convergence towards
ρ∗ under the natural condition that W2(ρ∗, ρ0) is sufficiently small (in particular, without
assuming that F(ρ0) <∞).

2.5 Auxiliary regularization results

Let us recall two results. The first is proven in [15, Lemma 4.9].

Lemma 5. Under (Lip) and (U-LSI), for all ρ ∈ P2(Rd) and ρ∗ ∈ K,

H (ρ|Γ(ρ)) ⩽

(
1 + ηL+

L2η2

2

)
H(ρ|ρ∗) .

The second result is from [50, Corollary 4.3].

Proposition 6. Assume that there exists κ0, κ1, κ2 > 0 such that for all ν, µ ∈ P2(Rd) and all
x, y ∈ Rd,

|∇Eµ(0)|2 + σ2 ⩽ κ0

(
1 +

∫
Rd

|x|2µ(dx)

)
and

−2 (∇Eµ(x) −∇Eν(y)) · (x− y) ⩽ κ1|x− y|2 + κ2|x− y|W2(ν, µ) . (25)

Then, given two solutions (ρt)t⩾0 and (ρ′t)t⩾0 of (9), for all t > 0,

H (ρt|ρ′t) ⩽ stW2
2 (ρ0, ρ

′
0) ,

where

st =
1

σ2

(
κ1

1 − e−κ1t
+

1

2
tκ22e

2(κ1+κ2)t

)
.
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Notice that, under the uniform Lipschitz condition (Lip), since we can bound |∇Eµ(0)| ⩽
|∇Eδ0(0)| + LW2(µ, δ0) for any µ ∈ P2(Rd), the assumptions of Proposition 6 are fulfilled if
additionally there exists κ1 > 0 such that the one-sided Lipschitz condition

∀µ ∈ P2(Rd), x, y ∈ Rd, 2 (∇Eµ(x) −∇Eµ(y)) · (x− y) ⩾ −κ1|x− y|2 (o-s-Lip)

holds, and then we can take κ2 = 2L to have (25).

Corollary 7. Assume (W2
2 -curv-E), (Lip), (o-s-Lip) and (U-LSI) for some λ, L, κ1, η > 0.

Then, for all (ρt)t⩾0 solution to (9), all ρ∗ ∈ K and all t > 0,

F(ρt) −F(ρ∗) ⩽ qtW2
2 (ρ0, ρ∗)

with

qt =

(
1 + ηL+

4ηλ

σ2
+
L2η2

2

)(
κ1

1 − e−κ1t
+

1

2
tL2e(2κ1+4L)t

)
. (26)

Notice that qt is of order 1/t as t→ 0. See [1, Theorem 4.0.4] for a similar result.

Proof. Using (19) in Lemma 3 with C = λW2
2 and then Lemma 5 and the Talagrand inequality

(18) for ρ∗ = Γ(ρ∗) implied by (U-LSI),

F(ρt) −F(ρ∗) ⩽ σ2H (ρt|Γ(ρt)) + λW2
2 (ρt, ρ∗)

⩽ σ2

(
1 + ηL+

4ηλ

σ2
+
L2η2

2

)
H(ρt|ρ∗) .

Since t 7→ ρ∗ solves (9), conclusion follows from Proposition 6.

2.6 Conclusion

For µ ∈ P2(Rd) and r > 0, write BW2(µ, r) = {ν ∈ P2(Rd),W2(ν, µ) ⩽ r}.

Assumption 5. The conditions (W2
2 -curv-E), (Lip), (o-s-Lip) and (U-LSI) hold for some

λ, L, κ1, η > 0, and (NL-LSI) holds on some non-empty set A ⊂ P2(Rd) for some η > 0.
Furthermore there exist ρ∗ ∈ A ∩ K and δ > 0 such that BW2(ρ∗, δ) ⊂ A.

Theorem 8. Under Assumption 5, set

δ′ =
δ

2(2
√
ηq1 + e(κ1/2+L))

,

where q1 is given by (26) (with t = 1). Then, for all ρ0 ∈ BW2(ρ∗, δ
′), TA(ρ0) = ∞ and in

particular
FA(ρt) ⩽ e−t/ηFA(ρ0)

for all t ⩾ 0. Furthermore, if we assume additionally that BW2(ρ∗, δ) ∩ K = {ρ∗}, then:

• The following non-linear Talagrand inequality holds:

W2
2 (ρ0, ρ∗) ⩽ 4ηFA(ρ0) . (27)

• Setting C = e1/η max(4ηq1, e
κ1+2L), for all t ⩾ 0,

W2
2 (ρt, ρ∗) ⩽ Ce−t/ηW2

2 (ρ0, ρ∗) (28)

FA(ρt) ⩽ e−t/η min
(
FA(ρ0) , qmin(t,1)e

1/ηW2
2 (ρ0, ρ∗)

)
(29)

σ2H(ρt|ρ∗) ⩽ FA(ρt) + λW2
2 (ρt, ρ∗) . (30)
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The last inequality on the relative entropy is just (20) in Lemma 3, we simply recall it as
it gives here the exponential convergence of H(ρt|ρ∗) (hence of ∥ρt − ρ∗∥TV ) to zero.

Remark 1. Write A∞(ρ∗) = {ρ0 ∈ A : TA(ρ0) = ∞ and W2(ρt, ρ∗) → 0 as t → ∞}. Then
it is clear by following the proof of Theorem 8 that its conclusion (namely (27), (28) and
(29)) hold for any initial condition ρ0 ∈ A∞(ρ∗). Moreover, for any ρ0 ∈ P2(Rd) such that
W2(ρt, ρ∗) → 0 as t → ∞, there exists a t∗ > 0 such that ρt∗ ∈ BW2(ρ∗, δ) ⊂ A∞(ρ∗), from
which there exists C0 > 0 such that for all t ⩾ 1,

W2
2 (ρt, ρ∗) + H(ρt|ρ∗) + F(ρt) −F(ρ∗) ⩽ C0e

−t/η . (31)

Proof. Given a solution (ρt)t⩾0 of (8), we consider the time-inhomogeneous Markov diffusion
process

dXt = −∇Eρt(Xt)dt+
√

2σdBt

where B is a Brownian motion and X0 is distributed according to ρ0, so that Xt ∼ ρt for
all t ⩾ 0. Existence of strong solutions for this SDE is justified by the fact (t, x) 7→ ∇Eρt is
continuous in time (by continuity of t 7→ ρt and (Lip)) and C1 in x, and explosion in finite
time is prevented by (o-s-Lip). Considering a synchronous coupling (X, Y ) (i.e. using the
same Brownian motion for two processes) of such diffusions, the first one being associated
with an arbitrary solution ρ, the second being associated to the stationary solution t 7→ ρ∗,
we get that

∂t|Xt − Yt|2 = −2(Xt − Yt) · (∇Eρt(Xt) −∇Eρ∗(Yt)) ⩽ (κ1 + L)|Xt − Yt|2 + LW2
2 (ρt, ρ∗) ,

where we used (Lip) and (o-s-Lip). Taking the expectation, using the Gronwall Lemma, that
W2

2 (ρt, ρ∗) ⩽ E (|Xt − Yt|2) and taking the infimum over the coupling of the initial conditions,
we obtain

W2(ρt, ρ∗) ⩽ e(κ1/2+L)tW2(ρ0, ρ∗) . (32)

In view of the definition of δ′, this implies that for ρ0 ∈ BW2(ρ∗, δ
′), TA(ρ0) ⩾ 1 and ρ1 ∈ A.

On the other hand, using Corollary 7 and the decay of the free energy along time, for all t ⩾ 1,

F(ρt) −F(ρ∗) ⩽ q1(δ
′)2 .

Hence, for all t ∈ [1, TA(ρ0)], using (24),

W2(ρt, ρ∗) ⩽ W2(ρt, ρ1) + W2(ρ1, ρ∗) ⩽ δ′
(

2
√
ηq1 + e(κ1/2+L)

)
=
δ

2
.

By contradiction, since t 7→ W2(ρt, ρ∗) is continuous, we get that TA(ρ0) = ∞.
Now, assume that BW2(ρ∗, δ) ∩ K = {ρ∗}. Since Equation (9) admits F as a strict Lya-

punov function, the LaSalle invariance principle established in [10] shows that the W2 distance
between ρt and K vanishes as t→ ∞. Since the trajectory stays within BW2(ρ∗, δ/2) and thus
at a distance at least δ/2 of K \ {ρ∗}, this implies the convergence towards ρ∗. We can then
let t→ ∞ in (24) to get (27), that we use then to bound, for t ⩾ 1,

W2
2 (ρt, ρ∗) ⩽ 4ηFA(ρt) ⩽ 4ηe−(t−1)/ηFA(ρ1) ⩽ 4ηe−(t−1)/ηq1W2

2 (ρt, ρ∗) .

For t ⩽ 1, we simply use (32). The bound on FA(ρt) is straightforward from (23) and
Corollary 7.
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3 Local non-linear LSI in a parametric case

In this section we focus on the settings of Example 2, where we recall that

E(µ) =

∫
Rd
V0(x)µ(dx) +R

(∫
Rd
φ(x)µ(dx)

)
. (33)

We assume that V0 ∈ C2(Rd,R), R ∈ C1(H,R) and φ ∈ C2(Rd,H). In this case, denoting by
∇H and ⟨·, ·⟩H the gradient and scalar product over H,

Eρ(x) = V0(x) + ⟨∇HR(φ(ρ)), φ(x)⟩H,

with φ(ρ) :=
∫
Rd φρ ∈ H, and Assumption 2 is satisfied if, for any x ∈ Rd, ∥φ(x)∥H ≤

C(1 + |x|2).
The general idea that we develop in this section is that, since the non-linearity is somehow

parametrized by φ(ρ), information for the Wasserstein gradient flow can be deduced from
standard analysis of fixed point or optimization on Hilbert spaces. General considerations are
gathered in Section 3.1, which are then applied to the granular media case (10) in Section 3.2.

Remark 2. If R is convex then E is functional convex. As discussed in Section 2.2, thanks to
Lemma 3, in that case (U-LSI) implies (G-NL-LSI) and then global convergence at constant
rate towards a unique stationary solution. Hence, this is not the case we are interested in.

3.1 General results

3.1.1 The associated fixed-point problem

In the case (33), we get that Γ(ρ) = ρφ(ρ) where, for ψ ∈ H,

ρψ(x) ∝ exp

(
− 1

σ2
[V0(x) + ⟨∇HR(ψ), φ(x)⟩H]

)
. (34)

Let us assume that F(ρψ) <∞ for all ψ ∈ H. This implies in particular that

f(ψ) = φ (ρψ) =

∫
Rd
φ(x)ρψ(x)dx (35)

is well-defined, and we see that φ (Γ(ρ)) = f (φ(ρ)). In particular, any ρ∗ ∈ K satisfies
ρ∗ = ρφ(ρ∗). Thus, denoting by K′ = {ψ ∈ H, f(ψ) = ψ} the set of fixed-points of f ,

K = {ρψ, ψ ∈ K′} .

One may hope that the stability properties of ρ∗ = ρψ∗ ∈ K as a stationary solution of the
(continuous-time) Wasserstein gradient descent is related to the stability of ψ∗ as a fixed-point
of the (discrete-time) dynamical system ψ 7→ f(ψ) on H, which is a classical question. In fact,
we can find examples where ρψ∗ is stable although ψ∗ is not (see the granular media equation
with repulsive interaction in Figure 3 below). However, on the contrary, the next result shows
that (NL-LSI) holds in a neighborhood ρψ∗ (which is thus stable thanks to Theorem 8) if ψ∗
is a geometrically attracting fixed-point.

Proposition 9. Let ψ∗ ∈ K′, A′ ⊂ H and α ∈ [0, 1) be such that for all ψ ∈ A′,

∥f(ψ) − ψ∗∥H ⩽ α∥ψ − ψ∗∥H . (36)
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Then, for any ψ ∈ A′,

∥ψ − ψ∗∥H ⩽
1

1 − α
∥f(ψ) − ψ∥H . (37)

Assuming moreover that φ is ℓ-Lipschitz continuous, then, for all ρ ∈ P2(Rd) such that φ(ρ) ∈
A′,

∥φ(ρ) − ψ∗∥H ⩽
ℓ

1 − α
W2 (ρ,Γ(ρ)) .

Finally, assuming furthermore (U-LSI) and that R + θ∥ · ∥2H is convex for some θ > 0, then,
for all ρ ∈ P2(Rd) such that φ(ρ) ∈ A′,

F(ρ) −F(ρψ∗) ⩽ η

(
σ2 +

4ηθℓ2

(1 − α)2

)
I (ρ|Γ(ρ)) ,

i.e. (NL-LSI) holds over A = {ρ ∈ P2, φ(ρ) ∈ A′}.

Proof. The first inequality (37) simply follows from the triangular inequality

∥ψ − ψ∗∥H ⩽ ∥ψ − f(ψ)∥H + ∥f(ψ) − ψ∗∥H ⩽ ∥ψ − f(ψ)∥H + α∥ψ − ψ∗∥H .

Applying this to ψ = φ(ρ) reads

∥φ(ρ) − ψ∗∥H ⩽
1

1 − α
∥φ(ρ) − φ (Γ(ρ)) ∥H ⩽

ℓ

1 − α
W2 (ρ,Γ(ρ)) .

Finally, applying Lemma 3 (with C(µ0, µ1) = θ∥φ(µ0) − φ(µ1)∥2H as in Example 2),

F(ρ) −F(ρψ∗) ⩽ σ2H (ρ|Γ(ρ)) + θ∥φ(ρ) − ψ∗∥2H

⩽ σ2H (ρ|Γ(ρ)) +
θℓ2

(1 − α)2
W2

2 (ρ,Γ(ρ))

⩽

(
σ2 +

4ηθℓ2

(1 − α)2

)
H (ρ|Γ(ρ))

thanks to Talagrand inequality (18). Conclusion follows from (U-LSI).

Remark 3. The constant η in (NL-LSI) obtained when applying Proposition 9, and thus the
quantitative convergence estimates obtained when applying Theorem 8, are explicit in terms
of the constants in the assumptions. In particular there is no additionnal dependency in the
dimension.

We have thus identified the following general conditions:

Assumption 6. There exist θ, ℓ, η > 0 such that φ is ℓ-Lipschitz continuous, R + θ∥ · ∥2H is
convex and (U-LSI) holds. Moreover, F(ρψ) <∞ for any ψ ∈ H.

Remark 4. As discussed in Example 2, these conditions imply (W2
2 -curv-E) with λ = θℓ2.

Moreover, since
∇Eρ(x) = ∇V0(x) + ⟨∇HR (φ(ρ)) ,∇φ(x)⟩H ,

assuming that ∇HR is L′-Lipschitz continuous, we get that, for any x ∈ Rd,

|∇Eµ0(x) −∇Eµ1(x)| ⩽ ℓL′∥φ(µ0) − φ(µ1)∥H ⩽ ℓ2L′W2(µ0, µ1) ,

which is (Lip).
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Under the general conditions of Assumption 6, given a specific problem, what remains to
be done is to establish the contraction (36). A simple way to get it locally at some fixed point
ψ∗ is to check that |∇Hf(ψ∗)|, the operator norm of the Jacobian matrix of f , is strictly less
than 1 at ψ∗. We end up with the following.

Corollary 10. Under Assumption 6, let ψ∗ ∈ K′. Assume that f is differentiable at ψ∗ with
|∇Hf(ψ∗)| < 1. Then there exist δ, η > 0 such that (NL-LSI) holds on A = BW2(ρψ∗ , δ).

Proof. Using that ψ∗ is a fixed point of f and a Taylor expansion,

∥f(ψ) − ψ∗∥H = ∥∇Hf(ψ∗)(ψ − ψ∗)∥H + o(∥ψ − ψ∗∥H) ⩽ α∥ψ − ψ∗∥H

for some α < 1 uniformly over some neighborhood N of ψ∗. The function φ being Lipschitz
continuous, ρ 7→ φ(ρ) is Lipschitz continuous for the W2 distance, which means that φ(ρ) lies
in N for all ρ ∈ BW2(ρψ∗ , δ) for δ small enough. Conclusion follows from Proposition 9.

3.1.2 Decomposition of the free energy

The difference between (U-LSI) and (G-NL-LSI) obviously lies in the difference between
H(ρ|Γ(ρ)) and F(ρ). In the case (33), we can decompose

F(ρ) = σ2H (ρ|Γ(ρ)) + g (φ(ρ))

where

g(ψ) = R (ψ) − ⟨∇HR (ψ) , ψ⟩H − σ2 ln

∫
Rd
e−

1
σ2

[V0(x)+⟨∇HR(ψ),φ(x)⟩H]dx . (38)

This second part of the free energy only depends on ρ through the parameter φ(ρ).

Remark 5. If R is concave, then M(ψ1, ψ2) := R(ψ2) − R(ψ1) + ⟨∇HR(ψ2), ψ1 − ψ2⟩H ⩾ 0
(this is the so-called Bregman divergence associated with −R). Assuming furthermore that
V0(x) = V (x) − R(φ(x)) with V such that e−V/σ

2
is integrable, and that M(ψ1, ψ2) → +∞

when ψ2 → ∞, we get by dominated convergence that

e−
1
σ2
g(ψ) =

∫
Rd
e−

1
σ2

[V (x)+M(φ(x),ψ)]dx −→
∥ψ∥H→+∞

0 .

As a consequence, g is lower bounded and goes to infinity at infinity. Moreover, it is continu-
ous, and thus in particular when H has finite dimension then g reaches its minimum. Notice
that, in the quadratic case where R(ψ) = −θ∥ψ∥2H, M(ψ1, ψ2) = θ∥ψ1 − ψ2∥2H.

Assuming that R ∈ C2(H,R),

∇Hg(ψ) = ∇2
HR(ψ) (f(ψ) − ψ) , (39)

where we used that∫
Rd ∇

2
HR(ψ)φe−

1
σ2

[V0(x)+⟨∇HR(ψ),φ(x)⟩H]dx∫
Rd e

− 1
σ2

[V0(x)+⟨∇HR(ψ),φ(x)⟩H]dx
= ∇2

HR(ψ)φ (ρψ) = ∇2
HR(ψ)f(ψ) .

As a consequence, if ψ∗ is a critical point of g such that ∇2
HR(ψ∗) is non-singular (which

is in particular the case for all critical points of g if R is strictly convex or concave, which
covers many cases of interest) then necessarily ψ∗ ∈ K′. In that case, if moreover ψ∗ is a
local minimizer of g, then ρψ∗ is a minimizer of both parts of the free energy, ρ 7→ H(ρ|Γ(ρ))
and ρ 7→ g (φ(ρ)) (at least locally in the latter). It is thus a good candidate to be a stable
stationary solution for the Wasserstein gradient descent for the free energy. This is indeed the
case:
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Proposition 11. Assume (W2
2 -curv-E), (Lip), (o-s-Lip) and (U-LSI) for some λ, L, κ1, η >

0 and φ is ℓ-Lipschitz continuous. Let ψ∗ ∈ K′ be a proper isolated local minimizer of g, in
the sense that for all ε > 0 small enough, ζ(ε) := inf{g(ψ) − g(ψ∗), ψ ∈ H, ∥ψ − ψ∗∥H =
ε} > 0 and K′ ∩ B(ψ∗, ε) = {ψ∗}. Then there exists δ > 0 such that for all initial conditions
ρ0 ∈ BW2(ρψ∗ , δ), the flow (9) converges in long-time to ρψ∗.

Proof. Let ε > 0 be small enough so that ζ(ε) > 0 and K′ ∩ B(ψ∗, ε) = {ψ∗}. Notice that, for
ψ, ψ̃ ∈ K′, ∥ψ− ψ̃∥H = ∥φ(ρψ)−φ(ρψ̃)∥H ≤ ℓW2(ρψ, ρψ̃), so that the second condition implies
that K∩BW2(ρψ∗ , ε/ℓ) = {ρψ∗}, and thus ρψ∗ is an isolated critical point of F . For any ρ ∈ P2

with ∥φ(ρ) − ψ∗∥H = ε,

F(ρ) ⩾ g (φ(ρ)) ⩾ g(ψ∗) + ζ(ε) = F(ρψ∗) + ζ(ε) .

As a consequence, given a solution (ρt)t⩾0 of (1), if there is a time t0 such that ∥φ(ρt0)−ψ∗∥H <
ε and F(ρt0)−F(ρψ∗) < ζ(ε) then the monotonicity of the free energy along the flow together
with the continuity of t 7→ ∥φ(ρt) − ψ∗∥H implies that ∥φ(ρt) − ψ∗∥H < ε for all t ⩾ t0.
Conclusion would thus follow from LaSalle invariance principle [10] using that ρψ∗ is isolated.

Hence, let us prove that the previous conditions are met for initial conditions that are
sufficiently close to ρψ∗ . We follow arguments similar to the proof of Theorem 8. Indeed, for
all t ⩾ 0, using (32) ,

∥φ(ρt) − ψ∗∥H ≤ ℓe(κ1/2+L)tW2 (ρ0, ρψ∗) .

By taking δ < εe−κ1/2−L/ℓ, we ensure that ∥φ(ρt0) − ψ∗∥H < ε at time t0 = 1 for all ρ0 ∈
BW2(ρψ∗ , δ). On the other hand, thanks to Corollary 7, by taking δ small enough, we can also
ensure that F(ρt0) −F(ρψ∗) < ζ(ε) with such initial conditions.

Remark 6. The argument that initial conditions that start with a free energy sufficiently close
to F(ρ∗) will stay within a ball centered at ρ∗ has been used e.g. in [47, 4]. Here we combine
it with the small-time regularization result of Corollary 7 to get a result only in terms of a W2

ball.

In fact, we can now reinterpret Proposition 9 in light of Proposition 11. Indeed, differen-
tiating again (39) (assuming suitable regularity) at some ψ∗ ∈ K′ yields

∇2
Hg(ψ∗) = ∇2

HR(ψ∗) (∇Hf(ψ∗) − I) (40)

(where we used that f(ψ∗) = ψ∗). For brevity, denote ∇2R∗ = ∇2
HR(ψ∗). For any u ∈ H,

⟨u,∇2
Hg(ψ∗)u⟩H = ⟨u,∇2R∗∇Hf(ψ∗)u⟩H − ⟨u,∇2R∗u⟩H .

Assuming that ∇2R∗ is negative definite, we can consider the norm ∥u∥∗ =
√

−⟨u,∇2R∗u⟩H
and the associated operator norm ∥∇Hf(ψ∗)∥∗. Then,

⟨u,∇2
Hg(ψ∗)u⟩H ⩾ (1 − ∥∇Hf(ψ∗)∥∗) ∥u∥2∗ .

We get that ψ∗ is a non-degenerate local minimizer of g if ∥∇Hf∥∗ < 1. On the other hand,
if ∥∇Hf∥∗ < 1 and (∇2R∗)

−1 is bounded, then we can assume that ∥ · ∥∗ = ∥ · ∥H (which
amounts to the linear change of coordinates given by (∇2R∗)

−1/2) and apply Proposition 9 or,
alternatively, we can use the contraction (36) expressed with norm ∥ · ∥∗ to get (37) with the
same norm and then with the initial ∥ · ∥H by the equivalence of the norms and then proceed
with Proposition 9). At least, this suggests that in some cases, in order to apply Proposition 9
at some point ψ∗, it may be more natural to work with the norm ∥ · ∥∗ associated to ∇2R∗
(when the latter is negative definite).
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Besides, we compute that

∇Hf(ψ) = − 1

σ2

[∫
Rd
φ
(
∇2

HR(ψ)φ
)T
ρψ − f(ψ)

(
∇2

HR(ψ)f(ψ)
)T]

,

from which, for u1, u2 ∈ H, writing wi = ∇2R∗ui for i = 1, 2,

⟨u1,∇2R∗∇Hf(ψ∗)u2⟩H = − 1

σ2

〈
w1,

[∫
Rd
φφTρψ∗ − f(ψ∗) (f(ψ∗))

T

]
w2

〉
H

= − 1

σ2
⟨w1, covarρψ∗ (φ(X))w2⟩H . (41)

In particular, we see that ∇Hf(ψ∗) is symmetric and nonnegative for the scalar product asso-
ciated to ∥ · ∥∗, from which

∥∇Hf(ψ∗)∥∗ = sup
u̸=0

⟨u,∇2R∗∇Hf(ψ∗)u⟩H
⟨u,∇2R∗u⟩H

. (42)

Furthermore, if we work with suitable coordinates in order to enforce that ∇2R∗ = −I, we
get that, for ψ∗ ∈ K′,

∇2
Hg(ψ∗) = I − 1

σ2
covarρψ∗ (φ(X)) .

3.1.3 Degenerate minima

There is no convergence rate in Proposition 11, and we cannot expect one in general if we do
not assume that ψ∗ is a non-degenerate local minimizer of g. Assuming again that ∇2

HR(ψ∗) is
non-singular, in view of (40), if ∇2

Hg(ψ∗) is singular then |∇Hf(ψ∗)| ⩾ 1 (since ∇Hf(ψ∗)u = u
for u ∈ ker∇2

Hg(ψ∗), and thus this does not depend on the norm we use). In other words,
degenerate minima of g fall in the limit case where we cannot apply Proposition 9 anymore.
Then we can weaken the contraction condition (36) to allow for high-order stable fixed points.
The proof of the following is the same as the one of Proposition 9 (hence omitted).

Proposition 12. Let ψ∗ ∈ K′, A′ ⊂ H and β > 0, ν ∈ (0, 1) be such that for all ψ ∈ A′,

∥ψ − ψ∗∥H ⩽ β∥f(ψ) − ψ∥νH . (43)

Assuming furthermore (U-LSI), that R + θ∥ · ∥2H is convex for some θ > 0 and that φ is
ℓ-Lipschitz continuous, then, for all ρ ∈ P2(Rd) such that φ(ρ) ∈ A′,

F(ρ) −F(ρψ∗) ⩽ ησ2I (ρ|Γ(ρ)) + θβ2(4η2ℓ2)νIν (ρ|Γ(ρ)) . (44)

Under the settings of Proposition 11, assume that (43) holds in a neighborhood of ψ∗.
Thanks to Proposition 11, there exists δ > 0 such that for all initial conditions ρ0 ∈ BW2(ρψ∗ , δ),
the gradient flow converges to ρ∗ and the inequality (44) holds for ρt for all time t ⩾ 0. Com-
bined with Corollary 7, this yields algebraic convergence rates of the form

F(ρt) −F(ρψ∗) ⩽
C

(W2r
2 (ρ0, ρψ∗) + t)

1/r
,

with r = 1/ν − 1 > 0 and some constant C > 0, for all t ⩾ 1. From this algebraic decay of
the free energy, we can get convergence of ρt to ρψ∗ since (20) in Lemma 3 gives

H (ρt|ρψ∗) ⩽ F(ρt) −F(ρψ∗) + θ∥φ(ρt) − ψ∗∥2H .
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When following the proof of Proposition 9 to get Proposition 12, we see that we obtain as an
intermediary inequality that

∥φ(ρt) − ψ∗∥2H ⩽ β2(4ηℓ2)νHν (ρt|Γ(ρt))

as long as φ(ρt) ∈ A′ (hence for all times here since ρ0 ∈ BW2(ρψ∗ , δ)). Moreover, since ψ∗ is a
local minimizer of g, by taking δ sufficiently small we get that g(φ(ρt)) ⩾ g(ψ∗) for all t ⩾ 0,
in other words

H(ρt|Γ(ρt)) ⩽ F(ρt) −F(ρψ∗) .

Gathering all these bounds give

H (ρt|ρψ∗) ⩽
C0

tν2/(1−ν)
(45)

for some C0 > 0 for all t ⩾ 0.

3.2 Application to granular media equation

In this section we focus on the granular media equation (1) on Rd, which corresponds to the
free energy (10) (in fact we will consider a slightly more general case in Section 3.2.2). For
clarity, for now, let us focus on the quadratic interaction case where W (x, y) = θ|x − y|2 for
some θ > 0 (recall from (17) that, for θ ⩽ 0, E is convex and thus (G-NL-LSI) follows from
(U-LSI) thanks to Lemma 3). This is a particular case of (33) with H = Rd,

V0(x) = V (x) + θ|x|2 , φ(x) = x , R(ψ) = −θ|ψ|2 .

Assumption 6 is satisfied since R + θ| · |2 is convex and φ is Lipschitz continuous (which, as
discussed in Remark 4, also gives (W2

2 -curv-E) and (Lip)). We assume that V0 is strongly
convex outside a compact set, so that (U-LSI) holds (as explained in Section 2.1) and also
(o-s-Lip). Assumptions 1, 2 and 3 are readily checked, and Assumption 4 follows from
Propositions 2 and 6.

Using the notations introduced in Section 3.1 (except that we use m, as in mean, to denote
the parameter, instead of ψ as in the general case), for m ∈ Rd,

ρm(x) =
e−

1
σ2

[V (x)+θ|x|2−2θx·m]∫
Rd e

− 1
σ2

[V (y)+θ|y|2−2θy·m]dy
, f(m) =

∫
Rd
xρm(x)dx ,

and

g(m) = θ|m|2 − σ2 ln

∫
Rd
e−

1
σ2

[V (x)+θ|x|2−2θx·m]dx = −σ2 ln

∫
Rd
e−

1
σ2

[V (x)+θ|x−m|2]dx .

The graph of g and f are represented in Figures 1, 2 and 3, in dimension 1, either in
the double-well case V (x) = x4/4 − x2/2 (Figures 1 and 3), or the convex case V (x) = x2/2
(Figure 2), in each case with W (x, y) = θ|x− y|2 (with θ = 1 in Figures 1 and 2 and θ = −1
in Figure 3), at various temperatures.

3.2.1 The one-dimensional double-well case

In this section, d = 1, θ > 0 and V (x) = x4

4
− x2

2
. In this one-dimensional attractive double-well

case, the function f has been precisely studied in e.g. [46] (see also [25]), and the following
holds (see Figure 1).
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Figure 1: Graph of f (left) and g (right) in the double-well attractive case for σ2 ∈ {1, 0.6, 0.3}

Figure 2: Graph of f (left) and g (right) in the single-well attractive case for σ2 ∈ {5, 2, 0.5}

Figure 3: Graph of f (left) and g (right) in the double-well repulsive case for σ2 ∈ {2, 1, 0.5}.
At low temperature, f ′(0) < −1, so that 0 is an unstable fixed point of x 7→ f(x).
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• There exists σ2
c > 0 such that, for all σ2 ⩾ σ2

c , the unique fixed point of f is m = 0
and, for all σ2 < σ2

c , there are three such fixed points, 0,m+,m−, with m+ > 0 and
m− = −m+.

• When σ2 < σ2
c , f is an increasing function with 0 < f ′(m+) = f ′(m−) < 1 < f ′(0),

f ′(m) → 0 as |m| → ∞, f(m) > m for m ∈ (−∞,m−) ∪ (0,m+) and f(m) < m for
m ∈ (m−, 0) ∪ (m+,∞).

• For σ2 = σ2
c , f is an increasing function with f ′(m) < 1 for all m ̸= 0, f ′(m) → 0 as

|m| → ∞, f ′(0) = 1, f ′′(0) = 0 and f (3)(0) < 0.

• For σ2 > σ2
c , f is an increasing function with f ′(m) ∈ (0, 1) for all m ∈ R and f ′(m) → 0

as |m| → ∞.

Moreover, since g′(m) = 2θ(m− f(m)), the critical points of g are the fixed points of f and,
for σ2 < σ2

c , g is decreasing on (−∞,m−] and [0,m+] and increasing on [m−, 0] and [m+,∞).
As a consequence of all this, below the critical temperature, we get a non-linear log-Sobolev
inequality for any non-centered ρ ∈ P2(Rd). We introduce the notation

m(ρ) =

∫
R
xρ(x)dx.

Proposition 13. In the double-well case with quadratic interaction (2) (with θ > 0, d = 1)
with σ2 < σ2

c , for any ε > 0, there exists αε ∈ [0, 1) and ηε > 0 such that for any m ⩾ ε,

|f(m) −m+| ⩽ αε|m−m+| (46)

and for any ρ ∈ P2(R) with |m(ρ)| ⩾ ε,

F(ρ) − inf F ⩽ ηεσ
4I (ρ|Γ(ρ)) . (47)

In other words, for any ε > 0, (NL-LSI) holds over Aε = {ρ ∈ P2(R), |m(ρ)| ⩾ ε}.

Remark 7. In the present setting, Assumption 5 is satisfied and therefore Theorem 8 applies
so that we get an exponential convergence starting from a W2-ball centered on ρm+ or ρm−.
This gives the first item of Proposition 1.

Proof. Since f(m) > m for m ∈ (0,m+) and f(m) < m for m ∈ (m+,∞), the function α
given by

α(m) =
f(m) −m+

m−m+

for m ̸= m+ and α(m+) = f ′(m+) is continuous on R+ with values in (0, 1) on (0,∞).
Moreover, since f ′(m) → 0 as m → ∞, so does α. As a consequence, for any ε > 0,
αε := supm>ε α(m) < 1, which proves (46). Proposition 9 then gives (47) for ρ ∈ P2(R) with
m(ρ) ⩾ ε. The case m(ρ) ⩽ −ε is obtained by symmetry.

Remark 8. The same arguments work in the super-critical case where σ2 > σ2
c because in

that case f ′(0) < 1. In that case the contraction |f(m)| ⩽ α|m| holds globally for m ∈ R for
some α < 1. In other words, (G-NL-LSI) holds for all σ2 > σ2

c .

Remark 9. To get explicit values for δ, λ, C in Proposition 1, it is sufficient to compute
f ′(m+) and to bound ∥f ′′∥∞ (as in e.g. [25]) to get an explicit δ > 0 such that f ′(m) ⩽
(1 + f ′(m+))/2 =: α < 1 for all m with |m −m+| ⩽ δ. From this, Theorem 8 gives explicit
estimates in terms of σ2, θ, δ, α.
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Remark 10. Denoting Aε = {ρ ∈ P2(R), |m(ρ)| ⩾ ε}, the previous result does not mean that
F(ρt)− inf F ⩽ e−t/ηε (F(ρt) − inf F) for all t ⩾ 0 as soon as ρ0 ∈ Aε, because the non-linear
LSI (47) does not prevent TAε(ρ0) < ∞. In fact, we provide a counter-example in the next
statement.

In the setting of Proposition 13, the precise determination of the basins of attraction of
ρm+ and ρm− for the McKean-Vlasov dynamics (8) remains an open question. The first item of
Proposition 1 provides a sufficient condition, together with an exponential rate of convergence.
On the other hand, in [45, 4], it is shown that if F(ρ0) is sufficiently small, then the sign of
m(ρ0) suffices to determine the limit of ρt. To complement these statements, we now show
that without this condition on F(ρ0), the sign of m(ρt) may vary with t, so it is not enough
to determine the limit of ρt. To our knowledge, this fact is known empirically but has never
been explicitly evidenced.

Proposition 14. Consider the granular media equation with d = 1, V (x) = x4

4
− x2

2
and

W (x, y) = θ(x − y)2 for some θ > 0. Then, for any σ2 > 0, there exist solutions of (1) with
m(ρ0) > 0 and m(ρt0) < 0 for some t0 > 0.

Proof. For ε ∈ [0, 1], we consider an initial condition ρ0 = (1 − ε)δ−1 + εδ2/ε−1 and write
mt =

∫
R xρt(x)dx. In particular, m0 = 1 independently from ε. We consider the time-

inhomogeneous SDE

dXt = −V ′(Xt)dt− (Xt −mt)dt+
√

2σdBt =
(
−X3

t +mt

)
dt+

√
2σdBt . (48)

Let ρ+t and ρ−t be the law of the solution of (48) with respective initial conditions δ2/ε−1 and
δ−1. Then, mt = (1 − ε)ρ−t + ερ+t for all t ⩾ 0. Assume by contradiction that mt ⩾ 0 for all
t ∈ [0, 1]. Consider the solution of

dYt = −Y 3
t dt+

√
2σdBt

(with the same Brownian motion as (48)) with Y0 = −1. Taking X0 distributed according to
m0 in (48) (in particular, Y0 ⩽ X0 and Xt ∼ mt for all t ⩾ 0), we get by monotonicity that
Yt ⩽ Xt for all t ∈ [0, 1], and thus

mt ⩾ E(Yt) ,

∫
R
x3ρt(dx) ⩾ E(Y 3

t ) .

Notice that the law of Y is independent from ε. Now,

∂tmt = −
∫
R
x3ρt(dx) +mt ⩽ −E(Y 3

t ) +mt ,

which together with m0 = 1 shows that M := supε∈[0,1] supt∈[0,1]mt < ∞. By comparing the

solution of (48) initialized with X0 = −1 (so that Xt ∼ ρ−t ) to the solution of

dZt = (−Z3
t +M)dt+

√
2σdBt

with Z0 = −1 (whose law is again independent from ε), we get that Xt ⩽ Zt for all t ∈ [0, 1]
and since t 7→ E(Zt) is continuous we get that there exists t0 ∈ (0, 1], independent from
ε ∈ [0, 1], such that ∫

R
xρ−t0(dx) ⩽ −1

2
.
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Now, writing h(t) =
∫
R x

2ρ+t (dx), we see that

h′(t) = −2

∫
R
x4ρ+t (dx) + 2m2

t + 2σ2 ⩽ −2h2(t) + 2(M + σ2) .

As a consequence, if h2 goes below 2(M + σ2) at some time, it stays below afterwards, and
while h2 is above 2(M + σ2) it holds

h′(t) ⩽ −h2(t) ,
hence h(t) ⩽ (t+ 1/h(0))−1 ⩽ 1/t. In any case, for all t ∈ [0, 1],

h(t) ⩽
1

t
+ 2(M + σ2) .

By Cauchy-Schwarz,

sup
ε∈[0,1]

∫
R
xρ+t0(dx) ⩽ sup

ε∈[0,1]

√
h(t0) ⩽

√
1

t0
+ 2(M + σ2) ,

and thus

mt0 ⩽ −1 − ε

2
+ ε

√
1

t0
+ 2(M + σ2) ,

which is negative for ε small enough, leading to a contradiction with the assumption that
mt ⩾ 0 for all t ∈ [0, 1].

To conclude the discussion in the one-dimensional double-well case, let us notice that the
critical temperature σ2 = σ2

c provides an example of the degenerate situation addressed in
Section 3.1.3.

Proposition 15. In the double-well case with quadratic interaction (2) (with θ > 0, d = 1)
with σ2 = σ2

c , there exist β > 0 and η > 0 such that for any m ∈ R,

|m| ⩽ β
(
|m− f(m)| + |m− f(m)|1/3

)
, (49)

and for any ρ ∈ P2(R)

F(ρ) − inf F ⩽ η
[
I (ρ|Γ(ρ)) + (I (ρ|Γ(ρ)))1/3

]
. (50)

Remark 11. By contrast to (43), which may only hold locally, in (49) we add a linear term,
because in this very simple case this inequality in fact holds globally for all m ∈ R (and the
linear term becomes dominant at long range). This does not change the conclusion on the free
energy, in the sense that (50) is similar to (44).

Proof. As in the proof of Proposition 13, we see that, for any ε > 0, α(m) = f(m)/m is
continuous on R+ \ [−ε, ε] with values in (0, 1), from which αε := sup|m|⩾ε α(m) < 1. Then,
for m /∈ [−ε, ε], |m| ⩽ |m − f(m)| + |f(m)| ⩽ |m − f(m)| + αε|m|, which proves that (49)
holds for such m with β = 1/(1 − αε).

Denoting s = −f (3)(0) > 0, we get that f(m) = m− sm3 + o(m3) as m→ 0. Let ε > 0 be
such that |f(m) −m+ sm3| ⩽ s|m|3/2 for all m ∈ [−ε, ε]. Then, for such m,

|m|3 ⩽ 2
|f(m) −m|

s
,

which concludes the proof of (49).
The proof of (50) is then exactly the same as the proof of (44) from (43).

Remark 12. The second part of Proposition 1 is a consequence of Proposition 15, following
the arguments that led to (45) (the only difference being that it is not necessary to check that
the solution starts and remains in some neighborhood of the stationary solution since (50)
holds uniformly over P2(Rd)).
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3.2.2 Localization in the low-temperature regime

Consider now the granular media equation (1) on Rd with W (x, y) = |x−y|2 (i.e. we take θ = 1
for simplicity, which can always be enforced up to rescaling V and σ2). Let a ∈ Rd be a non-
degenerate local minimizer of V such that a is a global minimizer of x 7→ h0(x) = V (x)+|x−a|2.
It is proven in [47] that, under additional technical conditions, there exists a family (ρ∗,σ)σ>0

such that W2(ρ∗,σ, δa) → 0 as σ → 0 and, for all σ > 0, ρ∗,σ is a stationary solution of (1) (at
temperature σ). We want to apply Corollary 10 in this context to get that ρ∗,σ is stable and
get local convergence rates.

In fact we will work in a slightly more general setting. Consider the general case (33). For
simplicity, we restrict the study to the finite-dimensional case where H = Rp for some p ⩾ 1
and R(ψ) = −|ψ|2. Moreover, we write V (x) = V0(x) + R (φ(x)). In other words, in all this
section,

E(µ) =

∫
Rd
V (x)µ(dx) +R (φ(µ)) −

∫
Rd
R (φ(x))µ(dx)

=

∫
Rd
V (x)µ(dx) +

1

2

∫
Rd

|φ(x) − φ(y)|2µ(dx)µ(dy) .

Denoting by gσ the function defined in (38) to emphasize the dependency in the temperature,
we see that, for any ψ ∈ H,

gσ(ψ) = −|ψ|2 + 2|ψ|2 − σ2 ln

∫
Rd
e−

1
σ2

[V (x)+|φ(x)|2−2ψ·φ(x)]dx

= −σ2 ln

∫
Rd
e−

1
σ2

[V (x)+|φ(x)−ψ|2]dx .

As σ → 0,
gσ(ψ) → g0(ψ) := inf

x∈Rd
{V (x) + |φ (x) − ψ|2} ,

and this convergence holds uniformly for ψ in compact sets of Rp. We are interested in critical
points ρ∗,σ which are localized at low temperature at some point a ∈ Rd, in the sense that
ρ∗,σ → δa as σ vanishes. This implies that φ(ρ∗,σ) → φ(a). On the other hand, for a fixed ψ,
if x 7→ V (x) + |φ(x) − ψ|2 has a unique global minimum x0, then ρψ converges as σ vanishes
to a Dirac mass at x0. Hence, we expect ρ∗,σ to converge to a Dirac mass at the minimizer of
x 7→ V (x)+ |φ(x)−φ(a)|2, and thus we need this minimizer to be a. We retrieve the condition
of [47].

Remark 13. If we do not assume that R(ψ) = −|ψ|2 but still write V (x) = V0(x) +R(φ(x)),
the previous computation gives

gσ(ψ) = −σ2 ln

∫
Rd
e−

1
σ2
h(x,ψ)dx ,

with a modulated energy

h(x, ψ) = R(ψ) −R(φ(x)) + ∇R(ψ) · (φ(x) − ψ) + V (x) = M (ψ, φ(x)) + V (x) ,

with the notation of Remark 5. As σ vanishes, gσ(ψ) converges toward infx∈Rd h(x, ψ).

In view of the previous discussion, we work under the following setting:

Assumption 7. In the case (33), H = Rp, R(ψ) = −|ψ|2, V0(x) = V (x) − R (φ(x)), V ∈
C3(Rd,R), φ ∈ C3(Rd,Rp), the following conditions hold:
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• a ∈ Rd is a non-degenerate local minimizer of V (i.e. ∇2V (a) > 0) and it is the unique
global minimizer of x 7→ V (x) + |φ(x) − φ(a)|2.

• V goes to infinity at infinity and
∫
Rd |x|

2e−βV (x)dx <∞ for some β > 0.

Proposition 16. Under Assumptions 6 and 7, assuming moreover that (o-s-Lip) holds for
some κ1 > 0, there exist r0, σ

2
0 > 0 and a family (ρ∗,σ)σ∈(0,σ0] with W2(ρ∗,σ, δa) → 0 as σ → 0

such that the following holds: for each σ ∈ (0, σ0], ρ∗,σ is a stationary solution of the McKean-
Vlasov equation (9) at temperature σ2 and there exist C, η > 0 such that for all initial condition
ρ0 ∈ BW2(δa, r0), along the flow (9) at temperature σ2, for all t ⩾ 1,

W2
2 (ρt, ρ∗,σ) + σ2H(ρt|ρ∗,σ) + F(ρt) −F(ρ∗,σ) ⩽ Ce−t/ηW2

2 (ρ0, ρ∗,σ) . (51)

Moreover, if we assume furthermore that x 7→ V (x) + |φ(x) − ψ|2 is strongly convex uni-
formly over ψ in a neighborhood of φ(a), then the previous statement holds with η, C which
are independent from σ ∈ (0, σ0].

Remark 14. In particular, if V has several local minimizers a1, . . . , an and the interaction is
strong enough so that aj is the unique global minimizer of V + |φ−φ(aj)|2 for several j, then,
at a sufficiently low temperature, there are several stable stationary solutions to the granular
media equation. By contrast, as discussed in Section 2.2, in the same setting, at sufficiently
high temperature or sufficiently weak interaction (i.e. multiplying φ by a sufficiently small
factor ε > 0), uniqueness holds. This shows that phase transitions occur as the temperature
varies. See [22, 12] on this topic.

Proof. First, to get the existence of ρ∗,σ, we reason in a first step as in Proposition 11, namely
we identify that gσ should have a local minimizer close to φ(a) for σ small enough. Second,
in the rest of the proof, we show that Corollary 10 applies. This gives a local non-linear LSI
and thus a convergence rate thanks to Theorem 8 (since, as discussed in Remark 4, in the
present case where R is quadratic, the conditions (W2

2 -curv-E) and (Lip) of Assumption 5
are implied by Assumption 6).

Step 1. Fix r ∈ (0, 1] (which later on will be assumed sufficiently small, but always indepen-
dently from σ). For ψ ∈ Rp, set

ζ(ψ, r) := inf{V (x) + |φ(x) − ψ|2, |x− a| ⩾ r} .

Let M ⩾ 1 be such that V (x) ⩾ sup{V (y), y ∈ B(a, 1)}+(ℓ+1)2 for all x ∈ Rd with |x| ⩾M .
Then, for ψ ∈ B(φ(a), 1) and x, y ∈ Rd with |x| ⩾M and |y − a| ⩽ 1,

V (y) + |φ(y) − ψ|2 ⩽ V (y) + (|φ(y) − φ(a)| + |φ(a) − ψ|)2

⩽ V (y) + (ℓ|y − a| + |φ(a) − ψ|)2

⩽ V (y) + (ℓ+ 1)2

⩽ V (x)

⩽ V (x) + |φ(x) − ψ|2 .

As a consequence, since r ∈ (0, 1], for ψ ∈ B(φ(a), 1),

ζ(ψ, r) = inf{V (x) + |φ(x) − ψ|2, |x− a| ⩾ r, |x| ⩽M}
⩾ ζ (φ(a), r) − 2|ψ − φ(a)| sup

|x|⩽M
|φ(x) − φ(a)| ,
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where, for the second line, we have used that for x ∈ B(0,M),

V (x) + |φ(x) − ψ|2 = V (x) + |φ(x) − φ(a)|2 − 2 (φ(x) − φ(a)) · (ψ − φ(a)) + |ψ − φ(a)|2

⩾ V (x) + |φ(x) − φ(a)|2 − 2|ψ − φ(a)| sup
|x|⩽M

|φ(x) − φ(a)| .

On the other hand, since a is the unique global minimizer of x 7→ V (x) + |φ(x) − φ(a)|2,
ζ(φ(a), r) > V (a). Thus, we can find ε0 > 0 (which depends on r) such that for all ε ∈ (0, ε0]
and ψ ∈ B(φ(a), ε),

ζ (ψ, r) > V (a) + ε2

(notice that the condition becomes weaker as ε decreases). As a consequence, for all ψ ∈
B(φ(a), ε),

g0(ψ) = inf
x∈B(a,r)

{V (x) + |φ (x) − ψ|2} (52)

(since, for x /∈ B(a, r), V (x) + |φ(x) − ψ|2 ⩾ ζ(ψ, r) > V (a) + |φ(x) − ψ|2). Assuming that
r is small enough so that a is the unique global minimizer of V over B(a, r), we get that
g0(ψ) > V (a) = g0 (φ(a)) for all ψ ∈ B(φ(a), ε) \ {φ(a)}, and in particular by continuity

inf{g0(ψ), |ψ − φ(a)| = ε} − V (a) > 0 .

By uniform convergence on compact sets of gσ toward g0 as σ vanishes, there exists σ0 > 0
(depending on ε) such that

κ := inf{gσ(ψ), |ψ − φ(a)| = ε, σ ∈ (0, σ0]} − V (a) > 0 ,

while gσ (φ(a)) → V (a) as σ → 0, and in particular gσ (φ(a)) ⩽ V (a)+κ/2 for σ small enough.
This means that, then, the minimum of gσ over B (φ(a), ε) is not attained at its boundary,
which implies that gσ admits a critical point within this ball. Since we can take ε arbitrarily
small, we can take at any σ ∈ (0, σ0] such a critical point ψ∗,σ in such a way that ψ∗,σ → φ(a)
as σ → 0. Thanks to (39), ρ∗,σ := ρψ∗,σ is a stationary solution to (9). This concludes the first
step of the proof.

Before proceeding with Step 2 of the proof, let us discuss a few points. First,

W2
2 (ρ∗,σ, δa) =

∫
Rd |x− a|2e−

1
σ2

[V (x)+|φ(x)−ψ∗,σ |2]dx∫
Rd e

− 1
σ2

[V (x)+|φ(x)−ψ∗,σ |2]dx
.

Using that ψ∗,σ → φ(a) and that a is the global minimizer of V + |φ − φ(a)|2, it is then not
difficult to see that W2

2 (ρ∗,σ, δa) vanishes with σ (see also the end of the proof for details of
the argument in a more complicated case).

It remains to show that Corollary 10 applies. To emphasize the dependency on the tem-
perature, we write fσ the function (35). We have to prove that |∇fσ(ψ∗,σ)| < 1 for σ small
enough. From (41) and (42),

|∇fσ(ψ∗,σ)| =
2

σ2
sup

u∈Sp−1

varρ∗,σ (u · φ(X)) .

Note that by the variational characterization of the variance, for u ∈ Sp−1,

varρ∗,σ (u · φ(X)) ⩽
∫
Rd

|u · (φ(x) − φ(z)) |2ρ∗,σ(dx)

for any z ∈ Rd. Having in mind the Laplace approximation of ρ∗,σ as σ vanishes, it is natural
to take z as the minimizer of x 7→ hσ(x) := V (x) + |φ(x) − ψ∗,σ|2. In the rest of the proof,
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first, we justify that, for σ small enough, hσ admits a unique minimizer zσ, which converges
to a as σ vanishes (this is Step 2) and then (in Step 3), we apply the Laplace approximation
(which still works although hσ and zσ depends on σ) to get that,

lim
σ→0

2

σ2
sup

u∈Sp−1

∫
Rd

|u · (φ(x) − φ(zσ)) |2ρ∗,σ(dx) < 1 . (53)

This implies that the same holds for σ small enough, which concludes the proof. The technical
justification of the Laplace approximation is postponed to Step 4.

Step 2. We write ∇φ = (∂xiφj)(i,j)∈J1,dK×J1,pK, where i (resp. j) is the index of the line (resp.
the column). Denoting h0(x) = V (x) + |φ(x) − φ(a)|2, we compute that

∇2hσ(x) = ∇2V (x) + 2∇φ(x) (∇φ(x))T +

p∑
j=1

∇2φj(x) (φj(x) − ψj,∗,σ)

= ∇2h0(x) + ϵ(x, σ)

with

ϵ(x, σ) =

p∑
j=1

∇2φj(x) (φj(a) − ψj,∗,σ) ,

so that ϵ(x, σ) vanishes with σ uniformly over x ∈ B(a, r). Besides,

∇2h0(a) = ∇2V (a) + 2∇φ(a) (∇φ(a))T

is positive definite, and thus we can assume that r is small enough so that ∇2h0(x) is uniformly
bounded below by a positive constant over x ∈ B(a, r). Thanks to the uniform convergence
of ∇2hσ to ∇2h0 over B(a, r), there is σ′

0, κ > 0 such that for all σ ∈ (0, σ′
0] and x ∈ B(a, r),

∇2hσ(x) ⩾ 2κ. On the other hand, we have seen when establishing (52) that there exists
κ′ > 0 such that for σ small enough,

inf{hσ(x), |x− a| ⩾ r} − inf{hσ(x), |x− a| ⩽ r} ⩾ κ′ (54)

(here we use that for any ε > 0, ψ∗,σ ∈ B(φ(a), ε) for σ small enough). The infimum of
hσ is thus attained (for σ small enough) in B(a, r), where it is strongly convex, and thus it
admits a unique global minimizer zσ. Since r can be taken arbitrarily small (which changes
the threshold σ′

0), we get that zσ → a as σ vanishes. Moreover, for σ small enough, for all
x ∈ B(a, r),

hσ(x) ⩾ hσ(zσ) + κ|x− zσ|2 . (55)

Since hσ admits a unique global maximum which is non-degenerate, the Laplace approximation
heuristics suggest that expectations with respect to ρ∗,σ ∝ exp(− 1

σ2hσ) are equivalent to

expectations with respect to the Gaussian measure ρ̂σ ∝ exp(− 1
σ2 ĥσ) with

ĥσ(x) = hσ(zσ) +
1

2
(x− zσ)T∇2hσ(zσ)(x− zσ) .

As mentioned above, we postponed this technical justification to the end of the proof and, for
now, take for granted that∫

Rd
(φ− φ(zσ)) (φ− φ(zσ))T ρ∗,σ ∼

σ→0

∫
Rd

(φ− φ(zσ)) (φ− φ(zσ))T ρ̂σ . (56)
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Step 3. From this approximation, we have now to study the limit in (53). First, writing

1

σ2

∫
Rd

(φ(x) − φ(zσ))(φ(x) − φ(zσ))T ρ̂σ(dx)

= E

(φ(zσ + σ
√
D−1
σ G) − φ(zσ)

σ

)(
φ(zσ + σ

√
D−1
σ G) − φ(zσ)

σ

)T
 ,

with G a standard d-dimensional Gaussian variable and Dσ := ∇2hσ(zσ), the almost sure
convergence

lim
σ→0

φ(zσ + σ
√
D−1
σ G) − φ(zσ)

σ
= (∇φ(a))T

√
D−1

0 G,

together with the bound∣∣∣∣∣φ(zσ + σ
√
D−1
σ G) − φ(zσ)

σ

∣∣∣∣∣
2

≤ ℓ2
∣∣∣√D−1

σ G
∣∣∣2 −→

σ→0
ℓ2
∣∣∣∣√D−1

0 G

∣∣∣∣2
give by dominated convergence that

lim
σ→0

E

(φ(zσ + σ
√
D−1
σ G) − φ(zσ)

σ

)(
φ(zσ + σ

√
D−1
σ G) − φ(zσ)

σ

)T


= E

[(
(∇φ(a))T

√
D−1

0 G

)(
(∇φ(a))T

√
D−1

0 G

)T]
= (∇φ(a))TD−1

0 ∇φ(a) (57)

= AT
(
2AAT + ∇2V (a)

)−1
A , (58)

where A := ∇φ(a). Thanks to (56),

2

σ2

∫
Rd

(φ(x) − φ(zσ)) (φ(x) − φ(zσ))T ρ∗,σ(dx) −→
σ→0

2AT
(
2AAT + ∇2V (a)

)−1
A .

It remains to show that this limit is strictly smaller than Ip (in the sense of quadratic forms),
from which the left-hand side will be uniformly strictly less than Ip for σ small enough, which
will conclude.

Let u ∈ Sp−1 and h = (2AAT + ∇2V (a))−1Au. Then

hTAu = hT (2AAT + ∇2V (a))h ⩾ (2 + c)|ATh|2

for some c > 0, using that ∇2V (a) is definite positive. Then,

hTAu ⩽ |u||ATh| ⩽ 1√
2 + c

|u|
√
hTAu ,

and thus

2uTAT
(
2AAT + ∇2V (a)

)−1
Au = 2uTATh ⩽

2

2 + c
.

As discussed above, this concludes the proof.
Notice that c is independent from σ, and thus, in Proposition 9, (36) holds on A′ =

B (φ(a), r) with r > 0 and α ∈ [0, 1) independent from σ ∈ (0, σ′′
0 ] for some σ′′

0 > 0. If,
moroever, x 7→ V (x) + |φ(x) − ψ|2 is k-strongly convex for some k > 0 for all ψ ∈ A′, the
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Bakry-Emery criterion shows that Γ(ρ) satisfies an LSI with constant η = kσ2 for all ρ such
that φ(ρ) ∈ A′, and thus for all ρ ∈ A := BW2(δ, r0) provided r0 is small enough (independently
from σ). Following the proof of Proposition 9 (which in fact does not require (U-LSI) to hold
globally on P(Rd), but only on A), we obtain for ρ ∈ A the local non-linear LSI

F(ρ) −F(ρ∗,σ) ⩽ kσ4

(
1 +

4kθℓ2

(1 − α)2

)
I (ρ|Γ(ρ)) ,

where θ, ℓ, α, k are independent from σ ∈ (0, σ′′
0 ], i.e. (NL-LSI) with η independent from

σ. Similarly, using that η = kσ2, we get that q1 defined in (26) with t = 1 is bounded
independently from σ small enough, for initial conditions ρ0 ∈ A. Applying Theorem 8 shows
that (51) holds with C, η independent from σ ∈ (0, σ′′

0 ] in this case (again, the proof only uses
an LSI for Γ(ρ) uniformly over A, not over P(Rd)).

Step 4. We now turn to the justification of (56). Write χ0(x) = 1 and, omitting the
dependency in σ, χ1(x) = (φ(x) − φ(zσ)) (φ(x) − φ(zσ))T (notice that |χ1(x)| ⩽ C|x|2 +C for
some C independent from σ ∈ (0, σ0]). For i ∈ {0, 1} and k ∈ {1, 2, 3, 4} we write

Ii,k =

∫
Ak

χi exp

(
− 1

σ2
[hσ − hσ(zσ)]

)
, Îi,k =

∫
Ak

χi exp

(
− 1

σ2

[
ĥσ − hσ(zσ)

])
,

with
A1 = {|x− zσ| ⩽

√
σ} A2 = {

√
σ < |x− zσ| ⩽ 2r}

A3 = {2r < |x− zσ| ⩽M} A4 = {M < |x− zσ|} ,

where r is small enough for (54) to hold for some κ′ and for (55) to hold for all x ∈ B(a, 3r)
for some κ (with r, κ, κ′ > 0 independent from σ) for all σ small enough, and M > 1 is large
enough so that

∀x /∈ B(a,M − 1) ,
1

2
V (x) ⩾ V (a) + 2 (59)

For σ small enough, |zσ − a| < r, and thus B(a, r) ⊂ B(zσ, 2r), which together with (54) gives
that

inf{hσ(x), |x− zσ| ⩾ 2r} ⩾ hσ(zσ) + κ′ .

As a consequence, for i ∈ {0, 1}, using that φ is bounded uniformly over B(a,M + 1) (hence
over B(zσ,M) for σ small enough)

Ii,3 = O
σ→0

(
e−

κ′
σ2

)
.

Similarly, for σ small enough, B(zσ, 2r) ⊂ B(a, 3r) and thus, thanks to (55) for x ∈ B(a, 2r),
using that φ is bounded uniformly over B(a, 3r), for i ∈ {0, 1},

Ii,2 = O
σ→0

(
e−

κ
σ

)
.

Next, using that B(a,M − 1) ⊂ B(zσ,M) and V (a) + 1 ⩾ hσ(zσ) for σ small enough, (59)
implies that

∀x /∈ B(zσ,M) , hσ(x) ⩾ V (x) ⩾
1

2
V (x) + 1 + hσ(zσ) .

This gives, for σ ⩽ 1/(2β),

Ii,4 ⩽ e−
1
σ2

∫
|x−zσ |>M

|χi(x)|e−
V (x)

2σ2 dx ⩽ e−
1
σ2

∫
Rd

|χi(x)|e−βV (x)dx = O
σ→0

(
e−

1
σ2

)
,
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since e−βV admits a second moment (here for simplicity we have assumed without loss of
generality that V ⩾ 0).

Finally, using that ∇(3)hσ converges ∇(3)h0 uniformly over compact sets, we get that there
exists C > 0 such that

|hσ(x) − ĥσ(x)| ⩽ C|x− zσ|3

for all x ∈ B(a, 1) (hence all x ∈ B(zσ,
√
σ)) for σ small enough. From this, for i ∈ {0, 1},

Ii,1 = Îi,1

(
1 + O

σ→0
(σ)
)
.

On the other hand, denoting cσ = (2π)d/2
√

det[(∇2hσ(zσ))−1] (which converges to some c0 > 0

as σ → 0), by usual computations for Gaussian distributions,

I0 :=
4∑

k=1

I0,k = Î0,1

(
1 + O

σ→0
(σ)
)

+ O
σ→0

(
e−

κ
σ

)
= σdcσ + O

σ→0

(
σd+1

)
,

and then ∑4
k=1 I1,k
I0

=
(
σdcσ + O

σ→0

(
σd+1

))−1 (
Î1,1

(
1 + O

σ→0
(σ)
)

+ O
σ→0

(
e−

κ
σ

))
=

Î1,1
σdcσ

(
1 + O

σ→0
(σ)
)

+ O
σ→0

(
e−

κ
2σ

)
=

∑4
k=1 Î1,k
σdcσ

(
1 + O

σ→0
(σ)
)

+ O
σ→0

(
e−

κ
2σ

)
= σ2 (∇φ(a))T

(
∇2h0(a)

)−1∇φ(a) + o
σ→0

(
σ2
)
,

as we computed in (58). This concludes the proof of (56), hence of Proposition 16.

Remark 15. In the case (1) with W (x, y) = θ|x − y|2, taking θ > − inf ∇2V/2 (as in [49,
Theorem 2.3]), we get that (51) holds with η, C that are uniform over σ small enough in a
neighborhood of δa. At first this seems to be a desirable property for optimization (and in
fact this is the idea underlying consensus-based optimization). This should be mitigated by the
following observations.

First, this condition implies that x 7→ ba(x) = V (x) + θ|x− a|2 is strongly convex for all a
and thus, any local minimizer a of V being a critical point of ba, it is then the unique global
minimizer of ba. Hence, the Wasserstein gradient descent can be trapped in any local well of
V (and thus it is not very different from a basic gradient descent for V in Rd). By contrast,
if θ is taken smaller, the condition that a has to be a global minimizer of ba for a localization
to occur can be used as a way to discard shallow local wells and select better solutions.

Besides, the decay (51) holds for solutions initialized in BW2(δa, r0) for some small r0.
Now, assume for instance that we start close to δa′ where a

′ is a local minimizer of V but not
a global minimizer of ba′, and a ̸= a′ is the global minimizer of V and also the global minimizer
of bx for all x ∈ Rd. For σ small enough, we expect all solutions to converge to a stationary
solution close to δa. In particular, eventually, any trajectory will lie in BW2(δa, r0) and thus
the convergence rate η in (51) is independent from σ, as in Remark 1. However the constant C
highly depends on the initial condition, reflecting the time needed to reach BW2(δa, r0). Starting
close to δa′, the additional convexity due to the interaction will increase the energy barrier the
process has to overcome to move from a′ to a. More quantitatively, the Arrhenius law indicates
that the typical time for the solution to put most of its mass around a will be of order eD/σ

2
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where D is larger than in the case θ = 0. In other words, an attractive interaction worsen
the metastability of the process. If the goal is not to improve the local convergence rate but to
enhance the exploration of the space by lowering energy barriers (as in the Adaptive Potential
algorithms and related methods [6]), repulsive interaction (i.e. θ < 0) seems more indicated,
as studied in [13].

4 Vlasov-Fokker-Planck equation

In this section, we consider the kinetic Vlasov-Fokker-Planck equation, which reads

∂tρt + v · ∇xρt = ∇v ·
(
σ2∇vρt +

(
v + ∇Eρxt

)
ρt
)
, (60)

where ρt(x, v) is the probability density of particles at position x ∈ Rd with velocity v ∈ Rd,
ρx(x) =

∫
Rd ρ(x, v)dv is the marginal density of the position, Eρx is the linear functional

derivative of an energy E as in Section 2.1 (it only depends on the position x and the marginal
density ρx).

Entropic long-time convergence for (60) have been established in some cases (with the
energy corresponding to the granular media case (10)) in [40, 27] (using uniform LSI for the
associated particle system), [14] (with global non-linear LSI) or [43] (with uniform conditional
LSI for the associated particle system and a smallness assumption on the interaction). All
these works establish global convergence toward a unique stationary solution and thus do not
cover cases with several stationary solutions.

The Vlasov-Fokker-Planck is not the gradient flow of some free energy functional. However,
we can still get a local convergence under the same assumptions as in the elliptic case (1).
This is the main result of this section, stated in Theorem 20 below.

The free energy associated to (60) is

Fk(ρ) = σ2H(ρ) + E(ρx) + Ek(ρ)

with the kinetic energy

Ek(ρ) =

∫
R2d

|v|2

2
ρ(x, v)dxdv .

In this section, Assumptions 1, 2 and 3 remain in force (which implies that Fk is also lower
bounded, see Remark 16 below). The corresponding local equilibria are given by

Γk(ρ) = Γ(ρx) ⊗N (0, σ2Id) (61)

where Γ(ρx) is the corresponding overdamped local equilibrium (13) and N (0, σ2Id) stands for
the centered d-dimensional Gaussian distribution with variance σ2Id. In other words,

Γk(ρ) ∝ exp

(
− 1

σ2

(
Eρx(x) +

1

2
|v|2
))

dxdv .

Along the flow (60), under suitable regularity conditions,

∂tFk(ρt) = −σ4

∫
R2d

∣∣∣∣∇v ln
ρt

Γk(ρt)

∣∣∣∣2 dρt . (62)

Hence, t 7→ Fk(ρt) is non-increasing, but the free energy dissipation can vanish even if ρ ̸=
Γk(ρ). To avoid ambiguity we write Kk = {ρ∗ ∈ P2(R2d), Fk(ρ∗) < ∞, Γk(ρ∗) = ρ∗}. There
is a one-to-one correspondence between Kk (the set of critical points of Fk in P2(R2d)) and K
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(the set of critical points of F = σ2H + E in P2(Rd)), since ρ∗ ∈ Kk if and only if ρx∗ ∈ K and
ρ∗ = ρx∗ ⊗N (0, σ2Id).

As in the elliptic case, we do not address well-posedness issues and work under the following
conditions.

Assumption 8. For all ρ0 ∈ P2(R2d), (60) has a unique strong solution, continuous in time
for W2, such that, for all t > 0, ρt has a continuous positive density, Fk(ρt), H(ρt|Γk(ρt)) and
I(ρt|Γk(ρt)) are finite and (62) holds, with t 7→ I(ρt|Γ(ρt)) continuous over R∗

+.

To recover an entropy dissipation with a full Fisher information instead of (62), we work
with a modified free energy of the form

L(ρt) = Fk(ρt) + aσ4

∫
R2d

∣∣∣∣(∇x + ∇v) ln
ρt

Γk(ρt)

∣∣∣∣2 dρt , (63)

for some a > 0 to be fixed.

Lemma 17. Assume that
M := sup

ρ∈P2(Rd)
∥∇2Eρ∥∞ <∞ . (x−Lip)

Then, taking a = (3 + 4M2)−1 in the definition of L, for all t ⩾ 0,

∂tL(ρt) ⩽ −σ
4

4
I (ρt|Γk(ρt)) .

Proof. Set ht = ρt/Γk(ρt). As computed in the proof of [39, Proposition 3] (notice that the
friction parameter γ of [39] is 1 in the present case, which besides can always be enforced by
a suitable time rescaling, up to rescaling Eρ and σ2), for any 2d× 2d matrix A of the form

A =

(
a11Id a12Id
a21Id a22Id

)
,

writing M ′ = M
√
a211 + a221, it holds, for all r > 0,

∂t

∫
R2d

|A∇ lnht|2 dρt ⩽ 2

∫
R2d

∇ lnht ·B∇ lnhtdρt

with

B = ATA

(
M ′rId 0
−Id (M ′r − 1)Id

)
+
M ′

r

(
0 0
0 Id

)
.

Taking aij = 1/
√

2 for all i, j ∈ {1, 2} we get that M ′ = M and

B =

(
(Mr − 1)Id (Mr − 1)Id
(Mr − 1)Id

(
Mr − 1 + M

r

)
Id

)
⪯

(
−1

4
Id 0

0
(
1
2

+ 2M2 + 1
)
Id

)
taking r = 1/(2M), where ⪯ stands for the order over symmetric matrices and we used that
xv ⩽ 1

4
x2 + v2 to bound the cross term. In other words, we have obtained that

∂t

∫
Rd

|(∇x + ∇v) lnht|2 dρt ⩽ −1

4

∫
Rd

|∇x lnht|2 dρt +

(
3

2
+ 2M2

)∫
Rd

|∇v lnht|2 dρt .

Conclusion follows from (62).
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As a corollary, assuming in the kinetic case the local non-linear LSI

∀ρ ∈ A , Fk(ρ) −Fk(ρ∗) ⩽ ησ4I(ρ|Γk(ρ)) (k-NL-LSI)

for some A ⊂ P2(R2d), η > 0 and ρ∗ ∈ Kk, which, using that |(∇x +∇v)f |2 ⩽ 2|∇f |2, in turn
implies

∀ρ ∈ A , L(ρ) − L(ρ∗) ⩽ (η + 2a)σ4I(ρ|Γk(ρ)) ,

we get an exponential decay of L(ρt) − L(ρ∗) for times t ⩽ TA(ρ0).

Remark 16. For ρ ∈ P2(R2d),

Fk(ρ) = σ2H (ρ|Γk(ρ)) − σ2 ln
(
Zρx(2πσ

2)d/2
)

+ E(ρx) −
∫
Rd
ρxEρx

= σ2H (ρ|Γk(ρ)) − d

2
σ2 ln

(
2πσ2

)
+ G (ρx)

with

G(ρx) = E(ρx) −
∫
Rd
ρxEρx − σ2 lnZρx ,

which is also such that, in the elliptic case, F(ρx) = σ2H(ρx|Γ(ρx)) + G(ρx). In particular, by
the extensivity property of the relative entropy, Fk(ρ) ⩾ F(ρx) − dσ2/2 ln(2πσ2).

If Γ(ρx) satisfies a LSI uniformly over ρ, so does Γk(ρ) by tensorization of LSI, and
then both (k-NL-LSI) and (NL-LSI) follow from a bound of the form G(ρx) − G(ρx∗) ⩽
η′I(ρx|Γ(ρx)) for some η′ > 0, as has been established in various situations in Section 3.

In order to follow the argument that led in the elliptic case to Theorem 8, we need to
provide an analogue of Corollary 7 in the present hypoelliptic case. This is done by using the
Wasserstein-to-entropy short time regularization of [42, Theorem 4.1] instead of Proposition 6
and the entropy-to-Fisher short time regularization of [14, Proposition 5.5], as we now detail.

The following is from [14, Proposition 5.5] (the proof is based on computations similar to
Lemma 17).

Proposition 18. Assuming (Lip) and (x−Lip), there exists ε ∈ (0, 1] (which depends only
on M,L and σ2) such that for any solution of (60) with Fk(ρ0) <∞, writing

E(t, ρ) := Fk(ρ) + εt

∫
R2d

[∣∣∣∣∇v ln
ρ

Γk(ρ)

∣∣∣∣2 +

∣∣∣∣(εt∇x + ∇v) ln
ρ

Γk(ρ)

∣∣∣∣2
]

dρ ,

then t 7→ E(t, ρt) is non-increasing over t ∈ [0, 1].

The following is a particular case of [42, Theorem 4.1].

Proposition 19. Assuming (Lip) and (x−Lip), there exists K > 0 (which depends only on
M,L and σ2) such that for any solution of (60) with ρ0 ∈ P2(R2d) and any ρ∗ ∈ Kk and t ⩾ 0,

H (ρt+1|ρ∗) ⩽ KW2
2 (ρt, ρ∗) .

We can now state the analogue to Theorem 8.

Assumption 9. The conditions (W2
2 -curv-E), (Lip), (x−Lip) and (U-LSI) hold for some

λ, L,M, η > 0, and (k-NL-LSI) holds on some non-empty set A ⊂ P2(R2d) for some η > 0.
Furthermore there exist ρ∗ ∈ A∩Kk and δ > 0 such that BW2(ρ∗, δ) ⊂ A and BW2(ρ∗, δ)∩Kk =
{ρ∗}. The function L is given by (63) with a = (3 + 4M2)−1.
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Theorem 20. Under Assumption 9, there exist δ′, c, C > 0 (which depend only on λ, M , L,
δ, η, η and σ2) such that, for all ρ0 ∈ BW2(ρ∗, δ

′), TA(ρ0) = ∞; for all t ⩾ 0,

W2
2 (ρt, ρ∗) ⩽ Ce−ctW2

2 (ρ0, ρ∗) (64)

Fk(ρt) −Fk(ρ∗) ⩽ Ce−ct (Fk(ρ0) −Fk(ρ∗)) (65)

H(ρt|ρ∞) ⩽ Ce−ctH(ρ0|ρ∞) (66)

and for all t ⩾ 1,

max
(
W2

2 (ρ0, ρ∗) , H(ρ0|ρ∞) , Fk(ρ0) −Fk(ρ∗)
)

⩽ Ce−ct min
(
W2

2 (ρ0, ρ∗) , H(ρ0|ρ∞) , Fk(ρ0) −Fk(ρ∗)
)
. (67)

Proof. First, without loss of generality we can assume that (U-LSI) holds with η ⩾ σ2, in
which case the same inequality holds for all ν, ρ ∈ P2(R2d) when Γ is replaced by Γk, due to
the LSI satisfied by N (0, σ2Id) and the tensorization property of LSI. In particular, ρ∗ satisfies
a LSI and thus a Talagrand inequality with constant η. Moreover, notice that (W2

2 -curv-E)
implies the same condition with E replaced by E +Ek, since µ 7→ Ek(µ) is linear. In particular,
in view of these two points, we can apply Lemmas 3 and 5 in the kinetic case (namely with
F replaced by Fk, Γ by Γk, ρ∗ ∈ Kk and µ0, µ1, ρ ∈ P2(R2d)). Using all these points, for any
ρ ∈ P2(R2d),

Fk(ρ) −Fk(ρ∗) ⩽ σ2H (ρ|Γk(ρ)) + λW2
2 (ρ, ρ∗)

⩽ σ2

(
1 + Lη +

4λη

σ2
+
L2η2

2

)
H(ρ|ρ∗) . (68)

Similarly, we can apply Theorem 8 to the elliptic equation on R2d

∂tρ̃t = ∇ ·
(
ρ̃t∇

δFk(ρ̃t)

δµ

)
,

from which (27) reads
W2

2 (ρ, ρ∗) ⩽ 4η (Fk(ρ) −Fk(ρ∗)) (69)

for all ρ ∈ BW2(ρ∗, δ
′
1) for δ′1 ⩽ δ small enough. Using that t 7→ Fk(ρt) is non-increasing and

Proposition 19, gathering the previous bounds gives that

W2
2 (ρt, ρ∗) ⩽ 4ησ2

(
1 + Lη +

4λη

σ2
+
L2η2

2

)
KW2

2 (ρ0, ρ∗) .

for all t ⩾ 1 such that ρt ∈ BW2(ρ∗, δ
′
1). Using a synchronous coupling as in the proof of

Theorem 8, it is easily seen that

W2(ρt, ρ∗) ⩽ eCtW2(ρ0, ρ∗) (70)

for some C depending only on M and L. As a consequence, we can take δ′2 ∈ (0, δ′1] such that
for all ρ0 ∈ BW2(ρ∗, δ

′
2), it holds that ρt ∈ BW2(ρ∗, δ

′
1) for all t ∈ [0, 1] and

W2(ρt, ρ∗) ⩽
δ′1
2

for all t ⩾ 1 such that ρt ∈ BW2(ρ∗, δ
′
1). Using that t 7→ ρt is continuous with respect to W2,

we get by contradiction that ρt ∈ BW2(ρ∗, δ
′
1) for all t ⩾ 0 if ρ0 ∈ BW2(ρ∗, δ

′
2), and in particular

TA(ρ0) = +∞.
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In the remaining of the proof we consider an initial condition ρ0 ∈ BW2(ρ∗, δ
′
2). As we used

in (22), (k-NL-LSI) implies that ρ∗ is a minimizer of Fk over BW2(ρ∗, δ), so that Fk(ρt) ⩾
Fk(ρ∗) for all t ⩾ 0. Applying Proposition 18 (but with initial condition ρt instead of ρ0), we
get that, for all t ⩾ 0,

ε3

2
I (ρt+1|Γ(ρt+1)) ⩽ E(1, ρt+1) −Fk(ρt+1)

⩽ E(0, ρt) −Fk(ρ∗) = Fk(ρt) −Fk(ρ∗) ,

and thus, using that t 7→ Fk(ρt) is non-increasing, there exists R > 0 such that

L(ρt+1) ⩽ R (Fk(ρt) −Fk(ρ∗))

for all t ⩾ 0. Since Lemma 17 together with (k-NL-LSI) implies an exponential decay of
L(ρt) at some rate c > 0, we can bound, for t ⩾ 1,

Fk(ρt) −Fk(ρ∗) ⩽ L(ρt)

⩽ e−c(t−1)L(ρ1) ⩽ Re−c(t−1) (Fk(ρ0) −Fk(ρ∗)) .

For t ∈ [0, 1] we can simply use that t 7→ Fk(ρt) is non-increasing, and this concludes the proof
of (65). The results for W2 and the relative entropy then follow by combining (65) with the
various bounds relating the different quantities. More specifically, (64) is obtained simply by
(70) for t ∈ [0, 1] and, for t ⩾ 1, by combining (69), (65), (68) and Proposition 19 to bound

W2
2 (ρt, ρ∗) ⩽ 4ηCe−c(t−1) (Fk(ρ1) −Fk(ρ∗)) ⩽ C ′e−ctW2

2 (ρ0, ρ∗)

for some C ′. Similarly, (66) is obtained by using first (20), then (64) and (65) and finally (68)
and (69) to bound

σ2H(ρt|ρ∗) ⩽ Fk(ρt) −Fk(ρ∗) + λW2
2 (ρt, ρ∗)

⩽ Ce−ct
(
Fk(ρ0) −Fk(ρ∗) + λW2

2 (ρ0, ρ∗)
)

⩽ C ′e−ctH(ρ0|ρ∗)

for some C ′. The proof of (67) uses the same ingredients.

Example 3. In the one-dimensional double-well case, Proposition 1 remains true if the granu-
lar media equation (1) is replaced by the Vlasov-Fokker-Planck equation (60). In the subcritical
case, it directly follows from Theorem 20, thanks to Proposition 13 and Remark 16. In the
critical case, the arguments are as in Remark 12.

5 Fast free energy decay for interacting particles

5.1 Settings and results

We consider the particle approximations of (8) and (60), namely the overdamped Langevin
process (Xt)t≥0 solving

∀i ∈ J1, NK , dX i
t = −∇Eπ(Xt)(X i

t)dt+
√

2σdBi
t (71)

and the kinetic Langevin process (Yt, Vt)t≥0 solving

∀i ∈ J1, NK ,
{

dY i
t = V i

t dt

dV i
t = −∇Eπ(Yt)(Y i

t )dt− V i
t dt+

√
2σdBi

t ,
(72)
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where in both cases B1, . . . , BN are independent d-dimensional Brownian motions and

π(x) =
1

N

N∑
i=1

δxi

stands for the empirical distribution of x = (x1, . . . , xN) ∈ RdN . Under (Lip) and, respectively,
(o-s-Lip) for (71) and (x−Lip) for (72), both equations admit a unique global strong solution.

Considering first the overdamped case, denote by ρNt the law of Xt = (X1
t , . . . , X

N
t ) solving

(71). Assuming that ∫
RdN

exp

(
−N

σ2
E(π(x))

)
dx <∞ , (73)

we consider the Gibbs measure

ρN∞ ∝ exp

(
−N

σ2
E(π(x))

)
dx .

Using that
∀i ∈ J1, NK, ∇xiNE(π(x)) = ∇Eπ(x)(x) ,

by the properties of the linear derivative, we see that (71) is an overdamped Langevin diffu-
sion on RdN with potential NE(π(x)) and temperature σ2. Its invariant measure is ρN∞, and
t 7→ H(ρNt |ρN∞) is decreasing (by Jensen inequality) and goes to zero as t → ∞ under mild
assumptions. Defining the N -particle free energy of ρN ∈ P2(RdN) as

FN(ρN) = σ2H(ρN) +N

∫
RdN

E(π(x))ρN(dx) ,

we see that
σ2H(ρN |ρN∞) = FN(ρN) −FN(ρN∞).

In particular, ρN∞ is the global minimizer of FN and t 7→ FN(ρNt |ρN∞) is non-increasing.
As studied in [22], when the non-linear dynamics (8) admits several stable stationary

solutions, the log-Sobolev constant of ρN∞ (assuming that a LSI holds, for instance if x 7→
E(π(x)) is uniformly convex outside a compact set) goes to infinity as N → ∞, and thus
we cannot expect a fast convergence of FN(ρNt ) to its infimum (which typically occurs at a
time-scale of order eaN for some a > 0). However, in short time, initialized with independent
initial conditions, the law of the particle system stays close to the solution of the non-linear
problem (8) and thus the local convergence of the latter to some critical point ρ∗ ∈ K drives
the initial behavior of the particle system. This gives the following.

Proposition 21. Under Assumption 5, assume furthermore (73) and that there exists λ′ ⩾ 0
such that for all µ0, µ1 ∈ P2(Rd) and t ∈ [0, 1],

E(tµ0 + (1 − t)µ1) ⩾ tE(µ0) + (1 − t)E(µ1) − t(1 − t)λ′W2
2 (µ0, µ1) . (74)

Let ρ0 ∈ P2(Rd) be such that the solution of (8) converges to ρ∗ in long time. There exist
C, β > 0 such that, for all N ∈ N and t ⩾ 1, considering the particle system (71) with initial
distribution ρN0 = ρ⊗N0 ,

1

N
FN(ρNt ) −F(ρ∗) ⩽ C

(
N−β + e−t/η

)
.

Notice that, in view of (17), (74) holds for instance in the case (16) if the functions rk are
Lk-Lipschitz with

∑
k∈N L

2
k <∞.
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Remark 17. When the solution of the non-linear McKean-Vlasov equations converges to some
ρ∗, under suitable conditions (in particular of regularity), a quantitative weak convergence at
rate 1/N for the empirical distribution of the corresponding system of N interacting particles is
shown in [21, Theorem 3.1] to hold over times of order Np for any p. This requires the initial
condition to start close to ρ∗ in the total variation sense. However, thanks to Proposition 6,
if the initial condition is close to ρ∗ in W2, then it becomes close in the total variation sense
after a time 1.

The same occurs in the kinetic case. For ρN ∈ P2(R2dN), define the N -particle kinetic free
energy as

FN
k (ρN) = σ2H(ρN)N

∫
R2dN

[E(π(x)) + Ek(π(v))] ρN(dxdv) .

Proposition 22. Under Assumption 9, assume furthermore that there exists λ′ ⩾ 0 such that
(74) holds for all µ0, µ1 ∈ P2(Rd) and t ∈ [0, 1]. Let ρ0 ∈ P2(R2d) be such that the solution of
(60) converges to ρ∗ in long time. There exist C, β, γ > 0 such that, for all N ∈ N and t ⩾ 1,
considering the kinetic particle system (72) with initial distribution ρN0 = ρ⊗N0 ,

1

N
FN
k (ρNt ) −Fk(ρ∗) ⩽ C

(
N−β + e−γt

)
.

5.2 Proofs

We mostly focus on the overdamped case in this section, denoting by ρNt the law of (71). We
start with the following variation of Proposition 6.

Proposition 23. For any ρ∗ ∈ K, there exists C > 0 such that for all N ∈ N, t ⩾ 0 and any
initial distribution ρN0 ∈ P2(RdN),

H
(
ρNt+1|ρ⊗N∗

)
⩽ CW2

2

(
ρNt , ρ

⊗N
∗
)

+ C .

Similarly to Proposition 6, this follows from a Girsanov transform, see [30, Theorem 2.3]
or [14, Lemma 5.3].

To relate H
(
ρNt |ρ⊗N∗

)
to FN(ρNt ), we can rely on the following.

Lemma 24. Assume that there exists λ′ ⩾ 0 such that (74) holds for all µ0, µ1 ∈ P2(Rd) and
t ∈ [0, 1]. Then, for all ρN ∈ P2(RdN) and ρ∗ ∈ K,

FN(ρN) −NF(ρ∗) ⩽ σ2H
(
ρN |ρ⊗N∗

)
+ 2λ′W2

2

(
ρN , ρ⊗N∗

)
+ 2λ′Nα(N)

where

α(N) =

∫
RdN

W2
2 (π(x), ρ∗)ρ

⊗N
∗ (dx) .

Thanks to [24, Theorem 1], α(N) ⩽ CN−2/d for some C (but possibly for some particular
ρ∗ it may vanish faster).

Proof. Dividing by t and sending t to zero in (74) yields∫
Rd
Eµ1(µ0 − µ1) + E(µ1) ⩾ E(µ0) − λW2

2 (µ0, µ1) .
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Then, using this with µ0 = π(x) and µ1 = ρ∗,

FN(ρN) −NF(ρ∗)

= N

∫
RdN

[E(π(x)) − E(ρ∗)] ρ
N(dx) + σ2H(ρN) −Nσ2H(ρ∗)

⩽ N

∫
RdN

[
λ′W2

2 (π(x), ρ∗) +

∫
R2d

Eρ∗(y)(π(x) − ρ∗)(dy)

]
ρN(dx) + σ2H(ρN) −Nσ2H(ρ∗).

Using that Eρ∗ = −σ2(ln ρ∗ + lnZρ∗),

N

∫
RdN

∫
R2d

Eρ∗(y)(π(x) − ρ∗)(dy)ρN(dx) = Nσ2H(ρ∗) − σ2

N∑
i=1

∫
RdN

ln ρ∗(xi)ρ
N(dx)

= Nσ2H(ρ∗) − σ2

∫
RdN

ln ρ⊗N∗ (x)ρN(dx) .

Plugging this in the previous inequality reads

FN(ρN) −NF(ρ∗) ⩽ σ2H
(
ρN |ρ⊗N∗

)
+Nλ′

∫
RdN

W2
2 (π(x), ρ∗)ρ

N(dx) .

Let µ(dxdy) be an optimal W2 coupling of ρN and ρ⊗N∗ . We bound∫
RdN

W2
2 (π(x), ρ∗)ρ

N(dx) ⩽ 2

∫
RdN

W2
2 (π(x), π(y))µ(dxdy) + 2α(N)

⩽
2

N

N∑
i=1

∫
RdN

|xi − yi|2µ(dxdy) + 2α(N)

= 2W2
2

(
ρN , ρ⊗N∗

)
+ 2α(N) ,

which completes the proof.

Proof of Proposition 21. Thanks to (31) and standard finite propagation of chaos estimates
(obtained by synchronous coupling), we bound

W2
2

(
ρNt , ρ

⊗N
∗
)

⩽ 2W2
2

(
ρNt , ρ

⊗N
t

)
+ 2W2

2

(
ρ⊗Nt , ρ⊗N∗

)
⩽ CeCt + 2NC0e

−t/η

for some C > 0. Proposition 23 and Lemma 24 yield

FN(ρNt ) −NF(ρ∗) ⩽ C ′ (eCt +Ne−t/η +Nα(N)
)

for all t ⩾ 1 for some C ′ > 0. Conclusion follows by using that t 7→ FN(ρNt ) is non-decreasing
(distinguishing whether t is above or under lnN/(2C)) and applying [24, Theorem 1] to bound
α(N).

Proof of Proposition 22. The proof is the same as the proof of Proposition 21. Proposition 23
still holds in the kinetic case (with ρ∗ ∈ Kk; this is [14, Lemma 5.3]), and so does Lemma 24
(replacing F by Fk, with the same proof, noticing that the kinetic energy is linear and thus
satisfies (74) with λ′ = 0). We use Theorem 20 instead of Theorem 8.
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[20] Donald A Dawson and J Gärtner. Large deviations and tunnelling for particle systems
with mean field interaction. CR Math. Rep. Acad. Sci. Canada, 8(6):387–392, 1986.

[21] François Delarue and Alvin Tse. Uniform in time weak propagation of chaos on the torus.
arXiv preprint arXiv:2104.14973, 2021.

[22] Mat́ıas G Delgadino, Rishabh S Gvalani, Grigorios A Pavliotis, and Scott A Smith.
Phase transitions, logarithmic sobolev inequalities, and uniform-in-time propagation of
chaos for weakly interacting diffusions. Communications in Mathematical Physics, pages
1–49, 2023.

[23] Jean Dolbeault, Bruno Nazaret, and Giuseppe Savaré. A new class of transport distances
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