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We propose a tilt-assisted chirality Hall effect in the normal metal-superconductor (NS) junctions based on
the time-reversal broken type-I Weyl semimetals. It is found that the chirality-contrasting skew reflection occurs
at the NS interface due to the tilt of the Weyl cones, which is responsible for the nonzero transverse chirality Hall
currents. Distinct from the Hall effect induced by the Berry curvature, we further illustrate that the transverse
chirality current here is determined by the symmetry of the tilt. Specifically, both the transverse chirality Hall
current and the transverse charge Hall current may occur when the tilt breaks the mirror symmetry (M). How-
ever, a pure transverse chirality Hall current with zero net charge is present when the tilt breaks M symmetry
but preserves the combined MC symmetry, where C represents the Z2 exchange symmetry.

I. INTRODUCTION

Weyl semimetals are three-dimensional topological mate-
rials with the conduction and valence bands touching at two
or more crossing points in the bulk, which are known as the
Weyl nodes [1–3]. The emergence of the nontrivial and sta-
ble Weyl nodes requires the breaking of either time-reversal
symmetry (T ) or spatial inversion symmetry (I). As a con-
sequence of the Nielsen-Ninomiya theorem [4], the minimal
model of the T symmetry broken Weyl semimetal contains
a single pair of Weyl nodes, whereas the I symmetry bro-
ken one contains four Weyl nodes [5, 6]. Each of the paired
Weyl nodes acts like a topological charge with the charge
sign corresponding to its chirality [7, 8]. The manipulation
of the chirality is one of the hot topics in Weyl physics. Up
to now, several works have been devoted to such chirality-
dependent physics of Weyl semimetals, such as the chiral
anomaly [9–11], chirality-dependent Hall effect [12–14] and
chirality Josephson effect [15, 16].

A finite tilt of the Weyl cones can be generated because the
Lorentz symmetry is not necessarily the symmetry group in
condensed matter systems [17]. Distinct from the graphene-
like materials where the tilting is usually weak [18–20], the
tilting can be strong in Weyl semimetals. Depending on
whether the Weyl cone is overtilted or not, Weyl semimetals
can be classified into two subgroups, i.e., type-I and type-II
Weyl semimetals [21–24]. The type-I Weyl semimetals pos-
sess a closed Fermi surface enclosing either an electron or a
hole pocket, with a vanishing density of states at the Weyl
nodes. The type-II Weyl semimetals host overtilted Weyl
cones and the Fermi surface near the Weyl nodes is hyper-
boloidal with a large density of states, leading to the electron
and hole pockets near the Weyl nodes [25, 26]. Many tilt-
induced intriguing transport properties have been reported in
Weyl semimetals. Such as the anomalous Nernst and ther-
mal Hall effects [27], double Andreev reflection [28], tilt-
assisted π-phase Josephson current [29], and linear magne-
tochiral transport [30].

A very recent interesting work [31] reported that the tilt
mechanism can lead to the tunneling valley Hall effect in

∗ E-mail: zeng@ujs.edu.cn

Dirac systems, where a strong tilt-dependent transverse val-
ley Hall current can be generated by the momentum filtering
of the tunneling Dirac fermions. Subsequently, the nonlinear
valley Hall effect in tilted massless Dirac fermions in strained
graphene and organic semiconductors was predicted [32],
where a valley Hall current occurs with both inversion and
time-reversal symmetry. Inspired by this, here we propose a
tilt-induced chirality Hall effect in Weyl semimetals. We the-
oretically investigate the transverse charge and chirality trans-
port in the normal metal-superconductor (NS) junctions based
on the type-I Weyl semimetals, which breaks the time-reversal
symmetry but preserves the inversion symmetry. It is found
that the scattering at the NS interface is chirality-dependent.
For the electrons with a given chirality, the incident angle re-
solved reflection probability is asymmetric, which is responsi-
ble for the transverse chirality Hall current. The chirality Hall
conductance arsing from the skew scattering can be obtained
within the Landauer formalism [33]. It is found that the trans-
verse chirality current is determined by the tilt parameter c and
the intersection angle α between the line connecting the two
opposite chiral Weyl nodes and the normal of the NS interface.
For the tilt breaking the mirror symmetry M, which requires
α ̸= π/2, both the transverse chirality Hall current and charge
Hall current may occur. However, for the tilt breaking the M
symmetry but preserving the combined MC symmetry with C
being the Z2 exchange symmetry, requiring α = 0 or π, a pure
transverse chirality Hall current with zero net charge appears.

The remainder of the paper is organized as follows. The
model Hamiltonian and the scattering approach are explained
in detail in Sec. II. The numerical results and discussions are
presented in Sec. III. Finally, we conclude in Sec. IV.

II. MODEL

We consider the NS junction along the z axis, where the
normal and superconduting regions are located at z < 0 and
z > 0, respectively, as shown in Fig. 1. The Weyl nodes ±K0

are in the qx − qz plane and the line connecting ±K0 can
make an angle of α with qz axis. In the crystal coordinates,
the minimal model for the tilted Weyl semimetal is described
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FIG. 1. (Left) Sketch of the NS junction under consideration, where
the normal of the NS interface is along the z axis. (Right) Schematic
of the momentum space with two Weyl nodes at momenta ±K0. The
angle between two Weyl nodes and the qz axis is denoted by α.

by the effective two-band Hamiltonian [34, 35]

H =
∑
χ,q

Ψ†
χ,qHχ(q)Ψχ,q, (1)

where Ψχ,q = (ψχ,q↑, ψχ,q↓)
T is the spinor basis with χ = ±

being the chirality of the Weyl nodes and q = (q1, q2, q3) is
the momentum measured from χK0. Around the Weyl nodes,
the low-energy Hamiltonian reads [29, 36]

Hχ(q) =ℏvχq1σ0 + ℏvF (q1σ1 + q2σ2 − χq3σ3), (2)

where vF is the Fermi velocity, σ0 is the identity matrix and
σi (i = 1, 2, 3) are Pauli matrices acting on the spin space.

The tilt of the Weyl cones is along the q1 direction with the
parameter vχ. Here we focus on the tilting effect in the type-I
Weyl semimetals, i.e., |vχ| < vF . The inversion symmetry of
the Hamiltonian in Eq. (2) requires σ3H+(q)σ3 = H−(−q),
leading to v+ = −v−, which implies that the opposite chiral
Weyl cones have tilts in opposite directions. It is convenient to
work with the junction coordinates, where the transport direc-
tion is assumed to be along the z axis, as shown in Fig. 1. The
two different coordinate systems are related by the rotation
transformation

q1 =qx cosα− qz sinα, q2 = qy,

q3 =qz cosα+ qx sinα, (3)

and, similarly, σ1 = σx cosα − σz sinα, σ2 = σy , σ3 =
σz cosα + σx sinα, where α is the angle between the line
connecting two Weyl nodes and the qz axis.

In the superconducting region, the zero-momentum BCS
pairing is preferred for inversion-symmetric Weyl semimetals
[37], for which the paired electrons are from two Weyl nodes
with opposite chirality. This BCS superconductivity can be
induced by the conventional superconductor via the proximity
effect in the Weyl semimetal based junction [34, 38]. The
pairing Hamiltonian reads

H∆ =
∑
χ,s

∫
dr ∆ψ†

χ,s(r)ψ
†
−χ,−s(r) + h.c., (4)

where s = {↑, ↓} is the spin index and ∆ is the pairing po-
tential. In the Nambu basis (ψχ↑, ψχ↓, ψ

†
−χ↓,−ψ

†
−χ↑)

T , the
NS junction is described by the Bogoliubov-de Gennes (BdG)
Hamiltonian [39–41]

HBdG =

(
Hχ(−i∇− χK0)− µ(z) ∆(z)

∆∗(z) µ(z)− σyH∗
−χ(−i∇+ χK0)σy

)
, (5)

where the chemical potential µ(z) = µ for z < 0 and µ(z) = µs for z > 0, the pairing term ∆(z) = 0 for z < 0 and
∆(z) = ∆0 for z > 0. By performing the translation transformation D = exp (iχK0 · r) and the spin rotation transformation
U = σx exp(iασy) [15, 29], Eq. (5) can be written as

HBdG =

(
ℏvF

(
χcqtσ0 + (qxσx − χqyσy + qzσz)

)
− µ(z) ∆B(z)

∆B(z) ℏvF
(
− χcqtσ0 − (qxσx + χqyσy + qzσz)

)
+ µ(z)

)
, (6)

where c = |vχ/vF | is a dimensionless parameter employed here to characterize the tilt (0 < c < 1), qt = qx cosα − qz sinα
and ∆B(z) = −∆(z) sinασz +∆(z) cosασx.

In the normal segment of the junction (z < 0), the scatter-
ing states propagating along the +z axis are given by

|φ>
e ⟩ =

 Γ>
e

|q∥|e−iϕ

0
0

 eiq
>
e z, |φ>

h ⟩ =

 0
0
Γ>
h

|q∥|eiϕ

 eiq
>
h z,

(7)

where the subscripts ‘e/h’ of the wave functions denote the
electron/hole states, respectively, q∥ = (qx, qy) is the con-
served transverse wave vector, ϕ = arctan(χqy/qx), and
Γ>
e(h) = (1 + χc sinα)q>e(h) + (−)pe(h) with pe(h) = (E +

(−)µ)/ℏvF − (+)χqxc cosα. We note that the factor eiq∥·r∥

with r = (x, y) is omitted in Eq. (7) for simplicity. The lon-
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gitudinal wave vectors are given by

q>e(h) =
+(−)χpe(h)c sinα+ ζe(h)

√
p2e(h) − κ|q∥|2

κ
, (8)

where

ζe(h) = sgn(pe(h) +
√
κ|q∥|), (9)

with κ = 1− (c sinα)2. Similarly, the scattering states prop-
agating along the −z axis, i.e., |φ<⟩, can be obtained by the
replacement ζe(h) → −ζe(h) in Eqs. (7-9).

In the heavily doping limit |µs| ≫ |µ| [42, 43], only the
excitations quasiperpendicular transmitting to the supercon-
ducting region need to be considered, resulting in the effec-
tive excitation gap ∆B = ∆0| sinα| [35, 36]. The transmitted
states in the superconducting region are given by

|φ>
s,1⟩ =

 P
0

−∆B

0

 eiq
>
s,1z, |φ>

s,2⟩ =

 0
∆B

0
P

 eiq
>
s,2z, (10)

where P =
√
E2 −∆2

B +E and the subscript ‘1(2)’ denotes
the electron-like (hole-like) quasiparticle state. The longitudi-
nal wave vectors in the superconducting region are given by

q>s,1(2) = (ℏvF )−1+(−)µs +
√
E2 −∆2

B

1− (+)χc sinα
. (11)

The total wave function describing the scattering process
reads

ψ(z) =

{
|φ>

e ⟩+ r|φ<
e ⟩+ rA|φ<

h ⟩, z < 0,

t1|φ>
s,1⟩+ t2|φ>

s,2⟩, z > 0.
(12)

Here t1(2), r and rA are the transmission amplitude, normal
reflection amplitude and Andreev reflection amplitude, re-
spectively, which can be obtained by matching the wave func-
tion at z = 0.

The longitudinal conductance for the χ chirality Weyl node
is given by the Blonder-Tinkham-Klapwijk approach [44]

σχ
z,z =

e2

h

∑
q∥

(
1 +RA −R

)
, (13)

where

RA =

∣∣∣∣∣v
<
h,z

v>e,z

∣∣∣∣∣ |rA|2, R =

∣∣∣∣v<e,zv>e,z

∣∣∣∣ |r|2, (14)

are the Andreev reflection probability and normal reflection
probability, respectively. We note that both r and rA are the
function of χ. vϱς,i (ς = e, h, ϱ =>,< and i = x, y, z) in Eq.
(14) is the group velocity along the i axis for the excitation
state |φϱ

ς ⟩, which can be obtained by the Hellmann-Feynman
theorem [45]:

vϱς,i =
∂Eς

ℏ∂qϱi
=

∂

ℏ∂qi
⟨φϱ

ς |HBdG|φϱ
ς ⟩

=ℏ−1⟨φϱ
ς |
∂

∂qi
HBdG|φϱ

ς ⟩

=ℏ−1⟨φϱ
ς |ĵi|φϱ

ς ⟩, (15)
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FIG. 2. The reflection probability R versus the incident angle θi
for χ = +1 (gray) and χ = −1 (green) chiral nodes. Panels (a-d)
correspond to α = π/3, α = −π/3, α = 2π/3, and α = π/2,
respectively. The other parameters are c = 0.6, E = 0.3∆0, and
µ = 1.2∆0.

with ĵx = τz(σx+χc cosα), ĵy = −χτzσy and ĵz = τz(σz−
χc sinα).

The transverse conductance can be calculated within the
Landauer formalism [33, 46, 47] (see Appendix for details)

σχ
η,z =

e2

h

∑
q∥

(v>e,η
v>e,z

− v<e,η
v>e,z

|r|2 +
v<h,η
v>e,z

|rA|2
)
, (16)

where η = x, y. The charge Hall angle (ϑ) and the chirality
Hall angle (ϑchi) are given by

tan(ϑ) =

∑
χ σ

χ
η,z∑

χ σ
χ
z,z
, tan(ϑchi) =

∑
χ χσ

χ
η,z∑

χ σ
χ
z,z

. (17)

III. RESULTS

A. Skew reflection and transverse chirality and charge
currents

We first consider the situation where the effective supercon-
ducting gap ∆B = ∆0| sinα| is nonzero, i.e., α ̸= 0, π. Both
the Andreev process and the normal reflection process con-
tribute to the transverse Hall currents. It is sufficient to con-
sider the normal reflection probability R in the subgap regime
(|E| < ∆0| sinα|) on account of R+RA = 1.



4

0 0.5 1 1.5
E="0

-1

-0.5

0

0.5

1
ch

a
rg

e
H

a
ll

a
n
gl

e
(#

) , = :
3(a)

0 0.5 1 1.5
E="0

-0.2

-0.1

0

0.1

0.2

ch
ir
a
li
ty

H
a
ll

a
n
g
le

(#
ch

i)

(b)

-1 -0.5 0 0.5 1
,=:

-0.1

0

0.1

ch
a
rg

e
H

a
ll

a
n
gl

e
(#

) (c)

-1 -0.5 0 0.5 1
,=:

-0.1

0

0.1
ch

ir
a
li
ty

H
a
ll

a
n
g
le

(#
ch

i)
(d)

FIG. 3. [(a), (b)] Charge and chirality Hall angle as a function of the
incident energy E for α = π/3 (red), α = −π/3 (gray), α = 2π/3
(green), and α = π/2 (blue dashed). The other parameters are c =
0.6 and µ = 1.2∆0. [(c), (d)] Charge and chirality Hall angle as a
function of α for µ = 1.2∆0 (gray) and µ = 0.2∆0 (red).

The normal reflection probability R versus the incident an-
gle θi is shown in Fig. (2)(a) for α = π/3, where the effective
superconducting gap is ∆B = 0.86∆0. Due to the Weyl cones
tilt in the qx−qz plane in our model, we focus on the reflection
in the x− z plane, where the incident angle is given by

θi = arctan

(
v>e,x
v>e,z

)
. (18)

It is shown that the electrons from the χ = +1 chiral node
have large reflection probabilities for −90◦ < θi < 0◦

[gray line in Fig. (2)(a)], which is responsible for the nonzero
transverse chirality Hall current. For the electrons from the
χ = −1 chiral node, the skew reflection also exists [green
line in Fig. (2)(a)]. However, the scattering is asymmetric for
the electrons from different chiral nodes, i.e.,Rχ,α=π/3(θi) ̸=
R−χ,α=π/3(−θi), indicating the presence of a nonzero trans-
verse charge Hall current.

The other two scenarios with α = −π/3 and α = 2π/3
are also considered, where the effective superconducting gaps
are both 0.86∆0 as well. The normal reflection probabilities
for α = −π/3 and α = 2π/3 are shown in Figs. (2)(b)
and (2)(c), respectively. The chirality-contrasting reflection
remains present. However, compared with the α = π/3 case,
the electrons with the opposite (same) chirality are skew re-
flected to the opposite direction for α = −π/3 (2π/3). Con-
sequently, the scattering patterns in Figs. (2)(a) and (2)(b) are
symmetric for different chiralities whereas the scattering pat-
terns in Figs. (2)(a) and (2)(c) are symmetric for the same
chirality. The above symmetric relations can be expressed in

terms of R, namely

Rχ,α=π
3
(θi) = R−χ,α=−π

3
(−θi), (19)

Rχ,α=π
3
(θi) = Rχ,α= 2π

3
(−θi). (20)

For α = π/2, the skew reflection is absent, and the scattering
pattern for χ = +1 and χ = −1 are identical to each other ,
as shown in Fig. (2)(d).

This chirality-contrasting skew reflection mentioned above
may result in a transverse chirality Hall current as well as a
transverse charge Hall current, which can be characterized by
the Hall angle. The charge and chirality Hall angles versus
the incident energy at different α are shown in Figs. (3)(a)
and (3)(b), respectively. For α = π/3, the charge Hall angle
ϑ is positive and increases with the increasing of E in the
subgap energy regime (|E| < 0.86∆0), as the shown in Fig.
(3)(a) (red solid line). However, the chirality Hall angel is not
monotonically dependent on E in the subgap regime, as the
shown in Fig. (3)(b) (red solid line). For α = −π/3 and 2π/3,
the charge Hall angles are equal to each other but negative, as
the gray and green lines shown in Fig. (3)(a), respectively. The
chirality Hall angle remains unchanged for α = −π/3 [gray
line in Fig. (3)(b)], but reverses its sign for α = 2π/3 [green
line in Fig. (3)(b)]. For α = π/2, both the charge and chirality
Hall angle are zero due to the absence of the skew reflection,
as shown in Figs. (3)(a) and (3)(b) (blue dashed lines).

The α-dependence of the Hall angle is shown in Figs. (3)(c)
and (3)(d). The charge Hall angle ϑ(α) is odd parity, as shown
in Figs. (3)(c), whereas the chirality Hall angle ϑchi(α) is even
parity, as shown in Figs. (3)(d). It is shown that both ϑ and
ϑchi are absent at α = ±π/2. However, for α = 0 and π, ϑchi
is finite but ϑ = 0.

The different α-dependence of ϑ and ϑchi can be under-
stood by analyzing the reflection probability R. In fact, the
symmetric scattering behaviors expressed in Eqs. (19-20) are
valid for arbitrary parameter set {α,−α, π − α}, which are
given by

Rχ,α(θi) = R−χ,−α(−θi), (21)
Rχ,α(θi) = Rχ,π−α(−θi). (22)

For the Andreev reflection probability RA, the similar identi-
ties can be obtained by using the current conservation relation
RA = 1−R. With the help of Eqs. (16-17), the α-dependent
charge and chirality Hall angles can be expressed in terms of
R, which are given by

ϑ(α) = Q
∑
χ

∫ π
2

−π
2

dθi sin θiRχ(θi, α), (23)

ϑchi(α) = Q
∑
χ

∫ π
2

−π
2

dθiχ sin θiRχ(θi, α), (24)

with Q being a parameter independent of θi and Q(α) =
Q(−α). By substituting Eqs. (21-22) into Eqs. (23-24) and
changing the integration variable θi → −θi, one finds

ϑ(α) = −ϑ(−α) = −ϑ(π − α), (25)
ϑchi(α) = ϑchi(−α) = −ϑchi(π − α), (26)
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which indicates that the odd-parity charge Hall angle ϑ(α)
disappears at α = {π/2,−π/2, 0, π} and the even-parity chi-
rality Hall angle ϑchi(α) disappears at α = {π/2,−π/2}.

B. Pure transverse chirality currents

It is noted that the charge Hall angle ϑ vanishes whereas
the chirality Hall angle ϑchi remains finite at α = {0, π} [see
Figs. (3)(c) and (3)(d)], implying a pure chirality current.

In this scenario the effective pairing potential is zero. Under
the heavily doping condition, the incident electron is local re-
flected with probability R in the normal region and quasiper-
pendicular transmitted (q∥ = 0) as an electron-like quasipar-
ticle with probability T1 = |v>s1,z/v>e,z||t1|2 in the supercon-
ducting region. The current conservation requiresR+T1 = 1.
In the heavily doping limit |µs| ≫ |µ|, the normal reflection
probability is only determined by the tilting parameter c. For
α = 0, the normal reflection probability is obtained analyti-
cally as

R =

∣∣∣∣√sec2 θi − c2 − 1

tan θi − χc

∣∣∣∣2 , (27)

where θi = arctan(v>e,x/v
>
e,z) is the incident angle. For the

Weyl node with a given chirality χ, the θi-resolved reflection
is asymmetric, as shown in Fig. 4(a), where the electrons with
positive chirality (χ = +1) have large reflection probabilities
for 0◦ < θi < 90◦ (gray lines), whereas the electrons with
negative chirality (χ = −1) have large reflection probabilities
for −90◦ < θi < 0◦ (green lines). The carries with opposite
chiralities turn into different transverse directions, leading to
a transverse chirality current. With the help of Eqs. (16) and
(17), the chirality Hall angle at α = 0 is obtained by

tan(ϑchi) = 2 sin ℓ× p cos 2ℓ+ cos ℓ(π sin ℓ− 2)

π cos 2ℓ− 2p sin 2ℓ+ 4 sin ℓ
, (28)

where p = arctanh(cos ℓ) with ℓ = arccos(c). The chirality
Hall angle is only determined by the tilting parameter c and
approaches its maximum value at c ≃ 0.82 with ϑchi ≃ 0.22,
as shown in Fig. 4(c) (black solid line). For the non-tilting
energy dispersion (c = 0), the transverse chirality current is
absent.

Furthermore, it is found that the scattering pattern is mirror
symmetric between two different chiral nodes, i.e.,

Rχ,α=0(θi) = R−χ,α=0(−θi), (29)

as shown in Fig. 4(a), leading to a zero net transverse charge
current with

tan(ϑ) = 0. (30)

Consequently, the pure chirality current with zero net charge
is predicted for α = 0.

For α = π, the line connecting two opposite chiral Weyl
nodes makes a 180◦ rotation, implying the interchange of the
chiralities between the nodes, which leads to the θi-resolved
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FIG. 4. [(a), (b)] The reflection probability R versus the incident
angle θi for χ = +1 (gray) and χ = −1 (green) chiral nodes. (c)
Hall angle as a function of c.

Rα=π being a copy of Rα=0 with the substitution χ → −χ,
as shown in Fig. 4(b). Consequently, the pure transverse chi-
rality Hall current is reversed, while its absolute value remains
unchanged, as shown in Fig. 4(c) (black dashed line).

C. Symmetry analysis

Distinct from the Berry curvature induced Hall effect [48–
50], the physical origin of the transverse Hall current in our
model is attributed to the symmetry breaking caused by the
the tilt. The low-energy Hamiltonian for the opposite chiral
Weyl nodes at ±K0 is given by H± = ℏvF (±cqtσ0+qxσx∓
qyσy + qzσz). For the Weyl cones tilted in qx − qz plane,
the transverse Hall chirality current and charge current may
occur when the angle-resolved reflection is asymmetric for a
given chiral node, which requires the tilt breaking the mirror
symmetry in the qy = 0 plane, i.e.,

MH±(qx, qz)M−1 ̸= H±(−qx, qz), (31)

where M = σz is the mirror reflection operator about the
y − z plane. For qt = qx cosα − qz sinα, Eq. (31) leads to
cosα ̸= 0, i.e., α ̸= ±π/2, which is in agreement with Eqs.
(25-26).

Furthermore, in order to generate a pure transverse chi-
rality Hall current, the reflection between two different chi-
ral nodes should be symmetric to cancel out the net trans-
verse charge current. This requires an additional Z2 exchange
symmetry C [16], which swaps the opposite chiral sector:
CH+(qx, qz)C−1 = H−(qx, qz). Consequently, the trans-
verse charge Hall current vanishes when the tilt preserves the
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combined MC symmetry

(MC)H+(qx, qz)(MC)−1 = H−(−qx, qz), (32)

which results in α = 0, π.

IV. CONCLUSIONS

To conclude, we study the transverse transport in the NS
junctions based on the time-reversal symmetry broken type-
I Weyl semimetals. We focus on the inversion symmetric

tilt, where the two Weyl cones with opposite chiralities have
tilts in opposite directions. Our investigation reveals that a
chirality-contrasting skew reflection occurs at the NS inter-
face due to the tilt of the Weyl cones, resulting in nonzero
transverse chirality Hall currents. We further illustrate that
the transverse chirality current here is determined by the sym-
metry of the tilt. Specifically, both transverse chirality current
and charge current may occur when the tilt breaks the mirror
symmetry (M). However, a pure transverse chirality current
with zero net charge is present when the tilt breaks M sym-
metry but preserves the combined MC symmetry with C being
the Z2 exchange symmetry.

APPENDIX

In this appendix we provide the details of the derivation of the transverse conductance and the Hall angle in Eqs. (16) and (17)
of the main text.

The transverse current along the η axis (η = x, y) is given by Iη = I>η +I<η with I>η (I<η ) being the net current flowing from left
to right (right to left) [33, 44]. In order to get a balanced current in the barrier region, the state propagating towards (outwards) the
barrier has a positive (negative) contribution to the transverse current. I>η is carried by the state |φ>⟩ = |φ>

e ⟩+ r|φ<
e ⟩+ rA|φ<

h ⟩
with energy E and transverse wave vector q∥, which is given by

I>η =
e

L

∑
q∥,qz

(
v>e,η − v<e,η|r|2

)
f(E − eV )[1− f(E)]

−
(
− e

L

) ∑
q∥,qz

v<h,η|rA|2[1− f(E + eV )]f(E)

=e
∑
q∥

∫
dqz
2π

[(
v>e,η − v<e,η|r|2

)
f(E − eV )[1− f(E)]

+ v<h,η|rA|2[1− f(E + eV )]f(E)
]

=
e

h

∑
q∥

dE
[(v>e,η
v>e,z

− v<e,η
v>e,z

|r|2
)
f(E − eV )[1− f(E)]

+
v<h,η
v>e,z

|rA|2[1− f(E + eV )]f(E)
]
. (A1)

Here V is the longitudinal voltage drop along the junction and f(E) = 1/(exp(E/kBT ) + 1) is the Fermi-Dirac distribution
function with kB and T being the Boltzmann constant and temperature, respectively.

The net current from right to left (I<η ) can be obtained by considering the incoming states in the right superconducting region.
Instead of dealing with quasiparticles in the superconducting region, it is equivalent to suppose the incident hole state with
energy −E and transverse wave vector −q∥ in the left normal region, i.e., |ψ<⟩ = |ψ>

h ⟩+ r̄|ψ<
h ⟩+ r̄A|ψ<

e ⟩, where r̄ (r̄A) is the
normal (Andreev) reflection amplitude for the hole state. Consequently, the net current carried by |ψ<⟩ reads

I<η =− e

L

∑
q∥,qz

(
v>h,η − v<e,η|r̄|2

)
f(−E + eV )[1− f(−E)]

− e

L

∑
q∥,qz

v<e,η|r̄A|2[1− f(−E − eV )]f(−E)

=− e

h

∑
q∥

∫
dE

[(v>h,η
v>h,z

−
v<h,η
v>h,z

|r̄|2
)
f(−E + eV )[1− f(−E)]

+
v<e,η
v>h,z

|r̄A|2[1− f(−E − eV )]f(−E)
]
. (A2)
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The particle-hole symmetry leads to the follow identities

v>e,η
v>e,z

=
v>h,η
v>h,z

,
v<e,η
v>e,z

|r|2 =
v<h,η
v>h,z

|r̄|2,
v<h,η
v>e,z

|rA|2 =
v<e,η
v>h,z

|r̄A|2, (A3)

which simplify the expression for the total current

Iη =I>η + I<η

=
e

h

∑
q∥

∫ ∞

−∞
dE

([v>e,η
v>e,z

− v<e,η
v>e,z

|r|2
]
[f(E − eV )− f(E)] +

v<h,η
v>e,z

|rA|2[f(E)− f(E + eV )
)

=
e

h

∑
q∥

∫ ∞

−∞
dE

([v>e,η
v>e,z

− v<e,η
v>e,z

|r|2
]
(E)

+
[v<h,η
v>e,z

|rA|2
]
(−E)

)
[f(E − eV )− f(E)]. (A4)

Consequently, the transverse conductance is given by

ση,z =
∂Iη
∂V

=
e2

h

∑
q∥

∫ ∞

−∞
dE

([v>e,η
v>e,z

− v<e,η
v>e,z

|r|2
]
(E)

+
[v<h,η
v>e,z

|rA|2
]
(−E)

)[
− ∂(f(E − eV )− f(E))

∂(E − eV )

]
=
e2

h

∑
q∥

∫ ∞

−∞
dE

([v>e,η
v>e,z

− v<e,η
v>e,z

|r|2
]
(E)

+
[v<h,η
v>e,z

|rA|2
]
(−E)

)
δ(E − eV )

=
e2

h

∑
q∥

([v>e,η
v>e,z

− v<e,η
v>e,z

|r|2
]
(eV )

+
[v<h,η
v>e,z

|rA|2
]
(−eV )

)
. (A5)

The longitudinal current can be calculated by the similar method, which reads

Iz =I>z + I<z

=
e

h

∑
q∥

∫ ∞

−∞
dE

([
1 +

v<e,z
v>e,z

|r|2
]
[f(E − eV )− f(E)]−

v<h,z
v>e,z

|rA|2[f(E)− f(E + eV )]
)

=
e

h

∑
q∥

∫ ∞

−∞
dE

([
1 +

v<e,z
v>e,z

|r|2
]
(E)

[f(E − eV )− f(E)]−
[v<h,z
v>e,z

|rA|2
]
(−E)

[f(E − eV )− f(E)]
)
. (A6)

Consequently, the longitudinal conductance is given by

σz,z =
∂Iz
∂V

=
e2

h

∑
q∥

∫ ∞

−∞
dE

([
1 +

v<e,z
v>e,z

|r|2
]
(E)

−
[v<h,z
v>e,z

|rA|2
]
(−E)

)[
− ∂(f(E − eV )− f(E))

∂(E − eV )

]
=
e2

h

∑
q∥

∫ ∞

−∞
dE

([
1 +

v<e,z
v>e,z

|r|2
]
(E)

−
[v<h,z
v>e,z

|rA|2
]
(−E)

)
δ(E − eV )

=
e2

h

∑
q∥

(
1 +

[v<e,z
v>e,z

|r|2
]
(eV )

−
[v<h,z
v>e,z

|rA|2
]
(−eV )

)
. (A7)

It is noted that, for the incident (reflected) states, the longitudinal group velocities are always positive (negative), i.e., v>e,z < 0

and v<e/h,z < 0. However, the sign of the transverse group velocity is uncertain. Consequently, for the longitudinal conductance,
the reflection coefficients can be written as

v<e,z
v>e,z

|r|2 = −
∣∣∣∣v<e,zv>e,z

∣∣∣∣ |r|2 = −R, (A8)

v<h,z
v>e,z

|rA|2 = −
∣∣∣∣∣v

<
h,z

v>e,z

∣∣∣∣∣ |rA|2 = −RA. (A9)
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where RA (R) is positive and denotes the reflection probability for the Andreev reflection (normal reflection). In the subgap
regime, A + B = 1 due to the current conservation. The longitudinal conductance [Eq. (A7)] can be expressed in terms of R
and RA

σz,z =
e2

h

∑
q∥

(
1−R+RA

)
, (A10)

which is the Blonder-Tinkham-Klapwijk formalism. The charge Hall angle (ϑ) and the chirality Hall angle (ϑchi) are given by

tan(ϑ) =

∑
χ σ

χ
η,z∑

χ σ
χ
z,z
, tan(ϑchi) =

∑
χ χσ

χ
η,z∑

χ σ
χ
z,z

. (A11)
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