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Abstract—Dual-function-radar-communication (DFRC) is a
promising candidate technology for next-generation networks.
By integrating hybrid analog-digital (HAD) beamforming into a
multi-user millimeter-wave (mmWave) DFRC system, we design
a new reconfigurable subarray (RS) architecture and jointly
optimize the HAD beamforming to maximize the communication
sum-rate and ensure a prescribed signal-to-clutter-plus-noise
ratio for radar sensing. Considering the non-convexity of this
problem arising from multiplicative coupling of the analog and
digital beamforming, we convert the sum-rate maximization into
an equivalent weighted mean-square error minimization and
apply penalty dual decomposition to decouple the analog and
digital beamforming. Specifically, a second-order cone program
is first constructed to optimize the fully digital counterpart of the
HAD beamforming. Then, the sparsity of the RS architecture
is exploited to obtain a low-complexity solution for the HAD
beamforming. The convergence and complexity analyses of our
algorithm are carried out under the RS architecture. Simulations
corroborate that, with the RS architecture, DFRC offers effective
communication and sensing and improves energy efficiency by
83.4% and 114.2% with a moderate number of radio frequency
chains and phase shifters, compared to the persistently- and fully-
connected architectures, respectively.

Index Terms—Reconfigurable subarray (RS) architecture, hy-
brid beamforming (HBF), dual-function-radar-communication
(DFRC), penalty dual decomposition (PDD).

I. INTRODUCTION

THE sixth generation (6G) of wireless systems is an-
ticipated to go beyond traditional mobile networks in

continuous and ubiquitous sensing capabilities [1]. A promis-
ing concept for realizing simultaneous sensing and commu-
nication capabilities is dual-functional-radar-communication
(DFRC). By sharing hardware, software, and information,
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DFRC enables these capabilities while coping with resource
constraints [2], [3]. Benefiting from advances in millimeter-
wave (mmWave) technologies, mmWave DFRC can support
simultaneous high-speed communications and high-resolution
sensing in environment-aware scenarios [4], [5], e.g., smart
homes and Internet of Things (IoT). For instance, the authors
of [4] proposed a novel dual-function waveform design scheme
that can estimate velocity and range at ultra-high resolutions
in noisy environments.

To address severe path-loss of mmWave signals, massive
multiple-input multiple-output (mMIMO) antenna arrays with
significant beamforming gains have been studied for both
communication and radar systems [6]–[8]. The authors of
[8] provided a parameter design approach for high mobility
scenarios to enhance the resilience to Doppler shift. Unfortu-
nately, a fully digital (FD) mMIMO architecture is of limited
practical value due to its prohibitive hardware and energy
costs. To this end, hybrid analog-digital (HAD) architectures,
offering flexible connectivity between radio frequency (RF)
chains and antennas, become promising to balance hardware
complexity and system performance [9]–[11].

A similar concept in radar systems, i.e., a phased-MIMO
radar, is used to join the high resolution of a MIMO radar and
the coherent processing gain of a phased-array radar [12], [13].
For instance, the authors of [12] developed a hybrid beamform-
ing (HBF) phased-array architecture for active sensing applica-
tions, using a hybrid beamformer system for transmitting and
receiving images. In [13], an approach to synthesize probing
beampatterns for mMIMO radars with fully-connected (FC)
structures was presented based on learning-based RF chains
and antenna selection.

As communication and sensing converge in mmWave
mMIMO systems, it is imperative to design an effective
transceiver architecture to avoid high hardware costs and
enhance the integration gain of DFRC systems. To this end,
we present a new DFRC system with a reconfigurable subarray
(RS) architecture for improved spectral efficiency (SE), energy
efficiency (EE), and sensing performance.

A. Related Works

Many works have considered HAD DFRC systems, includ-
ing FC [14]–[18] and persistently-connected (PC) architectures
[19]–[22]. In [14], two-stage alternating minimization was
proposed to optimize hybrid transmit beams and phase vectors
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for detecting several targets and communicating with several
users, subject to the quality-of-service (QoS) requirements,
e.g., signal-to-interference-plus-noise ratio (SINR), for com-
munication. The authors of [16] conducted weighted opti-
mization of optimal FD transmission and radar beampattern
for an Internet of Vehicles (IoV) scenario to improve SE
of vehicular communication as well as sensing accuracy.
However, these studies focused on radar similarity constraints
or beampattern approximation, and overlooked the sensing
performance of the radar receiver. Considering that the radar
detection probability directly depends on the signal-to-clutter-
plus-noise ratio (SCNR) of the radar receiver, the authors of
[17] optimized hybrid transmit beamforming to maximize the
receive SCNR. Additionally, the authors of [18] opted for a
communication-centric transmitter design under the Cramer-
Rao bound (CRB). These studies were generally based on
an FC architecture, where every RF chain is hardwired to
all antennas via a phase shift (PS) network, which could be
prohibitive in mMIMO.

Another hybrid architecture is the PC architecture, where
RF chains connect individual antenna subarrays. In [19],
an effective trade-off between sub-array MIMO radar and
communication was achieved by minimizing a weighted sum
of beamforming errors for both. The EE of the integrated
system was maximized by activating a small number of RF
chains [20]. In [21], the communication rate was maximized
under a sensing beampattern mismatch requirement in both
single- and multi-user multi-carrier systems. More recently, the
authors of [22] considered a more realistic clutter interference
environment and used a double-phase-shifter (DPS) structure,
providing a well-tolerated compromise between the number of
PSs and the performance gain of the DPS HBF. Although the
PC architecture significantly reduces hardware costs compared
to the FC architecture, these HBF designs offer no flexibility.

RS architecture-based HBF offers a promising solution
to balance system performance and hardware costs in com-
munication systems [23]–[25]. This is achieved by flexibly
connecting an RF chain to a non-overlapping subarray through
a switch network and PSs [23]. Hybrid subarrays were recon-
figurable based on channel statistics in [24], where a greedy
algorithm was implemented to approach the SE achieved by
exhaustive search. In multi-user scenarios, the authors of [25]
designed HBF based on sub-channel differences. However,
these discussions were limited to communication scenarios.
A summary of these existing studies is provided in Table I.

B. Challenges and Contributions

The incorporation of an RS architecture and HBF in a
mmWave DFRC system is not straightforward. On the one
hand, the tight multiplicative coupling of the analog and digital
beamforming makes their joint optimization challenging. The
need to selectively connect the RF chains and antennas in
the RS architecture could result in an NP-hard mixed integer
programming problem [23]. Also, a direct use of techniques,
such as alternating optimization and block decomposition,
is likely to get trapped in inferior solutions or even fail to
converge. On the other hand, many existing DFRC designs

Table I: Comparison between the proposed scheme and the
existing HBF designs

Ref.
Architecture

Communication Metric Sensing Metric
FC PC RS

[14] ✓ SINR Desired beampattern
[15] ✓ Sum-rate Beampattern matching error

[16] ✓
FD matching error;

Multiuser interference (MUI)
Desired beampattern;

Power distribution error
[17] ✓ SCNR SINR
[18] ✓ Weighted sum-rate CRB
[19] ✓ FD matching error Desired beampattern
[21] ✓ Weighted sum-rate Waveform similarity
[22] ✓ Sum-rate SCNR
[23] ✓ Sum-rate Not applicable (n.a.)
[24] ✓ SE n.a.
[25] ✓ Sum-rate n.a.
Ours ✓ Sum-rate SCNR

focus on the transmit HBF, which can penalize the sensing
performance in cluttered environments. To cope with clutter
interference, the authors of [26] considered the processing
of radar receive filters and their optimization on a DFRC
system, which effectively utilizes the available degrees of
freedom (DoFs) in radar receive arrays. But only small-scale
FD beamforming was considered in [26].

This paper presents a new framework for HAD DFRC
systems with hybrid transmit beamforming and radar receive
beamforming, where the PSs and antennas are reconfigurably
connected through adaptive switching networks. A dual-
function base station (BS) delivers communication services to
multiple users in the downlink, meanwhile detecting a poten-
tial target amidst signal-dependent interference sources, i.e.,
clutter. Unlike conventional approaches focusing on radar
beampattern matching errors, we adopt the radar receive
SCNR to quantify and constrain the sensing performance. We
propose an effective algorithm that optimizes the digital and
analog beamformers to maximize the achievable sum-rate of
the HAD DFRC system under a prescribed SCNR requirement
of its radar sensing performance.

Following is the list of contributions of this paper:

• We propose a new RS architecture for mmWave HAD
DFRC systems in which every RF chain can be flexibly
linked to a non-overlapping subset of antennas. This
architecture can significantly reduce the hardware costs
while maintaining the DFRC performance.

• We present a new problem formulation to maximize
the non-convex sum-rate under the SCNR constraints of
radar sensing in an HAD DFRC system with an RS
architecture.

• Using penalty dual decomposition (PDD) and weighted
minimum mean square error (WMMSE) as an inter-
pretation of the non-convex sum-rate, we put forth a
new WMMSE-PDD (WPDD) algorithm to solve the
new problem through block coordination descent (BCD).
As per iteration, a second-order cone program (SOCP)
optimizes the FD transmit counterpart of the HBF. The
sparsity of the RS architecture is exploited to obtain a
low-complexity solution for the HBF.

• The proposed WPDD algorithm is extended to DFRC
systems with PC architectures. Its convergence and com-
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Table II: Notation and definitions

Notation Definition
MT/MR Number of antennas at the DFRC transmitter/receiver;
N t

RF/N
r
RF Number of RF chains at the DFRC transmitter/receiver;

K Number of users;
ds Number of data streams per user;
MU Number of receive antennas at the k-th user;
PT Total transmit power of the DFRC BS;
αk,l The complex amplitude of the l-th path for the k-th user;
β0/βj The complex reflection coefficients of the target/clutter;

TD/WD Digital transmit/receive beamformer at the DFRC BS;
TRF/WRF Analog transmit/receive beamformer at the DFRC BS;

Uk Receive beamformer at the k-th user;
Hk CSI from the BS to the k-th user;

at (θ) /ar (θ) Transmit/receive steering vector at the angle θ;
R The achievable sum-rate of K users;
Γ The receive SCNR at the DFRC receiver;

Tk/W Auxiliary variables introduced for the WPDD algorithm;
ρ The penalty parameter of the WPDD algorithm;

Dk/D̃ The dual variables of the WPDD algorithm.

plexity are analyzed, indicating the benefit of HBF in
DFRC systems in terms of EE.

Extensive simulations are carried out to verify our analysis
and assess the effectiveness of a DFRC system with an RS
architecture between performance and cost by comparing it
with the FC and PC architectures. RS-based HBF leads to a
83.4% improvement in EE compared to the PC-based HBF,
and surpasses the EE achieved under the FC architectures by
more than twofold.

The subsequent sections of this paper are arranged as
follows. The studied problem is cast in Section II. The new
WPDD algorithm is presented in Section III, followed by its
convergence, complexity, and EE analyses in Section IV. A
summary of simulation results is given in Section V. Lastly,
the conclusions are presented in Section VI.

Notation: Bold-face upper- and lower-cases indicate matri-
ces and vectors, respectively. (·)T , (·)H , (·)†, and tr(·) denote
transpose, conjugate transpose, pseudo-inverse, and trace, re-
spectively, CM×N denotes all M×N complex matrices, R{·}
takes the real part of a complex value, ∥·∥ provides Euclidean
or Frobenius norm for a vector or matrix, ∥ · ∥0 is the 0-
norm of a vector, E(·) takes the statistical expectation, CN (·, ·)
represents the complex normal distribution, blkdiag(·) denotes
block diagonal matrix, ⌈·⌉ stands for ceiling. The notation used
is collated in Table II.

II. SYSTEM ARCHITECTURE AND PROBLEM STATEMENT

As depicted in Fig. 1, an mmWave DFRC BS and users
both have uniform linear arrays (ULAs) installed. The DFRC
BS has MT transmit antennas and N t

RF RF chains to serve
K users in the downlink. It also has MR receive antennas
and N r

RF RF chains to detect a target of interest in cluttered
environments. Each user has MU receive antennas. The angle-
of-departure (AoD) of the radar target is the same as the angle-
of-arrival (AoA), as considered in the literature [27]. An RS-
based HAD architecture is considered at both the receive and
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Fig. 1. Illustration of the considered DFRC system with an RS
architecture.

transmit sides of the DFRC BS, where every RF chain can be
linked to a non-overlapping subset of transmit antennas via an
adaptive switching network.

Let s(t) =
[
sT1 (t), · · · , sTK(t)

]T ∈ CNs (Ns ≤ N t
RF ≪

MT) denote the symbol sequence sent in the t-th slot for K
users and the radar target. ds is the number of data streams for
user k (E{sk(t)sk(t)H} = Ids ). The symbols are independent
among the users. The transmit signal is obtained as

x(t) = TRFTDs(t) =

K∑
k=1

TRFTD,ksk(t), (1)

where TD,k ∈ CNt
RF×ds stands for the digital beamfomer

for the k-th user, TD = [TD,1, · · · ,TD,K ], and TRF ∈
CMT×Nt

RF stands for the analog beamformer.

A. Communication Model

Following the extended Saleh-Valenzuela model [19], [28],
mmWave channel between the DFRC BS and user k is
modeled as

Hk =

√
MTMU

Lk

Lk∑
l=1

αk,lar(ψk,l)a
H
t (ϕk,l),∀k, (2)

where Lk specifies the number of propagation paths to the user
k, αk,l ∼ CN (0, 10−0.1PL(dk)) is the complex gain of the l-th
path, l = 1, · · · , Lk. PL(dk) is the path loss over the distance,
dk, between the BS and user k. at(ϕk,l) and ar(ψk,l) give the
transmit and receive array response vectors, respectively:

at(ϕk,l)=
1√
MT

[
1, e−j

2π
λ d sinϕk,l,· · ·,e−j 2π

λ d(MT−1) sinϕk,l

]T
, (3)

ar(ψk,l)=
1√
MU

[
1, e−j

2π
λ d sinψk,l,· · ·,e−j 2π

λ d(MU−1)sinψk,l

]T
. (4)

Here, ϕk,l and ψk,l are the AoD/AoA of the l-th path to the
k-th user, respectively; λ indicates the signal wavelength; d =
λ/2 specifies antenna spacing. Suppose Hk, ∀k, is known at
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the DFRC BS. In practice, the channels can be estimated, e.g.,
using the algorithms developed in [29]–[31].

The received signal of user k is

yk(t) = Hk

K∑
k=1

TRFTD,ksk(t) + nk(t), (5)

where nk(t) ∼ CN (0, σ2IMU
) stands for the additive white

Gaussian noise (AWGN) of the k-th user. nk(t) and sk(t)
are independent of each other. For the brevity of notation, we
suppress the time index t in the remainder of this paper.

After FD receive beamforming, Uk ∈ CMU×ds , the detected
signal of user k is

ŝk=UH
k yk

=UH
k HkTRFTD,ksk︸ ︷︷ ︸

desired signal

+

K∑
i ̸=k

UH
k HkTRFTD,isi︸ ︷︷ ︸

multi-user interference

+UH
k nk︸ ︷︷ ︸

noise

.

(6)

Consequently, the overall achievable rate of the K users is

R(TRF,TD,k,Uk)=

K∑
k=1

log det(Ids +UH
k HkTRFTD,k

×TH
D,kT

H
RFH

H
k UkR

−1
k ), (7)

where Rk=UH
k (σ2IMU

+
K∑
i̸=k

HkTRFTD,iT
H
D,iT

H
RFH

H
k )Uk.

B. Radar Model

Apart from sending communication symbols to the K users,
the transmitted waveform is also exploited to accomplish a
radar detection task. Considering an obstacle detection sce-
nario, a target (e.g., a slowly moving pedestrian) is located at
angle θ0. There are also J stationary clutterers (e.g., trees and
buildings) at angles θj , j = 1, · · · , J . In this case, the time
delay and Doppler shift are relatively negligible, as discussed
in [32]. The prior knowledge of θ0 and θj is obtainable
from an environmental dynamic database using a cognitive
paradigm [32], [33].

Suppose that the potential self-interference from the trans-
mit array to the receive array of the MIMO radar is ade-
quately addressed by implementing appropriate techniques, for
instance, the one developed in [34]. According to (1), the echo
signal received by the BS can be written as

yR = β0ar(θ0)a
T
t (θ0)x+

J∑
j=1

βjar(θj)a
T
t (θj)x+ nR, (8)

where β0 and βj denote the round-trip attenuation and com-
plex reflection coefficients concerning the target and the j-th
clutter, respectively; E(|β0|2) = σ2

0 ; E(|βj |2) = σ2
C; ar(θ)

gives the MR × 1 receive steering vector; at(θ) specifies the
MT×1 transmit steering vector; ar(θ) and at(θ) are obtained
in the same way as (3); nR ∼ CN (0, σ2

RIMR) is the AWGN.
An RS-based HAD architecture is also considered at the

DFRC BS receiver. The received echo signal after analog

receive beamforming WRF ∈ CMR×Nr
RF and digital receive

beamforming WD ∈ CNr
RF×Ns , is given by

y′
R = WH

DWH
RFyR

= β0W
H
DWH

RFA(θ0)x︸ ︷︷ ︸
target

+WH
DWH

RF

J∑
j=1

βjA(θj)x︸ ︷︷ ︸
clutters

+WH
DWH

RFnR︸ ︷︷ ︸
noise

, (9)

where A(θ)=ar(θ)a
T
t (θ).

We adopt the SCNR as the metric to measure the radar’s
target detection and localization capabilities, as given by

Γ (TRF,TD,WRF,WD)

=
E
(∥∥β0WH

DWH
RFA(θ0)x

∥∥2)
E

∥∥∥∥∥WH
DWH

RF

J∑
j=1

βjA (θj)x

∥∥∥∥∥
2
+E

(∥∥WH
DWH

RFnR

∥∥2)
=

tr(WH
DWH

RFΣtWRFWD)

tr(WH
DWH

RFΣcnWRFWD)
, (10)

where Σt = σ2
0A(θ0)TRF

K∑
k=1

(TD,kT
H
D,k)T

H
RFA

H(θ0), and

Σcn=
J∑
j=1

σ2
CA(θj)TRF

K∑
k=1

(TD,kT
H
D,k)T

H
RFA

H(θj) + σ2
RI.

We note that SCNR is a measurable sensing performance
indicator at the receiver, and can be reasonably adapted
to different signal characteristics and application scenarios.
Moreover, the radar detection probability is known to be a non-
decreasing function of the SCNR1, indicating the relevance of
the SCNR in DFRC systems. The measurability and relevance
of SCNR offer excellent practicality, leading it to be broadly
considered in radar and DFRC systems [35].

C. Problem Statement

We holistically design the hybrid transmit beamformers
TD,k and TRF, and the hybrid receive beamformers WD

and WRF under the RS-based HAD architecture, to elevate
the downlink sum-rate while ensuring the radar detection
performance. This problem is cast as follows:

P1 : max
X

R(TRF,TD,k,Uk) (11a)

s.t. Γ (TRF,TD,WRF,WD) ≥ γ, (11b)

∥TRFTD∥2F ≤ PT, (11c)
TRF(m,n)∈{0,F} ,∀m,n, (11d)
∥TRF(m, :)∥0 = 1,∀m, (11e)
WRF(m̃, ñ)∈{0,F} ,∀m̃, ñ, (11f)
∥WRF(m̃, :)∥0 = 1,∀m̃, (11g)

1The target detection probability (PD) increases monotonically with the
received SCNR, i.e., PD(γ) = Q(

√
2γ,

√
−2 lnPFA) [26], [35], where

Q(·, ·) is the Marcum Q function and PFA gives the false-alarm probability.
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where X = {TRF,TD,k,Uk,WRF,WD} collects all of the
optimization variables. Constraint (11b) ensures the minimum
SCNR γ. Constraint (11c) specifies the total transmit power
budget. Constraints (11d)-(11g) specify the HBF mapping
criteria. More specifically, if the n-th RF chain is associ-
ated with the m-th antenna via a PS, TRF (m,n) ∈ F ,
m = 1, · · · ,MT, n = 1, · · · , N t

RF, contains a nonzero phase,
where F collects all possible values of a PS; otherwise,
TRF (m,n) = 0. Similarly, if the ñ-th RF chain is connected
to the m̃-th antenna via a PS, WRF (m̃, ñ) ∈ F , m̃ =
1, · · · ,MR, ñ = 1, · · · , N r

RF; otherwise, WRF (m̃, ñ) = 0.
Since no subarrays overlap, the analog beamformer has only
one nonzero element per row, i.e., ∥TRF (m, :)∥0 = 1 for
m = 1, · · · ,MT; ∥WRF (m̃, :)∥0 = 1 for m̃ = 1, · · · ,MR.

Problem P1 poses significant challenges ascribed to non-
convex objectives and constraints, and the strong coupling of
digital and analog beamformers. The non-convexity makes
it difficult to attain a globally optimal solution. A direct
attempt to tackle the coupling effect with block decomposition
methods, e.g., block successive upper-bound minimization and
inexact flexible parallel algorithm, can also lead to difficulty
in ensuring convergence [36]. In what follows, we develop a
tractable solution to this problem.

III. WPDD ALGORITHM FOR DFRC WITH RS
ARCHITECTURE

A. Reformulation of Problem P1

To overcome the difficulty in solving the nonconvex sum-
rate problem P1 with coupled variables, we develop a tractable
objective according to the WMMSE method to decrease the
complexity of solving problem P1. As revealed in Proposi-
tion 1, problem P1 can be rewritten equivalently as a WMMSE
minimization problem [37].

Proposition 1. Problem P1 and the following problem of
minimizing weighted sum mean square error (MSE) have the
same global optimum:

P2 : max
X ,{Gk},{Ek}

K∑
k=1

(log det(Gk)− tr(GkEk)) (12a)

s.t. (11b)− (11g),

where Gk denotes the weighting factor for user k, Uk is the
receive beamforming for user k, and Ek is the MSE of user
k, as given by

Ek = E{(ŝk − sk)(ŝk − sk)
H}

= Ids − 2R(UH
k HkTRFTD,k) + σ2UH

k Uk

+

K∑
i=1

UH
k HkTRFTD,iT

H
D,iT

H
RFH

H
k Uk. (13)

Proof. Since Gk and Uk appear only in (12a), the equivalence
between problems P2 and P1 can be established by substitut-
ing their optimal solutions (by first-order optimality condition)
into (12a). For more details, please refer to [37, Thm 1].

Although the WMMSE-based transformation makes the
objective function easy to handle, the analog and digital
beamforming are coupled in constraints (11b) and (11c). More-
over, the non-convex SCNR constraint in (11b), and the L0

constraints in (11e) and (11g) make the problem challenging.
Jointly optimizing analog and digital beamforming is difficult.
We introduce auxiliary variables, Tk = TRFTD,k, ∀k, and
W = WRFWD. Problem P2 is recast as

P3 : max
X̃

K∑
k=1

(log det(Gk)− tr(GkEk)) (14a)

s.t.
tr(WHΣtW)

tr(WHΣcnW)
≥ γ, (14b)

K∑
k=1

∥Tk∥2 ≤ PT, (14c)

Tk = TRFTD,k,∀k, (14d)
W = WRFWD, (14e)
(11d)− (11g),

where X̃ ={TRF,TD,k,Uk,WRF,WD,Gk,Tk,W}.

B. PDD-Based Framework for Problem P3

We resort to the PDD to solve P3, as problem P3 has the
form of the problem (P) in [36]. The PDD method integrates
the penalty method, the augmented Lagrangian method, and
the alternating direction method of multipliers (ADMM) and
delivers a general algorithmic framework for minimizing a
non-convex and non-smooth function while dealing with non-
convex coupling constraints. The PDD comprises double-loop
iterations, with the outer loops updating the dual variables
and penalty parameters, and the inner loops executing the
augmented Lagrangian method. The PDD suits problem P3

with a differentiable objective function.

Through the incorporation of two penalty terms for con-
straint (14d) and (14e) into (14a), the inner loop can be
formulated as

P4 :min
X̃

K∑
k=1

{tr(GkEk)−log det(Gk)

+
1

2ρ
∥Tk−TRFTD,k+ρDk∥2}

+
1

2ρ

∥∥∥W−WRFWD+ρD̃
∥∥∥2 (15a)

s.t. (11d)− (11g), (14b)− (14c),

where ρ denotes the penalty parameter; Dk and D̃ are the
dual variables of constraints (14d) and (14e), respectively. ρ,
Dk,∀k, and D̃ are fixed throughout the inner-loop iterations.

Next, we solve problem P4 utilizing the PDD framework,
where BCD is used to solve problem P4.

1) Equivalent FD Sensing Receive Beamformer W:
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By letting tk = vec(Tk), t = [tT1 , · · · , tTK ]T , and w =
vec(W), the SCNR in (10) can be rewritten as

Γ (TRF,TD,WRF,WD)=
σ2
0

∣∣∣wHÃ (θ0) t
∣∣∣2

wHΣ̃cnw
, (16)

where Ã(θ)=I⊗A(θ), Σ̃cn=
J∑
j=1

σ2
CÃ(θj)tt

HÃH(θj)+σ
2
RI.

When the transmit beamforming is given and fixed, we
employ the well-known minimum variance distortionless re-
sponse (MVDR) beamformer [38] to obtain the maximum
SCNR at the MIMO radar, as given by

w =
Σ̃−1

cn Ã(θ0)t

tHÃH(θ0)Σ̃
−1
cn Ã(θ0)t

, (17)

then W can be obtained by reshaping w. According to this
optimal radar receive beamformer W, the SCNR in (16) is
further expressed as

Γ̃ (TRF,TD,k) =

K∑
k=1

tr
(
TH

D,kT
H
RFΦTRFTD,k

)
, (18)

where Φ = σ2
0A

H(θ0)Σ
−1
cn A(θ0).

2) Equivalent FD Transmit Beamformer Tk:

With the rest of variables fixed, the subproblem of problem
P4 for solving the auxiliary variable Tk is written as

min
{Tk}

K∑
k=1

(tr(GkEk)+
1

2ρ
∥Tk−TRFTD,k+ρDk∥2) (19a)

s.t.

K∑
k=1

tr
(
TH
k ΦTk

)
≥ γ, (19b)

K∑
k=1

∥Tk∥2 ≤ PT, (19c)

where Ek is obtained by plugging (14d) into (13), as given by

Ek = Ids − 2R(UH
k HkTk) + σ2UH

k Uk

+

K∑
i=1

UH
k HkTiT

H
i HH

k Uk. (20)

Notice that (19) provides a non-convex quadratic con-
straint quadratic programming (QCQP). Semi-definite relax-
ation (SDR) is often applied to resolve such a problem.
However, SDR conducts a relaxation of rank-one constraints,
resulting in an additional process like Gaussian randomization
to restore the rank-one constraints on obtained solutions [39].
Extra computational complexity occurs.

We propose to transform (19) into a series of SOCPs [40],
using viable substitution and successive convex approximation
(SCA) techniques and solve the SOCPs recursively to obtain
a sub-optimal solution to (19). Let Zk = Tk+ρDk and Pk =
HH
k UkGkU

H
k Hk. We introduce slack variables ak,i > 0 and

bk > 0, i, k ∈ {1, · · · ,K} such that tHi (I⊗PH
k )ti ≤ ak,i

and ∥Zk−TRFTD,k∥2 ≤ bk, which can be further rewritten
in the following second-order cone (SOC) constraints:∥∥∥∥[ tHi (I⊗PH

k )1/2
ak,i−1

2

]∥∥∥∥ ≤ ak,i + 1

2
,∀i, k; (21)∥∥∥∥[ Zk−TRFTD,k

bk−1
2

]∥∥∥∥ ≤ bk + 1

2
,∀k. (22)

In the non-convex SCNR constraint (19b), we can rewrite
tr
(
TH
k ΦTk

)
= tHk (I⊗ΦH)tk. Then, we resort to the SCA

technique to replace this non-convex term with its linear lower
bound (e.g., the first-order expansion), i.e.,

Γ̄k = 2R(̄tHk Φ̄tk)− t̄Hk Φ̄t̄k, (23)

where Φ̄ = I⊗ΦH , and t̄k is the value of tk in the previous
SCA iteration.

Thus, the approximate convex problem of (19) is

min
{tk,ak,i,bk}

K∑
k=1

(
K∑
i=1

ak,i−2R(vecH(GkU
H
k Hk)

Htk)+
1

2ρ
bk

)
(24a)

s.t.

K∑
k=1

2R(̄tHk Φ̄tk)− t̄Hk Φ̄t̄k ≥ γ, (24b)

∥t∥ ≤
√
PT, (24c)

(21)− (22).

We can use off-the-shelf toolboxes, e.g., CVX [41], to effi-
ciently solve (24). By recursively solving (24), we can obtain
at least a local optimum of (19).

Through the use of the PDD framework, we can decouple
hybrid transmit and receive beamforming for DFRC into
the subproblems of optimizing the equivalent sensing receive
beamformer W and the equivalent DFRC transmit beamform-
ers Tk, ∀k, which can be solved sequentially. The inter-user
interference in the considered system leads to non-convexity in
the objective function in (19a). The clutter interference leads
to non-convexity in the SCNR constraint in (19b). To deal with
this, variable substitution and SCA are conducted to convexify
both the objective function and the SCNR constrain in the
subproblem of Tk, ∀k; see (21), (22) and (23). As a result,
the subproblem can be solved using off-the-peg CVX toolkits.

Remark: PDD is a general algorithmic framework for solving
problems with multiplicatively coupled variables. It has been
applied to optimize hybrid transmit and receive beamforming
for a single user in a MIMO channel, e.g., in [23]. By
contrast, the studied problem of multi-user mMIMO can un-
dergo non-negligible inter-user interference; see (6). Moreover,
our studied system suffers from interference from clutters to
the radar sensing signals received by the BS; see (9). This
differs substantially from the work presented in [23], where
no such interference exists. In this sense, our studied problem
is distinct from [23] in objectives and constraints.

3) Digital Receive Beamformer Uk for User k:
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We optimize {Uk} by fixing all other variables, leading to
an unconstrained problem:

min
Uk

K∑
k=1

tr(GkEk). (25)

By substituting (20) into (25) and then assessing the first-order
derivative of (25), the optimum receive combiner Uk for user
k is obtained in closed form as follows:

Uk =

(
K∑
i=1

HkTiT
H
i HH

k + σ2IMU

)−1

HkTk,∀k. (26)

4) WMMSE Weighting Matrix Gk:

By substituting (26) into (20), the mean square error Ek is
given by (I−UH

k HkTk). Then, assessing the first-order op-
timality condition of problem P4 concerning Gk, the closed-
form solution of Gk is

Gk = (Ek)
−1 = (I−UH

k HkTk)
−1,∀k. (27)

5) Analog Transmit Beamformer TRF:

Recall that Zk = Tk+ρDk, and the analog transmit beam-
former TRF is only in the second term of (15a). Therefore,
the subproblem concerning TRF can be given by

min
TRF

K∑
k=1

∥Zk −TRFTD,k∥2

s.t. TRF (m,n) ∈ {0,F} ,∀m,n,
∥TRF (m, :)∥0 = 1,∀m.

(28)

Let Z = [Z1, · · · ,ZK ]. Then, the objective∑K
k=1 ∥Zk −TRFTD,k∥2 can be rewritten as

∥Z−TRFTD∥2. The constraints in (28) indicate there
is only one non-zero element with a constant magnitude in
every row of TRF, allowing (28) to be solved row-by-row.

Let Sn, n = 1, · · · , N t
RF denote the transmit antennas

linked to the n-th RF chain. Because each of the antennas is
linked to only an RF chain and the subarrays do not intersect
each other, we can have

∪N
t
RF

n=1Sn = {1, · · · ,MT} ,∀n; (29)

Sp ∩ Sq = ∅,∀p ̸= q. (30)

Based on (29) and (30), we establish the following proposition
to solve problem (28).

Proposition 2. Define Z(m, :)TD(n, :)
H = |ζm,n| ejϕ̃m,n for

m ∈ Sn and n = 1, · · · , N t
RF. Problem (28) is rewritten as

max
{φm,n}{Sn}

Nt
RF∑

n=1

∑
∀m∈Sn

|ζm,n| cos(ϕ̃m,n − φm,n)

s.t. (29), (30),

(31)

where φm,n stands for the phase of the (m,n)-th element of
TRF, i.e., TRF(m,n) = ejφm,n .

Proof. See Appendix A.

Clearly, the objective of problem (31) is maximized when
φm,n = ϕ̃m,n. Therefore, for each antenna m, we map it to
the n-th RF chain maximizing |ζm,n| cos(ϕ̃m,n − φm,n):

n⋆m = argmax
n
|ζm,n| cos(ϕ̃m,n − φm,n), (32)

and refresh the subset of transmit antennas for the n-th RF
chain: Sn⋆ = Sn⋆ ∪ {m}.

The optimal subarray mapping scheme is obtained by per-
forming (32) for each antenna. Then the corresponding optimal
analog beamformer is obtained as

TRF(m,n)=

{
ejφm,n , if m∈Sn⋆ , n=1,· · · ,N t

RF;

0, otherwise.
(33)

Based on the sparsity in the reconfigurable connection con-
straint (11d), we guarantee the optimality of the analog beam-
former TRF since rows are enumerated one after another.
6) Analog Sensing Receive Beamformer WRF:

Define Q = W+ρD̃. The subproblem concerning WRF is

min
WRF

∥Q−WRFWD∥2

s.t. WRF(m̃, ñ)∈{0,F} ,∀m̃, ñ,
∥WRF(m̃, :)∥0 = 1,∀m̃.

(34)

Since problem (34) has the same form as problem (28), we
can solve the radar receive analog beamforming WRF in the
same way as described in Proposition 2, as given by

max
{φ̄m̃,ñ},{S̄ñ}

Nr
RF∑

ñ=1

∑
∀m̃∈S̄ñ

∣∣ζ̄m̃,ñ∣∣ cos(ϕ̄m̃,ñ − φ̄m̃,ñ)
s.t. ∪N

r
RF

ñ=1 S̄ñ = {1, · · · ,MR} ,∀ñ,
S̄p ∩ S̄q = ∅,∀p ̸= q,

(35)

where S̄ñ, ñ = 1, · · · , N r
RF stands for the set of receive

antennas linked to the ñ-th RF chain; ζ̄m̃,ñ and ϕ̄m̃,ñ stand for
the amplitude and phase of Q(m̃, :)WD(ñ, :)

H , respectively;
φ̄m̃,ñ is the phase of the (m̃, ñ)-th element of WRF. The
corresponding optimal receive analog beamformer is given by

WRF(m̃, ñ)=

{
ejφ̄m̃,ñ , if m̃∈S̄ñ⋆ , ñ=1,· · · ,N r

RF;

0, otherwise.
(36)

Here, S̄ñ⋆ is the set of optimal antennas connected to the ñ-th
RF chain obtained from (35).
7) Digital Transmit Beamformer TD,k and Sensing Receive
Beamformer WD:

The subproblem concerning the digital transmit beamform-
ing TD,k is an unconstrained least squares (LS) problem:

min
TD,k

K∑
k=1

∥Zk −TRFTD,k∥2. (37)

Subsequently, the optimal solution to (37) is obtained as

TD,k = T†
RFZk,∀k. (38)

The subproblem concerning the radar digital receive beam-
forming WD can be formulated in the same way as (37). With
reference to (38), the optimal WD can be given by:

WD = W†
RFQ. (39)
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Algorithm 1 The proposed WPDD algorithm

Initialize: Imax, ε1, ε2, T
(0)
RF, T

(0)
D,k, U

(0)
k , W

(0)
RF, W

(0)
D ,

ρ(0) > 0, 0 < c < 1
1: repeat
2: repeat
3: Update W by (17), Tk by (24), Uk by (26), Gk

by (27), TRF by (33), WRF by (36), TD,k by (38),
WD by (39)

4: until the convergence with ε1 or Imax inner iterations
5: if h(X̃ ) ≤ η then
6: Update Dk by (41) and D̃ by (42)
7: else
8: Update ρ by ρ← cρ
9: end if

η ← 0.8h(X̃ )
10: until h(X̃ ) < ε2
Output: TRF,TD,k, Uk, WRF, WD

C. Summary of the WPDD Algorithm

Algorithm 1 summarizes the new WPDD algorithm for
designing the HBF in the considered DFRC system by solv-
ing problem P1. Let D = [D1, · · · ,DK ]. In the outer-
loop iteration, we refresh the dual variable sets {D, D̃} and
the penalty parameter ρ, based on the following constraint
violation condition:

h(X̃ )=max(∥Tk−TRFTD,k∥ , ∥W−WRFWD∥). (40)

If h(X̃ ) ≤ η, we update the dual variables by

Dk ← Dk +
1

ρ
(Tk −TRFTD,k),∀k, (41)

D̃← D̃+
1

ρ
(W −WRFWD). (42)

If h(X̃ ) > η, we reduce the penalty factor ρ by ρ← cρ, with
0 < c < 1. Algorithm 1 terminates if h(X̃ ) < ε2, where ε2 is
a prespecified threshold. The WPDD stabilizes at a stationary
point of problem P1 [42], as discussed later in Section IV-A.

D. Adaptation Under PC Architectures

A PC configuration represents a specific instance of RS
connection, where every RF chain is persistently hardwired
to a set of antennas. Specifically, the analog beamformer
TRF and WRF are block diagonal matrices. For example,
every block of transmit analog beamforming TRF has an M -
dimensional vector with a constant-modulus (CM) value, i.e.,

TRF = blkdiag{p1, · · · ,pNt
RF
} ∈ CMT×Nt

RF , (43)

where pi ∈ CM×1 for i = 1, · · · , N t
RF, M = MT/N

t
RF, and

|pi(ν)| = 1 for ν = 1, · · · ,M.
By replacing the reconfigurable connection constraints (11d)

and (11e) in problem P1 with (43), we can obtain the
DFRC HBF design under the PC architecture. Fortunately,
Algorithm 1 is still applicable to this problem, except that the
subproblems for updating the digital and analog beamformers,

TRF and TD,k differ, that is, Step 3 in Algorithm 1, becomes
different, as described below.

The subproblem of TRF, i.e., (28), can be rewritten as

min
TRF

∥Z−TRFTD∥2

= min
φm,n

∑
∀n

∑
∀m

∥∥Z(m, :)− ejφm,nTD(n, :)
∥∥2. (44)

Here, m = 1, · · · ,MT, and n = 1, · · · ,
⌈
m
Nt

RF

MT

⌉
. Then, the

phase of the (m,n)-th element of TRF is given by

φm,n = arg
(
Z (m, :)TD(n, :)

H
)
. (45)

On the other hand, the subproblem concerning TD, i.e.,
(37), can be rewritten as

min
TD

∥Z−TRFTD∥2 , s.t. ∥TD∥2 =
N t

RFPT

MT
, (46)

which is a non-convex QCQP. Here, we employ a computa-
tionally efficient algorithm to acquire the optimal TD.

By defining Q̄ = TH
RFTRF, and Ḡ = TH

RFZ, the objective
of (46) is reformulated as

tr(TH
D Q̄TD)− 2R(tr(TH

D Ḡ)). (47)

By introducing the Lagrange multiplier λL, the Lagrangian
function is formulated as

L(TD, λL) =tr(TH
D Q̄TD)− 2R(tr(TH

D Ḡ))

+ λL(∥TD∥2 −
N t

RFPT

MT
).

(48)

According to the optimality condition of (48), we obtain

Topt
D = (Q̄+ λoptL I)

−1
Ḡ, (49)

where λoptL can be obtained by bisection search [43].
In general, the HBF for DFRC systems with PC architec-

tures can be obtained by replacing the solution process of TRF

and TD in Algorithm 1, i.e., replacing (33) and (38) using
(45) and (49) in Step 3, respectively. The description is omitted
because the PC-based receive beamforming can be obtained
similarly.

IV. SYSTEM PERFORMANCE ANALYSIS

A. Convergence Analysis

Algorithm 1 converges to an effective solution to problem
P1 by iteratively running the proposed double-loop process.
Recall that X̃ = {TRF,TD,k,Uk,WRF,WD,Gk,Tk,W}
collects all variables to be updated in the inner-loop, where
W, Uk, and Gk depend uniquely and deterministically on Tk,
followed by finding TRFTD,k and WRFWD to approximate
Tk and W, respectively. In this sense, we can partition X̃ into
three subsets: X̃1 = {W,Tk,Uk,Gk}, X̃2 = {TRF,WRF},
and X̃3 = {TD,k,WD}, the three of which are updated
alternately in each inner-loop iteration.

Given ρ, D, and D̃ specified at the beginning of the
current outer-loop iteration, X̃1 depends solely on the SCA
process of Tk,∀k. The objective function (15a) is certainly
non-increasing during the process. Given X̃1, X̃2 and X̃3 are
updated, which would further decrease (15a) due to the fact
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that (33) and (38) provide the optimal solutions to (28) and
(37), respectively, and hence ensure the objective function
of (28) or (37) is strictly non-increasing. Likewise, (36) and
(39) can ensure the objective function of (34) is strictly non-
increasing. As a result, (15a) is strictly non-increasing during
an inner-loop iteration and hence throughout the inner-loop
iterations during an outer-loop iteration. On the other hand,
(15a) is apparently lower bounded due to the finite and non-
negative transmit power of the BS.

In the outer loop, ρ, D, and D̃ are updated under the con-
straint violation condition, h(X̃ ), until the PDD convergence.
While (15a) may not be strictly non-increasing in the outer
loop, the outer-loop iterations can increasingly penalize the
violation of (14d) and (14e). When Tk stops changing in the
inner loop, so do the rest of the variables in the inner loop,
and the outer-loop iterations also terminate according to (41)
and (42). With the optimal ρ∗, D∗, and D̃∗ in the outer loop,
Algorithm 1 eventually converges.

B. Discussion on Optimality

Due to the NP-hardness of problem P1, existing techniques
fall short of delivering global optima. Nevertheless, the FD
counterpart of the considered system, i.e., problem P1 with
(11d)–(11g) dropped, can be solved using Algorithm 1 with-
out (33), (36), (38) and (39) in Step 3, reach a Karush-Kuhn-
Tucker (KKT) point, and serve as an upper bound for the
proposed HBF algorithm. As evidenced numerically in Section
V, the HBF design in Algorithm 1 significantly outperforms
the existing alternative approaches, much closer to the FD
counterpart. In the FD counterpart of the considered problem,
only X̃1 remains to be optimized. As discussed earlier, X̃1

depends uniquely and deterministically on Tk,∀k, with the
rest of the variables in X̃1 all given in closed-form functions
of Tk,∀k. To this end, the optimality of X̃1 depends on that
of Tk,∀k.

Under the FD architecture, the objective function of the Tk

subproblem contains only the first term of (19a). The solution
yields ak,i = tHi (I⊗PH

k )ti, ∀i, k. Or, one could reduce
the auxiliary variable ak,i to reduce (19a). After variable
substitution and SCA, the Tk subproblem is convexified. The
non-convex constraint tr(TH

k ΦTk),∀k is replaced by the first-
order Taylor approximation 2R(̄tHk Φ̄tk)− t̄Hk Φ̄t̄k,∀k. Here,
tr(TH

k ΦTk) and 2R(̄tHk Φ̄tk)− t̄Hk Φ̄t̄k yield the same value
and the same gradient at the local point t̄k. Moreover, the
Slater’s condition is satisfied in every iteration of SCA; i.e.,
there is a feasible solution to the Tk subproblem such that all
inequality constraints are strictly satisfied. According to [44],
this solution is a KKT stationary point, which is a local
minimum if it is in the interior of the feasible set of the Tk

subproblem. As a result, the WPDD can achieve a KKT point
for the FD counterpart of the considered problem, which is a
local minimum if it is inside the feasible region.

C. Computational Complexity

Since there are typically many more transmit antennas than
receive antennas in DFRC systems, the complexity of the
WPDD algorithm is predominantly contributed by the solution

Table III: The total power consumption under different
beamforming architectures

Architecture Total Power Consumption

RS PRS
tot = PT+PBB+(N t

RF+N
r
RF)PRF+(MT+MR)PPS+(MT+MR)PSW

PC PPC
tot = PT + PBB + (N t

RF+N
r
RF)PRF + (MT+MR)PPS

DPC PDPC
tot = PT + PBB + (N t

RF+N
r
RF)PRF + 2(MT+MR)PPS

FC PFC
tot = PT + PBB + (N t

RF+N
r
RF)PRF + (MTN

t
RF +MRN

r
RF)PPS

FD PFD
tot = PT + PBB + (MT+MR)PRF

of Tk in Step 3. Solving for Tk in (24) involves (KMT +
K2 +K) variables and (K2 +K + 1) SOC constraints. The
complexity of running the interior point method to solve for an
ϵ-optimal solution for Tk isO(K4M3

T log(1/ϵ)), ∀k [45]. The
worst-case complexity of WPDD under the RS architecture
is O

(
IOII

(
K4M3

T log(1/ϵ)
))

, where IO and II indicate the
iteration numbers in the outer and inner loops, respectively.

D. Energy Efficiency (EE)

To evaluate the effect of the RS HAD DFRC system from
the perspectives of hardware costs and power consumption,
the average EE of each user is defined as

η
∆
=

1

K

R

Ptot
, (50)

where Ptot is the total energy consumption of the DFRC BS.
The overall power consumption under various beamform-

ing architectures with transmit power PT is summarized in
Table III, where PBB specifies the circuit power consumed by
the baseband circuit; PRF and PSW are the powers consumed
by an RF chain and a switch, respectively; PPS gives the power
consumed by a PS; NPS is the number of PSs. Clearly, the
FD has the maximum power consumption because there are
the same number of RF chains and transmit/receive antennas.
Moreover, the number of PSs is proportional to that of the
transmit/receive antennas and depends on the specific connec-
tion mode in the HAD architecture.

V. NUMERICAL RESULTS

In this section, the developed algorithm for DFRC systems
with HBF architectures is numerically assessed by MATLAB
simulations. The path loss PL(dk) is modeled as

PL(dk) [dB] = α+ 10β log10(dk) + ξ, (51)

where ξ ∼ N (0, σ2), α = 72.0, β = 2.92, and σ = 8.7
dB for a non-line-of-sight (NLoS) path [28]. The noise power
of user k is σ2

k = −90 dBm. The AoDs ϕk,l, ∀k, l, follow
a uniform distribution within [−π2 ,

π
2 ]. The other simulation

parameters are collated in Table IV. For the WPDD algorithm,
the initial penalty factor is ρ = 1, the control parameter is
c = 0.6, and the termination tolerances are ε1 = ε2 = 10−4,
where ε1 controls the accuracy of inner iterations. Moreover,
we set the maximum number of iterations Imax = 30 to prevent
slow convergence in the inner loop. All of the simulations are
conducted using the Matlab 2018b version using a standard PC
with an i7-8700 3.20 GHz CPU, 16 GB RAM, and a 64-bit
operating system.
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Table IV: Simulation parameters

Parameter Value Parameter Value
MT 64 MR 16
N t

RF 8 N r
RF 8

MU 2 PT 40 dBm
K 4 ds 2
Lk 3 dk 80 m
θ0 0◦ θj {−30◦, 30◦}
σ2
0 10 dB σ2

C 20 dB

2 4 6 8 10 12 14

Number of Outer Iterations
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Fig. 2. Convergence behaviors of the WPDD algorithm with γ = 10
dB, and 15 dB.

The schemes used for evaluating and benchmarking the
system performance are outlined as follows:

• RS-WPDD: This is the proposed WPDD algorithm for
HBF design in multi-user DFRC systems with the RS
architectures (see Section III-C).

• PC-WPDD: This is the adaptation of the proposed WPDD
algorithm for multi-user DFRC systems with the PC
architectures (see Section III-D).

• DPC-THEREON: This is the joint hybrid waveform and
radar receiver optimization algorithm in [22] based on the
DPS architectures.

• FC-TwoStage: This is the FC-based HBF algorithm de-
veloped in [14], which first constructs an FD beamformer
T and then iteratively optimizes the analog and digital
beamformers to approximate the achieved T.

• PC-TwoStage: This is the HBF algorithm developed
under the PC architectures in [19], which can be imple-
mented similarly to FC-TwoStage algorithm.

• FD/FA: This is the fully-digital/analog-based beamform-
ing algorithm that provides an upper/lower bound for all
HBF algorithms.

Fig. 2 plots the convergence of the proposed WPDD algo-
rithm for the HBF design with the increase of outer iterations,
where the radar SCNR threshold γ is set to 10 dB and 15
dB. It is noticed that the communication sum-rate converges
within about ten iterations under both the RS-WPDD and
PC-WPDD algorithms. Moreover, RS-WPDD always obtains
better communication performance than PC-WPDD.
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Fig. 3. Trade-off between the communication sum-rate and the radar
receive SCNR γ, under different beamforming design schemes. MT
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Fig. 3 plots the trade-off between the achievable sum-rate
and the radar SCNR constraint under different beamforming
design schemes, where γ ranges from 10 dB to 20 dB. The
sum-rate declines as γ grows. The reason is that when the
sensing demand is higher, fewer DoFs are used to improve
communication performance. When γ ≤ 12 dB, the multi-
user communication sum-rate remains approximately constant
since the system is saturated when the sensing performance
is easily satisfied with small γ. When γ ≥ 16 dB, the
communication performance degrades rapidly. In addition, Fig.
3 shows that the proposed RS-WPDD algorithm outperforms
the PC-based algorithms. Even the proposed PC-WPDD has
comparable performance with DPC-THEREON. Here, FD
offers an upper bound for the performance of our proposed
system, while FA gives a lower bound.

Fig. 4 shows the trade-off between the communication
and sensing of the WPDD framework under different DFRC
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Fig. 5. Achievable sum-rate of communication versus different
transmit powers PT, with γ = 15 dB, MT = 32, 64, and 128.
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Fig. 6. Beampattern for different architectures with MT = 32, MR

= 16, γ = 18 dB, θ0 = 0◦, and θj = {−30◦, 30◦}.

radar receive architectures, including the hybrid receiver (HR)
architecture and the fully digital receiver (FDR) architecture.
The RS-based DFRC hybrid receive beamforming is closer to
the FD receive beamforming than the PC architecture. Fig.
5 plots the achievable sum-rate of the DFRC system with
the increasing total transmit power PT, where the number
of transmit antennas is MT = 32, 64, and 128. It is shown
that the proposed RS-WPDD is better than PD-WPDD, as
observed in Fig. 3. The system performance improves as MT

increases, enhancing antenna diversity and better beamforming
gain. Furthermore, the difference between RS-WPDD and PC-
WPDD decreases as MT increases.

We adopt the spatial beampattern, P (θ) =
∣∣wHA(θ)x

∣∣2
[26], as a sensing performance metric. The optimized beam-
patterns of the proposed WPDD algorithm and the benchmarks
with MT = 32, MR = 16, and γ = 18 dB are depicted in
Fig. 6. Clearly, all schemes can be pointed at a 0◦ target and
achieve good suppression of clutters at −30◦ and 30◦. Clutters
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Fig. 7. Detection probability with MT = 64, MR = 16, θ0 = 0◦,
and θj = {−30◦, 30◦}.
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Fig. 8. Average EE vs. the threshold of radar receive SCNR γ, with
K = 4.

can be effectively suppressed through receive beamforming at
the sensing receiver. Moreover, the RS-WPDD scheme has a
peak-to-side-lobe ratio of about 30 dB, which is much better
than the rest of the schemes.

We also plot the detection probability of the proposed RS-
WPDD with the SCNR threshold γ, as shown in Fig. 7. When
γ = 15 dB, the detection probability is 99.72% under a false
alarm probability of 10−6, and 99.99% under a false alarm
probability of 10−4. As shown in Fig. 3, RS-WPDD can
obtain a satisfactory sensing performance with marginal or
even negligible communication rate losses when γ = 15 dB.

We evaluate EE to show the effect of our proposed HBF
on the system cost and performance, where PBB = 200 mW,
PRF = 300 mW, PPS = 50 mW, and PSW = 5 mW [23].
Fig. 8 plots the average EE of the DRFC systems with the
increase of γ. We see that the EE of the proposed RS-WPDD
is better than that of PC-WPDD and significantly surpasses
the other benchmarks. Specifically, when γ = 15 dB, RS-
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WPDD improves the EE by 23.9% compared to PC-WPDD,
83.4% compared to PC-TwoStage, and 114.2% compared to
FC-TwoStage. Fig. 9 shows the change in EE with the number
of users K (K ≤ N t

RF), when each user has only one data
stream, i.e., ds = 1, and N t

RF = 8. The RS-WPDD still
yields the best EE across the spectrum of the user number, as
observed in Fig. 8. The system parameters can be selected to
balance the hardware cost and system performance of DFRC
with the RS architectures.

VI. CONCLUSION

We have designed HBF for a multi-user mmWave DFRC
system with a new RS HAD architecture. We have jointly
optimized digital and analog beamformers to maximize the
communication sum-rate under a prescribed SCNR of target
detection. An efficient WPDD algorithm has been designed
based on WMMSE and PDD methods, which can guarantee
convergence to a stationary point. The effectiveness of WPDD
has been confirmed in terms of convergence, communication
SE, target beampattern, and system EE. Simulations have
shown that with the RS architecture and HBF, DFRC systems
excel in both SE and EE compared to the conventional PC
architecture. The EE of the systems is dramatically improved
compared to the FC architecture by 114.2%.

APPENDIX A
PROOF OF PROPOSITION 2

Because the reconfigurable subarrays do not overlap and
every transmit antenna is linked to only an RF chain, we can

solve problem (28) row by row, as follows:

min
TRF

∥Z−TRFTD∥2

(a)
= min

TRF

Nt
RF∑

n=1

∑
∀m∈Sn

∥Z (m, :)−TRF (m,n)TD (n, :)∥2

=min
TRF

Nt
RF∑

n=1

∑
∀m∈Sn

{∥Z (m, :)∥2 + |TRF (m,n)|2 ∥TD (n, :)∥2}

− 2R
(
Z (m, :)TD(n, :)

H
TRF(m,n)

H
)
,

(52)
where the equality (a) holds when the objective function is
expanded in rows.

Define φm,n as the phase of the (m,n)-th entry in TRF,
i.e., TRF (m,n) = 1√

MT
ejφm,n , and Z (m, :)TD(n, :)

H
=

|ζm,n| ejϕm,n , n = 1, · · · , N t
RF,m ∈ Sn. By suppressing the

constant term, (52) is further equivalent to

max
TRF

Nt
RF∑

n=1

∑
∀m∈Sn

R
(
Z (m, :)TD(n, :)

H
TRF(m,n)

H
)

(b)
= max

{φm,n}

Nt
RF∑

n=1

∑
∀m∈Sn

R
(
e−jφm,nZ (m, :)TD(n, :)

H
)

= max
{φm,n}

Nt
RF∑

n=1

∑
∀m∈Sn

|ζm,n| cos (ϕm,n − φm,n).

(53)
Since the (m,n)-th entry of TRF has a constant modulus
value, the equality in (b) holds. The final establishment of
the equivalence between problems (28) and (31) is achieved
by integrating the objective (53) with the reconfigurable con-
nection constraints (29) and (30).
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