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Abstract—In this paper, we present a framework for con-
volutional coded Poisson receivers (CCPRs) that incorporates
spatially coupled methods into the architecture of coded Poisson
receivers (CPRs). We use density evolution equations to track
the packet decoding process with the successive interference
cancellation (SIC) technique. We derive outer bounds for the
stability region of CPRs when the underlying channel can be
modeled by a ϕ-ALOHA receiver. The stability region is the set
of loads that every packet can be successfully received with a
probability of 1. Our outer bounds extend those of the spatially-
coupled Irregular Repetition Slotted ALOHA (IRSA) protocol
and apply to channel models with multiple traffic classes. For
CCPRs with a single class of users, the stability region is
reduced to an interval. Therefore, it can be characterized by
a percolation threshold. We study the potential threshold by
the potential function of the base CPR used for constructing a
CCPR. In addition, we prove that the CCPR is stable under
a technical condition for the window size. For the multiclass
scenario, we recursively evaluate the density evolution equations
to determine the boundaries of the stability region. Numerical
results demonstrate that the stability region of CCPRs can be
enlarged compared to that of CPRs by leveraging the spatially-
coupled method. Moreover, the stability region of CCPRs is close
to our outer bounds when the window size is large.

Index Terms—coded Poisson receivers, Irregular Repetition
Slotted ALOHA, density evolution, potential function, successive
interference cancellation

I. INTRODUCTION

The fifth-generation networks (5G) and beyond aim to
support various connectivity classes of users that have dif-
ferent quality-of-service (QoS) requirements, including (i)
enhanced mobile broadband (eMBB), (ii) ultra-reliable low-
latency communications (URLLC), and (iii) massive machine-
type communications (mMTC) (see, e.g., [3]–[6] and refer-
ences therein). Network slicing [7] that partitions and allocates
available radio resources to provide differentiated QoS in
a single radio network has received much attention lately.
For downlink transmissions, network slicing could be tackled
by centralized scheduling algorithms [8]. On the other hand,
various schemes of coded multiple access (see, e.g., [9]–[23])
have been proposed in the literature to address the problem of
uplink transmissions. The framework of Poisson receivers [24]
is an abstraction of these coded multiple access schemes to
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hide the encoding/decoding complexity of the physical layer
from the Medium Access Control (MAC) layer.

A Poisson receiver specifies the probability that a packet is
successfully received (decoded) when the number of packets
transmitted simultaneously to the receiver follows a Pois-
son distribution (Poisson offered load). Inspired by Irregular
Repetition Slotted ALOHA (IRSA) [10] and coded slotted
ALOHA (CSA) [11]–[16], a Poisson receiver can be used
as a building block to construct a system of coded Poisson
receivers (CPR) with multiple classes of users and multiple
classes of receivers. In [25], the stability region of a system
of CPR is defined as the region of Poisson offered loads
in which all the packets can be successfully received (with
probability 1). The stability regions of various network slicing
policies, including the complete sharing and the receiver
reservation policies, were computed numerically in [25]. The
numerical results in [25] showed that different network slicing
policies lead to different stability regions. Given a targeted
stability region in a network with various classes of traffic, one
engineering problem is to design a system of CPR associated
with a network slicing policy to cover the targeted stability
region.

One objective of this paper is to explore the boundaries of
the stability region of a system of CPRs and to devise schemes
to approach the boundaries. The contributions of the paper are
as follows:
(i) Outer bounds for the stability region (see Theorem 9): For
IRSA and CSA, there is only a single class of users and a
single class of receivers. Thus, the stability region is reduced
to an interval and its boundary is limited to one packet per
time slot (as the underlying channel is the slotted ALOHA
channel). When the underlying channel is replaced by the D-
fold ALOHA channel (in which, at most, D packets can be
successfully received in a time slot), the boundary is limited
to D packets per time slot. These boundaries are simply the
capacities of the underlying channels. As an application of the
Area Theorem [26], tighter bounds for the stability regions for
IRSA and coded D-fold ALOHA were derived in [13] and
[27], respectively. In Theorem 9, we derive outer bounds for
the stability region of a system of CPR when the underlying
channel is modeled by a ϕ-ALOHA receiver [28]. Such a
model is a generalization of both the slotted ALOHA channel
and the D-fold ALOHA channel. As such, our outer bounds
recover the upper bounds for IRSA and coded D-fold ALOHA
in [13], [27] as special cases. Our outer bounds can also be
applied to the setting with multiple traffic classes.
(ii) Threshold saturation of Convolutional Coded Poisson
Receivers (see Theorem 13): Motivated by the remarkable per-
formance of convolutional Low-Density Parity-Check (LDPC)
codes (see, e.g., [29]–[31]) and the spatially coupled IRSA
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[27], [32], we propose using the construction method for
convolutional LDPC codes and spatially coupled IRSA to
construct Convolutional Coded Poisson Receivers (CCPRs)
with multiple classes of users and multiple classes of re-
ceivers. To construct a CCPR, one first constructs L stages
of random bipartite graphs from a base CPR. The L stages
of bipartite graphs are concatenated to form a single bipartite
graph. Then, we rewire the receiver ends of the ℓ-th copy,
where 1 ď ℓ ď L, to a randomly selected copy in a window
w. We refer the reader to Section IV-A for more details on
the constructions. By using the puncturing technique in LDPC
codes, we show in Theorem 13 that the stability region with
L stages is not larger than that with L ´ 1 stages, and thus
the stability region converges as L Ñ 8. Such a phenomenon
is analogous to threshold saturation for convolutional LDPC
codes and spatially coupled IRSA (see, e.g., [29], [31]–[33]).
(iii) Potential functions and percolation thresholds for CCPRs
with a single class of users (see Theorem 17 and Theorem
20): Even though we know that the stability region converges
as L Ñ 8, characterizing such a stability region is difficult
for CCPR with multiple classes of users. For CCPRs with
a single class of users, we use a remarkable mathematical
tool called potential functions by Yedle et al. [30], [34] and
Schlegel et al. [35] in their study of LDPC codes. In Theorem
17, we derive the potential function of a (base) CPR. Based
on such a potential function, we define three thresholds: the
single-system threshold G˚

s , the potential threshold G˚
conv ,

and the potential bound G˚
up. We show the threshold saturation

theorem in Theorem 20 that for all G ď G˚
conv , a CCPR with

L stages is stable if the window size w satisfies a technical
condition. The three thresholds are related as follows:

G˚
s ă G˚

conv ă G˚
up. (1)

The single-system threshold G˚
s recovers the percolation

threshold of a (base) CPR in [25]. When the underlying
channel is modeled by the D-fold ALOHA, the potential
bound G˚

up is the same as the upper bound for stability in
[27].
(iv) Numerical results (see Section VI): We provide numerical
results for various systems of convolutional coded Poisson
receivers. For CCPRs with one class of users and one class of
receivers, our numerical results for G˚

conv and G˚
up in various

parameter settings match very well with those in Table 1 of
[32] and Table I of [27]. We also study the convolutional IRSA
with two classes of users and two classes of receivers. We
consider the two network slicing policies in [25]: the complete
sharing policy and the receiver reservation policy. For L “ 40,
our numerical results show that the convolutional effect (due
to spatial coupling) can indeed enlarge the stability region.
Such enlargement appears to be monotone in the window size
w.

The structure of this paper is organized as follows: In
Section II, we provide a review of the coded Poisson receiver
framework. In Section III, we show the outer bounds of the
stability region of CPRs. In Section IV, we introduce the
concept of CCPRs and present the development of density
evolution equations for their decoding process, as well as
the threshold saturation phenomena. In Section V, we delve

into the application of the potential function to our CCPR
framework, focusing on a single class of users. We utilize
potential functions to characterize three significant thresholds.
We establish the saturation theorem in this section as well.
Some numerical results for both single and multiple traffic
classes are presented in Section VI. We conclude the paper
and discuss potential extensions of our work in Section VII.
Several proofs of theorems are included in Appendices A,
B, and C of the supplemental material. We provide a list of
notations in Appendix D.

II. REVIEW OF THE FRAMEWORK OF CODED POISSON
RECEIVERS

For the paper to be self-contained, we briefly review the
framework of coded Poisson receivers in [24], [25], [28].

A. Poisson receivers and ALOHA receivers

A Poisson receiver is an abstract receiver proposed in [24].
The key insight of a Poisson receiver is to specify the packet
success probability when the system is subject to Poisson
arrivals. Specifically, a system with K classes of input traffic
is said to have a Poisson offered load ρ “ pρ1, ρ2, . . . , ρKq

if these K classes of input traffic are independent, and the
number of class k packets arriving at the system follows a
Poisson distribution with mean ρk, for k “ 1, 2, . . . ,K.

Definition 1: (Poisson receiver with multiple classes
of input traffic [24]) An abstract receiver is called a
pPsuc,1pρq, Psuc,2pρq, . . . , Psuc,Kpρqq-Poisson receiver with K
classes of input traffic if the receiver is subject to a Poisson
offered load ρ “ pρ1, ρ2, . . . , ρKq, a tagged (randomly se-
lected) class k packet is successfully received with probability
Psuc,kpρq, for k “ 1, 2, . . . ,K.

The throughput of class k packets (defined as the expected
number of class k packets that are successfully received) for a
pPsuc,1pρq, Psuc,2pρq, . . . , Psuc,Kpρqq-Poisson receiver subject
to a Poisson offered load ρ is thus

Θk “ ρk ¨ Psuc,kpρq, (2)

k “ 1, 2, . . . ,K.
By viewing each time slot as a Poisson receiver, various

well-known systems can be modeled by Poisson receivers in
[24], [25], [28]. These include Slotted ALOHA (SA) [36],
SA with multiple cooperative receivers, and Rayleigh block
fading channel with capture [16], [37], [38]. It can also be
applied to the setting with multiple packet reception in a time
slot (see, e.g., [21], [22], [27], [39]–[41]).

Like a Poisson receiver, an ALOHA receiver [28] is also an
abstract receiver. Such an abstract receiver treats the physical
layer with a deterministic input-output function. Denote by
Z` the set of nonnegative integers. We say a system with
K classes of input traffic is subject to a deterministic load
n “ pn1, n2, . . . , nKq P Z`K if the number of class k packets
arriving at the system is nk.

Definition 2: (ALOHA receiver with multiple classes of
input traffic [28]) Consider a deterministic function

ϕ : Z`K
Ñ Z`K
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that maps a K-vector n “ pn1, n2, . . . , nKq to the K-vector
pϕ1pnq, ϕ2pnq, . . . , ϕKpnqq. An abstract receiver is called a
ϕ-ALOHA receiver (with K classes of input traffic) if the
number of class k packets that are successfully received is
exactly ϕkpnq, k “ 1, 2, . . . ,K, when the receiver is subject
to a deterministic load n “ pn1, n2, . . . , nKq.

One typical example of the ϕ-ALOHA receiver is a time
slot in the slotted ALOHA (SA) system, where at most one
packet can be received. The D-fold ALOHA system proposed
in [21] is a generalization of the SA system. If there are less
than or equal to D packets transmitted in a time slot, then all
these packets can be successfully received. On the other hand,
if there are more than D packets transmitted in a time slot,
then all these packets are lost. Thus, a time slot in the D-fold
ALOHA system is a ϕ-ALOHA receiver (with a single class
of input traffic), where

ϕpnq “

"

n if n ď D

0 otherwise
. (3)

Another example of a ϕ-ALOHA receiver is the model for
the near-far [21] decoding scheme. In such a model, there are
two classes of input traffic and the power from one class (the
near users) is much stronger than that of the other class (the
far users). By decoding the near users first and using the SIC
technique, a time slot in the near-far SIC decoding scheme
can be modeled by a ϕ-ALOHA with

ϕpn1, n2q “

"

pn1, n2q if pn1, n2q ď p1, 1q

p0, 0q otherwise
. (4)

It was shown in Theorem 14 of [28] that for every ALOHA
receiver, there is an induced Poisson receiver. This is done by
computing the throughput of the ϕ-ALOHA receiver when it
is subject to the Poisson offered load ρ and then using (2) to
find the success probability function. For the D-fold ALOHA
system, the throughput for a Poisson offered load ρ is

D
ÿ

t“1

t
e´ρρt

t!
“ ρ

D´1
ÿ

t“0

e´ρρt

t!
.

From (2), it is a Poisson receiver with the following success
probability function:

Psucpρq “

D´1
ÿ

t“0

e´ρρt

t!
. (5)

B. Coded Poisson receivers with multiple classes of users and
receivers

The idea of using the SIC technique in the Contention
Resolution Diversity Slotted ALOHA (CRDSA) protocol [9]
and the Irregular Repetition Slotted ALOHA (IRSA) pro-
tocol leads to the development of coded Poisson receivers
(CPR) with multiple classes of users and receivers in [25].
As in [25], let us consider a system with GkT class k
users, k “ 1, 2, . . . ,K, and FjT class j Poisson receivers,
j “ 1, 2, . . . , J . Class j Poisson receivers have the success
probability functions Psuc,1,jpρq, Psuc,2,jpρq, . . . , Psuc,K,jpρq

for the K classes of input traffic. Each class k user transmits
its packet for (a random number of) Lk ě 1 times (copies).

With the routing probability rk,j (
řJ

j“1 rk,j “ 1), each copy
of a class k packet is transmitted uniformly and independently
to one of the FjT class j Poisson receivers.

There are two assumptions made in [25]:
(i) Perfect SIC: as long as one copy of a packet is

successfully received by one of the receivers, then
it can be used to remove the other copies of that
packet from the other receivers.

(ii) Independent Poisson receivers: the event that a
packet is successfully received by a Poisson receiver
is independent of the outcomes of the other Poisson
receivers as long as their input traffic is independent
of each other.

As in [10], [25], let Λk,d be the probability that a class k
packet is transmitted d times, i.e.,

P pLk “ dq “ Λk,d, d “ 1, 2, . . . (6)

Define the generating function

Λkpxq “

8
ÿ

d“0

Λk,d ¨ xd (7)

of the degree distribution of a class k user node, and the
generating function

λkpxq “

8
ÿ

d“0

λk,d ¨ xd (8)

of the excess degree distribution of a class k user node, where

λk,d “
Λk,d`1 ¨ pd ` 1q

ř8

d“0 Λk,d`1 ¨ pd ` 1q
(9)

is the probability that the user end of a randomly selected
class k edge has additional d edges, excluding the randomly
selected class k edge. Note that the mean degree of a class k
user node is

Λ1
kp1q “

8
ÿ

d“0

d ¨ Λk,d, (10)

and that
λkpxq “

Λ1
kpxq

Λ1
kp1q

. (11)

Let
G “ pG1, G2, . . . , GKq,

Λ1pxq “ pΛ1
1pxq,Λ1

2pxq, . . . ,Λ1
Kpxqq,

Rj “ p
r1,j
Fj

,
r2,j
Fj

, . . . ,
rK,j

Fj
q, (12)

and
ρ̃j “ G ˝ Λ1p1q ˝ Rj , (13)

where ˝ denotes the element-wise multiplication of two vec-
tors.

Using the tree evaluation (density evolution) method in
[10], [12], [42], [43] and the reduced Poisson offered load
argument in [24], the following result was derived in Theorem
1 of [24].

Theorem 3: (Theorem 1 of [24]) As T Ñ 8, the system
of CPRs after the i-th SIC iteration converges to a Poisson
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receiver with the success probability function for the class k
traffic

P̃
piq
suc,kpGq “ 1 ´ Λk

´

1 ´

J
ÿ

j“1

rk,jPsuc,k,jpqpi´1q ˝ ρ̃jq

¯

, (14)

k “ 1, 2, . . . ,K, where qpiq “ pq
piq
1 , q

piq
2 , . . . , q

piq
K q can be

computed recursively from the following equation:

q
pi`1q

k “ λk

´

1 ´

J
ÿ

j“1

rk,jPsuc,k,jpqpiq ˝ ρ̃jq

¯

, (15)

with qp0q “ p1, 1, . . . , 1q.
If the number of copies Lk ě 2 for all k, i.e, Λk,1 “ 0, then

the generating function λkpxq is strictly increasing for 0 ď

x ď 1, and thus invertible. By letting p
pi`1q

k “ λ´1
k pq

pi`1q

k q,
one can rewrite (15) as follows:

p
pi`1q

k “ 1 ´

J
ÿ

j“1

rk,jPsuc,k,jpG ˝ Λ1pppiqq ˝ Rjq, (16)

where ppiq “ pp
piq
1 , p

piq
2 , . . . , p

piq
K q and pp0q “ p1, 1, . . . , 1q.

Note that a system of CPRs with K classes of users
and J classes of receivers is characterized by the following
parameters: (i) the total number of Poisson receivers T , (ii) the
offered load vector G “ pG1, G2, . . . , GKq, (iii) the degree
distribution vector Λpxq “ pΛ1pxq,Λ2pxq, . . . ,ΛKpxqq, (iv)
the K ˆ J routing matrix R “ prk,jq, and (v) the partition
vector F “ pF1, F2, . . . , FJq. In [25], the routing matrix and
the partition vector correspond to network slicing policies.
To ease the presentation, we denote a system of CPRs
with K classes of users and J classes of receivers as the
pT,G,Λpxq, R, F q-CPR.

C. Stability

The stability of a system of coded Poisson receivers in [25]
is motivated by the stability of a queueing system, where the
system is (rate) stable if the departure rate is the same as the
arrival rate. In that regard, a system of coded Poisson receivers
is stable if all its packets can be successfully received. The
precise definition is given below.

Definition 4: (Stability of coded Poisson receivers
with multiple classes of input traffic [25]) Consider the
pT,G,Λpxq, R, F q-CPR described in Section II-B. A Poisson
offered load G “ pG1, G2, . . . , GKq to a system of coded
Poisson receivers is said to be stable if, as T Ñ 8, the
probability that a packet is successfully received approaches
1 when the number of iterations goes to infinity, i.e.,

lim
iÑ8

P̃
piq
suc,kpGq “ 1, k “ 1, 2, . . . ,K, (17)

where P̃
piq
suc,kpGq is defined in (14).

As in [25], we make the following four assumptions for the
stability analysis:

(A1) For all k “ 1, . . . ,K and j “ 1, 2, . . . , J , the suc-
cess probability function Psuc,k,jpρq is a continuous
and decreasing function of ρ, and Psuc,k,jp0q “ 1,
where 0 is the vector with all its elements being

0. Furthermore, for the analysis in Section V, we
require Psuc,k,jpρq to have a continuous second
derivative.

(A2) If ρ ‰ 0, then Psuc,k,jpρq ă 1 for all k “ 1, . . . ,K,
and j “ 1, 2, . . . , J .

(A3) rk,j ą 0 for all k “ 1, . . . ,K, and j “ 1, 2, . . . , J .
(A4) Every packet is transmitted at least twice, i.e.,

Λk,1 “ 0 for all k “ 1, 2, . . . ,K.
Under these assumptions, a necessary and sufficient condi-

tion for a Poisson offered load G to be stable is presented in
Theorem 5. A monotonicity result is presented in Theorem 6.
These two theorems appear in Theorems 2 and 3 in [25].
They are duplicated here for their importance and for the
completeness of this paper.

Theorem 5: (Theorem 2 of [25]) Under (A1), a Poisson
offered load G is stable if q “ 0 is the unique solution in
r0, 1sK of the following K equations:

qk “ λk

´

1 ´

J
ÿ

j“1

rk,jPsuc,k,jpq ˝ ρ̃jq

¯

, (18)

k “ 1, 2, . . . ,K, where ρ̃j is defined in (13) and q “

pq1, q2, . . . , qKq. On the other hand, under (A1), (A2), and
(A3), a positive Poisson offered load G (with Gk ą 0 for all
k) is stable only if q “ 0 is the unique solution in r0, 1sK

of the K equations in (18). Moreover, by (16), under (A1),
(A2), (A3) and (A4), a positive Poisson offered load G (with
Gk ą 0 for all k) is stable if and only if p “ 0 is the unique
solution in r0, 1sK of the following K equations:

pk “ 1 ´

J
ÿ

j“1

rk,jPsuc,k,jpG ˝ Λ1ppq ˝ Rjq, (19)

k “ 1, 2, . . . ,K and p “ pp1, p2, . . . , pKq.
Theorem 6: (Theorem 3 in [25]) Suppose that (A1), (A2),

and (A3) hold. If a positive Poisson offered load Ĝ “

pĜ1, Ĝ2, . . . , ĜKq (with Ĝk ą 0 for all k) is stable, then
any Poisson offered load G with G ď Ĝ is also stable.

The monotonicity results in Theorem 6 leads to the notion
of the stability region in [25].

Definition 7: Under (A1), (A2), and (A3), the stability
region S is defined as the maximal stable set such that (i)
any G P S is stable, and (ii) any G R S is not stable.

III. OUTER BOUNDS FOR THE STABILITY REGION

In this section, we derive an outer bound for the stability
region for a system of coded Poisson receivers when the Pois-
son receivers are induced from ϕ-ALOHA receivers. For this,
we need to define the concept of “capacity” for ϕ-ALOHA
receivers. Analogous to the terminology used in queueing
theory, we use “capacity” for systems with deterministic loads
and “stability” for systems with stochastic loads.

For a ϕ-ALOHA receiver, the failure function ϕc [28] is
defined by

ϕcpnq “ n ´ ϕpnq. (20)

A ϕ-ALOHA receiver is called monotone if the failure func-
tion ϕc is increasing in the deterministic load n, i.e., for any
n1 ď n2,

ϕcpn1q ď ϕcpn2q. (21)
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The failure function represents the number of packets remain-
ing to be decoded. With the monotonicity, we now define the
capacity region.

Definition 8: (Capacity of a ϕ-ALOHA receiver) For a
monotone ϕ-ALOHA receiver, its capacity region S is defined
to be the set of deterministic loads such that all the packets
are successfully received, i.e.,

S “ tn : ϕpnq “ nu. (22)

An K-vector pb1, b2, . . . , bKq is called an affine capacity
envelope with the bound B if for n P S,

K
ÿ

k“1

bkϕkpnq ď B. (23)

For instance, for the D-fold ALOHA system with K classes
of users, it has the capacity region S “ tn :

řK
k“1 nk ď Du as

the total number of packets that can be successfully received
in a time slot is at most D. As such, the K-vector p1, 1, . . . , 1q

is also an affine capacity envelope with the bound D for the
D-fold ALOHA system with K classes of users.

We will use affine capacity envelopes to derive outer bounds
for the stability region for a system of CPRs. For this,
we need two properties of ϕ-ALOHA receivers in [28]: the
closure property and the all-or-nothing property. As the failure
function represents the number of packets that remain to be
decoded, we can decode the remaining packets for the second
time by removing those successfully decoded packets. This
corresponds to the SIC technique in the literature. The number
of packets remaining to be decoded after the second time
of decoding is ϕcpϕcpnqq. Intuitively, we can carry out the
iterative decoding approach (for an infinite number of times)
until no more packets can be decoded. A ϕ-ALOHA receiver
that always does the iterative decoding approach until no more
packets can be decoded is said to satisfy the closure property,
i.e.,

ϕcpϕcpnqq “ ϕcpnq, (24)

for all n. In addition to this, we also need the all-or-nothing
property. A ϕ-ALOHA receiver with K classes of input traffic
is said to be an all-or-nothing receiver if it is monotone and
satisfies the all-or-nothing property, i.e., either ϕkpnq “ nk or
ϕkpnq “ 0 for all n “ pn1, n2, . . . , nKq and k “ 1, 2, . . . ,K.
The all-or-nothing property implies if class k packets (for
some k) are successfully decoded, then they are all decoded
during the same iteration.

In the following theorem, we derive an outer bound for
the stability region of a system of coded Poisson receivers by
using the concept of the affine capacity envelope.

Theorem 9: Consider the pT,G,Λpxq, R, F q-CPR with T
Poisson receivers being induced from a ϕ-ALOHA receiver.
Suppose that the ϕ-ALOHA receiver that satisfies the closure
property and the all-or-nothing property, and it has an affine

capacity envelope pb1, b2, . . . , bKq with the bound B and that
bk’s are binary. Then for any stable offered load G,

K
ÿ

k“1

bkGk

ď

J
ÿ

j“1

Fj

´

B´1
ÿ

τ“0

τe´µj
µj

τ

τ !
` Bp1 ´

B´1
ÿ

τ“0

e´µj
µj

τ

τ !
q

¯

,

(25)

where

µj “

K
ÿ

k“1

bkGkΛ
1
kp1qrk,j{Fj . (26)

For the proof of Theorem 9, we need the following lemma.
The proof is presented in Appendix A.

Lemma 10: Under the assumptions in Theorem 9, the
number of packets that are actually decoded by any one of
the T Poisson receivers is within the capacity region of the
ϕ-ALOHA receiver.
Proof. (Theorem 9) Let Xkptq be the number of class k
packets sent to the t-th Poisson receiver and Ykptq be the
number of class k packets that are actually decoded by the
t-th Poisson receiver. In view of Lemma 10 and the definition
of the affine capacity envelope in (23), we have

K
ÿ

k“1

bkYkptq ď B. (27)

Note that (27) holds trivially when nothing is decoded in the
t-th Poisson receiver, i.e., Ykptq “ 0 for all k. Since Ykptq ď

Xkptq, we have from (27) that

K
ÿ

k“1

bkYkptq ď minr

K
ÿ

k“1

bkXkptq, Bs. (28)

Taking expectations on both sides of (28) yields

K
ÿ

k“1

bkErYkptqs ď Erminr

K
ÿ

k“1

bkXkptq, Bss. (29)

If the t-th Poisson receiver is a class j receiver, then we
have from (13) that Xkptq, k “ 1, 2, . . . ,K, are independent
Poisson random variables with mean

ρk,j “ GkΛ
1
kp1qrk,j{Fj . (30)

Since b1
ks are binary and the sum of independent Poisson

random variables is still a Poisson random variable, we know
that

řK
k“1 bkXkptq is a Poisson random variable with mean

µj as

K
ÿ

k“1

bkρk,j “

K
ÿ

k“1

bkGkΛ
1
kp1qrk,j{Fj “ µj . (31)

As there are FjT class j Poisson receivers, the probability
that the t-th Poisson receiver is a class j Poisson receiver is
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Fj . Thus, the expectation in the right-hand side of (29) can
be computed by using the Poisson distribution, and we have

K
ÿ

k“1

bkErYkptqs

ď

J
ÿ

j“1

Fj

´

B´1
ÿ

τ“1

τe´µj
µj

τ

τ !
` Bp1 ´

B´1
ÿ

τ“1

e´µj
µj

τ

τ !
q

¯

.

(32)

For a system of CPRs to be stable (the departure rate must
be the same as the arrival rate), we must have Gk “ ErYkptqs.
Using this in (32) leads to the upper bound for the stable
region in (25).

Example 1: (Spatially coupled IRSA) For the spatially
coupled IRSA with D-multipacket reception capability in
[27], every time slot is a D-fold ALOHA and thus has the
affine capacity envelope p1, 1, . . . , 1q with the bound D. Since
there is only one class of users pK “ 1q and one class of
receivers pJ “ 1q in [27], the upper bound in (25) can be
further simplified as follows:

G ď

D´1
ÿ

τ“0

τe´GΛ1
p1q GΛ1p1q

τ

τ !

`D
´

1 ´

D´1
ÿ

τ“0

e´GΛ1
p1q GΛ1p1q

τ

τ !

¯

“ D ´

D´1
ÿ

τ“0

pD ´ τqe´GΛ1
p1q GΛ1p1q

τ

τ !
. (33)

This recovers the result in Theorem 1 of [27].
One straightforward extension of the upper bound in (33)

is to consider a mixture of D-fold ALOHA receivers in [28].
Specifically, with probability πD (that satisfies

řDmax

D“1 πD “ 1
for some positive integer Dmax), the (induced) Poisson re-
ceiver is selected from a D-fold ALOHA. For such a Poisson
receiver, the success probability function (cf. (5)) is

Psucpρq “

Dmax
ÿ

D“1

πD

D´1
ÿ

t“0

e´ρρt

t!
. (34)

Now the bound B in Theorem 9 is a random variable with
the probability mass function

PpB “ Dq “ πD,

for D “ 1, . . . , Dmax. Following the same argument in the
proof of Theorem 9, one can show that the upper bound for
the stable offered load is

G ď

Dmax
ÿ

D“1

πD

´

D ´

D´1
ÿ

τ“0

pD ´ τqe´GΛ1
p1q GΛ1p1q

τ

τ !

¯

. (35)

Example 2: (Near-far SIC decoding) For the setting with
the capacity of near-far SIC decoding, every time slot can be
modeled by the ϕ-ALOHA receiver with

ϕpn1, n2q “

"

pn1, n2q if pn1, n2q ď p1, 1q

p0, 0q otheriwse
. (36)

The near-far SIC decoding is commonly used for modeling
power domain NOMA [44], [45]. There are three affine
capacity envelopes for the ϕ-ALOHA receiver: (i) the vector
p1, 0q with the bound 1, and (ii) the vector p0, 1q with the
bound 1, and (iii) the vector p1, 1q with the bound 2. Suppose
that there is only one class of receivers pJ “ 1q. Then the
first affine capacity envelope leads to the bound

G1 ď 1 ´ e´G1Λ
1
1p1q, (37)

and the second affine capacity envelope leads to the bound

G2 ď 1 ´ e´G2Λ
1
2p1q, (38)

and the third affine capacity envelope leads to the bound

G1 ` G2

ď 1 ¨ e´pG1Λ
1
1p1q`G2Λ

1
2p1qq pG1Λ

1
1p1q ` G2Λ

1
2p1qq

1!

`2
´

1 ´ e´pG1Λ
1
1p1q`G2Λ

1
2p1qqp1

`
pG1Λ

1
1p1q ` G2Λ

1
2p1qq

1!
q

¯

. (39)

Example 3: (IRSA system with two classes of users and
two classes of receivers) We consider a system of coded
Poisson receivers with two classes of users (K “ 2), two
classes of receivers (J “ 2), and the success probability
function Psucpρq “ e´ρ. This system is referred to as the IRSA
system with two classes of users and two classes of receivers
in [25]. As in [25], we set F1 “ F2 “ 0.5. We consider
the following two packet routing policies (that correspond to
two network slicing policies for resource allocation in uplink
grant-free transmissions):

1) Complete sharing: every packet has an equal prob-
ability to be routed to the two classes of receivers,
i.e., r11 “ r22 “ r12 “ r21 “ 0.5.

2) Receiver reservation: class 1 packets are routed to
the two classes of receivers with an equal probability,
i.e., r11 “ r12 “ 0.5, and class 2 packets are routed
to the class 2 receivers, i.e., r21 “ 0, r22 “ 1.

Such a system is a CPR having three capacity envelopes: (i)
the vector p1, 0q with the bound 1, and (ii) the vector p0, 1q

with the bound 1, and (iii) the vector p1, 1q with the bound 1.
For the complete sharing policy and the affine capacity

envelope p1, 1q with the bound 1, we have from (26) that

µ1 “ µ2 “ G1Λ
1
1p1q ` G2Λ

1
2p1q. (40)

Hence, by (25), we have the outer bound

G1 ` G2 ď 1 ´ e´G1Λ
1
1p1q´G2Λ

1
2p1q. (41)

Similarly, for the receiver reservation policy and the affine
capacity envelope p1, 1q with the bound 1, we have from (26)
that

µ1 “ G1Λ
1
1p1q,

µ2 “ G1Λ
1
1p1q ` 2G2Λ

1
2p1q. (42)

Hence, by (25), we have the outer bound

G1 ` G2 ď 1 ´
1

2
e´G1Λ

1
1p1q ´

1

2
e´G1Λ

1
1p1q´2G2Λ

1
2p1q. (43)
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On the other hand, for the receiver reservation policy and
the affine capacity envelope p0, 1q with the bound 1, we have
from (26) and (25) that µ1 “ 0, µ2 “ 2G2Λ

1
2p1q and

G2 ď
1

2
´

1

2
e´2G2Λ

1
2p1q. (44)

We present the visualization of the bounds (41), (43), and
(44) in this example in Section VI-B.

IV. CONVOLUTIONAL CODED POISSON RECEIVERS

Inspired by the great performance of convolutional LDPC
codes (see, e.g., [29]–[31]) and the spatially coupled IRSA
[27], [32], in this section, we propose using the construction
method for convolutional LDPC codes and spatially coupled
IRSA to construct convolutional CPRs.

A. Circular convolutional coded Poisson receivers

Recall that the ensemble of bipartite graphs in the
pT,G,Λpxq, R, F q-CPR is constructed with the following
parameters:

1) The total number of Poisson receivers T .
2) The offered load vector G “ pG1, G2, . . . , GKq.
3) The degree distribution vector Λpxq “

pΛ1pxq,Λ2pxq, . . . ,ΛKpxqq.
4) The K ˆ J routing matrix R “ prk,jq.
5) The partition vector F “ pF1, F2, . . . , FJq.
Following the construction of convolutional LDPC

codes, we first take L independent copies of
pT,Gpℓq,Λpxq, R, F q-CPR with different offered load
vectors, Gpℓq “ pG

pℓq

1 , G
pℓq

2 , . . . , G
pℓq

K q, ℓ “ 1, 2, . . . , L, and
concatenate the L bipartite graphs to form a single bipartite
graph. Then we rewire the edges in the concatenated bipartite
graph. The receiver end of each edge in the ℓth copy is
rewired to the corresponding receiver node in the ℓ̂th copy,
where ℓ̂ is chosen uniformly in rℓ, ℓ ‘ pw ´ 1qs, where
1 ď w ď L is known as the “smoothing” window size in
[29], and the ‘ operator is the usual addition in a circular
manner, i.e., for 1 ď ℓ ď L,

ℓ ‘ pw ´ 1q “

"

ℓ ` pw ´ 1q if ℓ ` pw ´ 1q ď L

ℓ ` pw ´ 1q ´ L if ℓ ` pw ´ 1q ą L
.

(45)
Also, we define the a operator as the usual subtraction in a
circular manner, i.e.,

ℓ a pw ´ 1q “

"

ℓ ´ pw ´ 1q if ℓ ´ pw ´ 1q ě 1

ℓ ´ pw ´ 1q ` L if ℓ ´ pw ´ 1q ă 1
.

(46)
We call such a system the circular convolutional CPR with

L stages. By viewing the class k user nodes (resp. class j
receiver nodes) at the ℓ stage as the class pk, ℓq users (resp.
class pj, ℓq receivers), the circular convolutional CPR with L
stages is a CPR with KL classes of users and JL classes of
receivers. Moreover, the routing probability from a pk, ℓq user
node to a pj, ℓ̂q receiver node is rk,j{w if ℓ̂ P rℓ, ℓ ‘ pw ´

1qs and 0 otherwise. Thus, the density evolution analysis in
Theorem 3 can still be applied and we have the following
corollary for the circular convolutional CPR with L stages.

Corollary 11: Consider the circular convolutional CPR with
L stages described in this section. Let qpiq

k,ℓ be the probability
that the user end of a randomly selected class k edge in the
ℓth stage has not been successfully received after the ith SIC
iteration. Also, let

ρ
piq
k,j,ℓ “

ℓ
ÿ

ℓ̂“ℓapw´1q

q
piq

k,ℓ̂
G

pℓ̂q

k Λ1
kp1q

1

w
rk,j{Fj , (47)

be the offered load of class k users to a class j receiver in
the ℓth stage after the ith SIC iteration, and

ρ̃
piq
j,ℓ “ pρ

piq
1,j,ℓ, ρ

piq
2,j,ℓ, . . . , ρ

piq
K,j,ℓq, (48)

be the offered load vector to a class j receiver in the ℓth stage
after the ith SIC iteration.

As T Ñ 8, the success probability for a class k user in
the ℓth stage after the ith SIC iteration converges to

P̃
piq
suc,k,ℓpG

p1q, Gp2q, . . . , GpLqq “ 1 ´ Λk

´

1 ´

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

J
ÿ

j“1

1

w
rk,jPsuc,k,jpρ̃

piq

j,ℓ̂
q

¯

, (49)

k “ 1, 2, . . . ,K, ℓ “ 1, 2, . . . , L, and q
piq
ℓ “

pq
piq
1,ℓ, q

piq
2,ℓ, . . . , q

piq
K,ℓq can be computed recursively from the

following equation:

q
pi`1q

k,ℓ “ λk

´

1 ´

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

J
ÿ

j“1

1

w
rk,jPsuc,k,jpρ̃

piq

j,ℓ̂
qq

¯

, (50)

with q
p0q

ℓ “ p1, 1, . . . , 1q. Also, under (A4), we can let
p

pi`1q

k,ℓ “ λ´1
k pq

pi`1q

k,ℓ q and p
piq
ℓ “ pp

piq
1,ℓ, p

piq
2,ℓ, . . . , p

piq
K,ℓq. Then

we can rewrite (50) as follows:

p
pi`1q

k,ℓ “ 1 ´

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

J
ÿ

j“1

1

w
rk,jPsuc,k,jpρ̃

piq

j,ℓ̂
q,

(51)

with p
p0q

ℓ “ p1, 1, . . . , 1q.
One may refer to Appendix B in the supplemental material

for a detailed derivation. Similarly, the stability results in
Section II-C can also be applied.

B. Stability and threshold saturation

Now we construct the convolutional CPR from the circular
convolutional CPR by setting the offered load vectors in the
last w ´ 1 stages to be the zero vector 0. This is known as
“puncturing” for convolutional LDPC codes.

Definition 12: The convolutional pT,G,Λpxq, R, F,wq-
CPR with L stages is the circular convolutional CPR with
L stages when Gpℓq “ G for ℓ “ 1, 2, . . . , L ´ w ` 1, and
Gpℓq “ 0 for ℓ “ L ´ w ` 2, . . . , L.

As the circular convolutional CPR with L stages is a CPR
with KL classes of users and JL classes of receivers, the
convolutional pT,G,Λpxq, R, F,wq-CPR with L stages is a
CPR with K classes of users and JL classes of receivers (by
grouping the pk, ℓq user nodes at the L stages into a single
class of user nodes, i.e., class k user nodes). The notion of
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stability in Section II-C can be defined the same way for the
convolutional pT,G,Λpxq, R, F,wq-CPR with L stages, i.e., it
is stable if the probability that a packet is successfully received
approaches 1 when the number of iterations goes to infinity.

Note that the normalized offered load for the convolutional
pT,G,Λpxq, R, F,wq-CPR with L stages is

řL
ℓ“1 G

pℓqT

LT
“

L ´ w ` 1

L
G. (52)

Thus, as L Ñ 8, the normalized offered load approaches G.
One of the most interesting phenomena for convolutional

LDPC codes is threshold saturation (see, e.g., [29], [31]–
[33]). In the following theorem, we show an analogous result
for the convolutional coded Poisson receivers.

Theorem 13: (Threshold saturation) Let S be the stability
region of the pT,G,Λpxq, R, F q-CPR and SL be the stability
region of the convolutional pT,G,Λpxq, R, F,wq-CPR with L
stages. Then for any positive integer L,

S Ă SL Ă SL´1. (53)

In view of Theorem 13, the stability region SL of the convo-
lutional pT,G,Λpxq, R, F,wq-CPR with L stages “saturates”
when L Ñ 8.
Proof. Recall that the convolutional pT,G,Λpxq, R, F,wq-
CPR with L stages is the circular convolutional Poisson
receiver with L stages when the last w ´ 1 stages are
“punctured,” i.e., Gpℓq “ G for ℓ “ 1, 2, . . . , L ´ w ` 1,
and Gpℓq “ 0 for ℓ “ L ´ w ` 2, . . . , L. If the last w stages
are “punctured,” i.e., Gpℓq “ G for ℓ “ 1, 2, . . . , L ´ w, and
Gpℓq “ 0 for ℓ “ L ´ w ` 1, . . . , L, then no packets are
sent to the last stage and it can be removed. Thus, it reduces
to the convolutional pT,G,Λpxq, R, F,wq-CPR with L ´ 1
stages. As the success probability functions are decreasing
in the offered load in (A1), the success probability in the
convolutional pT,G,Λpxq, R, F,wq-CPR with L stages is not
larger than that of the convolutional pT,G,Λpxq, R, F,wq-
CPR with L ´ 1 stages. This shows that SL Ă SL´1.

Now consider the circular convolutional Poisson receiver
with L stages when no stages are “punctured,” i.e., Gpℓq “ G
for ℓ “ 1, 2, . . . , L. From the monotonicity, it is clear that the
success probability of this system is not larger than that of
the convolutional pT,G,Λpxq, R, F,wq-CPR with L stages.
We will argue that the success probability of this system is
exactly the same as that of the pT,G,Λpxq, R, F q-CPR. As
such, we have S Ă SL.

When Gpℓq “ G for ℓ “ 1, 2, . . . , L, ρpiq
k,j,ℓ in (47) can be

simplified as follows:

ρ
piq
k,j,ℓ “ GkΛ

1
kp1qrk,j{Fj

ℓ
ÿ

ℓ̂“ℓapw´1q

q
piq

k,ℓ̂
. (54)

We now use induction to show that qpiq
k,ℓ “ q

piq
k for all i. Since

q
p0q

k,ℓ “ 1 and q
p0q

k “ 1, we have from (54) that

ρ
p1q

k,j,ℓ “ GkΛ
1
kp1qrk,j{Fj . (55)

In view of (13) and (48), we have

ρ̃
p1q

j,ℓ “ q
p1q

ℓ ˝ ρ̃j .

It is easy to see from (50) and (15) that qp1q

k,ℓ “ q
p1q

k for all
ℓ “ 1, 2, . . . , L. By inducting on the number of iterations
i, we then have q

piq
k,ℓ “ q

piq
k for all i. Because of (49) and

(14), we conclude that the success probability of the circular
convolutional Poisson receiver without puncturing is the same
as that of the pT,G,Λpxq, R, F q-CPR.

In the case where there is only one class of users and one
class of receivers (the single-class system), the stability region
of the convolutional pT,G,Λpxq, R, F,wq-CPR with L stages
can be reduced to a set in R. The supremum of this set
represents the percolation threshold of the CCPR. A direct
finding from Theorem 13 is the monotonic decrease of the
percolation threshold as the number of stages L increases.

Example 4: (Convolutional IRSA) For slotted ALOHA,
the success probability function Psucpρq “ e´ρ. Suppose
that the degree distribution Λpxq “ xd, i.e., each packet is
transmitted exactly d times. For such a degree distribution,
we have λpxq “ xd´1. Assume w “ 2, K “ 1, and J “ 1. It
follows from (50) in Corollary 11 that for ℓ “ 2, . . . , L ´ 2,

q
pi`1q

1

“

´

1 ´
1

2
e´ 1

2Gdq
piq

1 ´
1

2
e´ 1

2Gdpq
piq

1 `q
piq

2 q
¯d´1

,

(56)

q
pi`1q

ℓ

“

´

1 ´
1

2
e´ 1

2Gdpq
piq

ℓ´1`q
piq

ℓ q
´

1

2
e´ 1

2Gdpq
piq

ℓ `q
piq

ℓ`1q
¯d´1

,

(57)

and

q
pi`1q

L´1

“

´

1 ´
1

2
e´ 1

2Gdpq
piq

L´2`q
piq

L´1q
´

1

2
e´ 1

2Gdq
piq

L´1

¯d´1

,

(58)

with the initial condition q
p0q

k “ 1, k “ 1, 2, . . . , L´ 1. It can
be shown that from Example 5 of [25] that the percolation
thresholds are G “ 0.9179, 0.9767, 0.9924, 0.9973 for d “

3, 4, 5, 6. We evaluate the thresholds for the system described
in this example with w “ 2, 3, 4 in Section VI-A.

V. PERCOLATION THRESHOLDS OF SYSTEMS WITH A
SINGLE CLASS OF USERS

In this section, we focus on CPR systems with only one
class of users and one class of receivers. We derive the
potential function of such a system of CPR and the associated
percolation thresholds of both CPRs and CCPRs.

A. The single-system threshold

Since there is only one class of users and one class of
receivers, (15) and (16) reduce to the following form:

ppiq “ 1 ´ PsucpqpiqGΛ1p1qq, (59)
qpi`1q “ λpppiqq. (60)



9

We combine the two equations in (59) and (60) to form the
following recursive equation:

ppi`1q “ 1 ´ PsucpλpppiqqGΛ1p1qq, (61)

with pp0q “ 1. For every packet to be decoded successfully,
we need to ensure that

lim
iÑ8

ppiq “ 0. (62)

We are interested in finding out the maximum offered load G
such that (62) is satisfied. Let

fpp;Gq “ 1 ´ PsucppGΛ1p1qq, (63)
hppq “ λppq. (64)

Then (61) can be written as follows:

ppi`1q “ fphpppiqq;Gq. (65)

In [30], the recursion of the form in (65) is said to be a
scalar admissible system characterized by a pair of functions
pf, hq that satisfy the four properties in Definition 14 below.

Definition 14: (cf. Def. 1 in [30]) The scalar admissible
system pf, hq parameterized by G ě 0 is defined by the
recursion ppi`1q “ fphpppiqq;Gq, where f and h satisfy the
following four properties:

(P1) f : r0, 1s ˆ r0,8q Ñ r0, 1s is strictly increasing in
both p and G.

(P2) h : r0, 1s Ñ r0, 1s satisfies h1ppq ą 0 for p P p0, 1s.
(P3) fp0;Gq “ fpp; 0q “ hp0q “ 0.
(P4) f has continuous second derivatives on r0, 1s ˆ

r0,8q w.r.t. all arguments, so is h on r0, 1s.
In the following lemma, we show that the

pT,G,Λpxq, R, F q-CPR with one class of users and
one class of receivers is indeed a scalar admissible system
under the assumptions in (A1)-(A4).

Lemma 15: Under the assumptions in (A1) and (A4), a
system of CPR described by the density evolution equation
in (61) is the scalar admissible system pf, hq with f and h
specified in (63) and (64), respectively.
Proof. It suffices to show that f in (63) and h in (64) satisfy
(P1)-(P4) of Definition 14.

(P1) Since Psuc is (strictly) decreasing in (A1), we have for
p P r0, 1s and G P r0,8q,

Bfpp;Gq

Bp
“ ´

BPsucppGΛ1p1qq

Bp
¨ GΛ1p1q ą 0,

Bfpp;Gq

BG
“ ´

BPsucppGΛ1p1qq

BG
¨ pΛ1p1q ą 0.

(P2) Since every packet is transmitted at least twice in (A4),
we have Λ2ppq ą 0, @p P r0, 1s. Also, since Λ1p1q is positive,
h1ppq “ λ1ppq “ Λ2ppq{Λ1p1q ą 0.

(P3) Since Psucp0q “ 1, and λ is a polynomial without
constant terms,

fp0, Gq “ 1 ´ Psucp0q “ 0,

fpp, 0q “ 1 ´ Psucp0q “ 0,

hp0q “ λp0q “ 0.

(P4) is obvious from (A1).

One of the most powerful tools for analyzing the stability
of the scalar admissible system pf, hq is the potential function
in [30].

Definition 16: The function Upp;Gq is called the potential
function of the scalar admissible system pf, hq in [30] if it
satisfies

ppi`1q ´ ppiq “ fphpppiqq;Gq ´ ppiq

“ ´
1

h1pppiqq

BUpp;Gq

Bp

ˇ

ˇ

ˇ

ˇ

p“ppiq

. (66)

To ease the representation, for a function Upp;Gq with two
variables, we use U 1pp;Gq to denote the partial differentiation
with respect to the first variable, given by

U 1pp;Gq “
BUpp;Gq

Bp
.

Rewrite (66) as follows:

U 1pp;Gq

ˇ

ˇ

ˇ

ˇ

p“ppiq

“ ´h1pppiqqpfphpppiqq;Gq ´ ppiqq. (67)

Integrating both sides of (67) yields

Upp;Gq “

ż p

0

h1pzqpz ´ fphpzq;Gqqdz

“ phppq ´ Hppq ´ F phppq;Gq, (68)

where
F pp;Gq “

ż p

0

fpz;Gqdz, (69)

and
Hppq “

ż p

0

hpzqdz. (70)

To see how the potential function can be used for analyzing
the stability of a scalar admissible system, let us consider the
single-system threshold [30] defined below:

G˚
s “ suptG P r0, 1s|U 1pp;Gq ą 0,@p P p0, 1su. (71)

Then for all G ď G˚
s , the system is stable. To see this, note

from (P1) of Definition 14 that U 1pp;Gq ą 0 for all p P p0, 1s

and G ď G˚
s . Also, note from (P3) of Definition 14, that

is, fp0;Gq “ fpp; 0q “ hp0q “ 0, that p “ 0 is a solution
of p “ fphppq;Gq. Since h1ppq ą 0 for p P p0, 1s ((P2) in
Definition 14), one can see from (66) that ppi`1q ă ppiq for
all i. Thus, ppiq (with pp0q “ 1) converges to 0 as i Ñ 8 for
all G ď G˚

s .
Since we have shown in Lemma 15 that the

pT,G,Λpxq, R, F q-CPR with one class of users and
one class of receivers is a scalar admissible system with f
and h specified in (63) and (64), we can use (68) to derive
the potential function Upp;Gq for pT,G,Λpxq, R, F q-CPRs,
and then use that to show the following stability result.

Theorem 17: Under the assumptions in (A1)-(A4), the
potential function of the pT,G,Λpxq, R, F q-CPR with one
class of users and one class of receivers is given by

Upp;Gq “ λppqpp ´ 1q ´
Λppq

Λ1p1q

`
1

GΛ1p1q

ż GΛ1
p1qλppq

0

Psucpρqdρ. (72)
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Moreover, if the inverse function of Psucp¨q exists and is
continuous and decreasing on r0, 1s, then for all G ď G˚

s ,
the system is stable, where G˚

s in (71) has the following
representation:

G˚
s “ inf

pPr0,1s

P´1
suc p1 ´ pq

Λ1ppq
. (73)

Proof. In view of (63) and(69), integrating the function f
w.r.t. z from 0 to p yields

F pp;Gq “

ż p

0

1 ´ PsucpzGΛ1p1qqdz

“ p ´
1

GΛ1p1q

ż GΛ1
p1qp

0

Psucpρqdρ. (74)

Also, note that hppq “ λppq “ Λ1ppq{Λ1p1q, Hppq “

Λppq{Λ1p1q. Using (68), we obtain (72).
From (66), the partial derivative of the potential function

w.r.t. its first variable, known as the balance function has the
following form:

U 1pp;Gq “ λ1ppqpp ´ 1 ` PsucpGΛ1ppqq, (75)

where Λ1ppq “ Λ1p1qλppq. Since we assume that P´1
suc exists,

from (71) and (75), we have that

G˚
s “ suptG P r0,8q|U 1pp;Gq ą 0,@p P p0, 1su

“ suptG P r0,8q|PsucpGΛ1ppqq ą 1 ´ p,

@p P p0, 1su

“ inf
pPr0,1s

P´1
suc p1 ´ pq

Λ1ppq
. (76)

The following example shows the potential functions of the
D-fold ALOHA system.

Example 5: (D-fold ALOHA) For the D-fold ALOHA
system described by (3) and (5) with Λpxq “ xd, we use
(72) and integration by parts (as in Theorem 3 of [46]) to
evaluate the potential function as follows:

Upp;Gq “
1

d

´

pd ´ 1qpd ´ dpd´1 `
1

G

ˆ

D ´

e´Gdpd´1
D´1
ÿ

τ“0

pD ´ τq
pGdpd´1qτ

τ !

˙

¯

..

(77)

B. The saturation theorem
In this section, we study the stability of the convolutional

pT,G,Λpxq, R, F,wq-CPR with L stages. The density evolu-
tion equation for the convolutional pT,G,Λpxq, R, F,wq-CPR
is given by (51) in Corollary 11. For K “ J “ 1, by (11),
(47), and the relation q

piq
ℓ “ λpp

piq
ℓ q, (51) can be simplified

as

p
pi`1q

ℓ “ 1´

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

1

w
Psuc

ˆ

1

w

ℓ̂
ÿ

ℓ̃“ℓ̂apw´1q

λpp
piq

ℓ̃
qGpℓ̃qΛ1p1q

˙

,

(78)

for ℓ “ 1, . . . , L. Moreover, since Gpℓ̃q “ G for ℓ̃ “

1, 2, . . . , L ´ w ` 1 and Gpℓ̃q “ 0 for ℓ̃ “ L ´ w ` 2, . . . , L,
(78) can be further simplified as follows:

p
pi`1q

ℓ “ 1´

ℓ`pw´1q
ÿ

ℓ̂“ℓ

1

w
Psuc

ˆ

GΛ1p1q

w

minrL´w`1,ℓ̂s
ÿ

ℓ̃“maxr1,ℓ̂´pw´1qs

λpp
piq

ℓ̃
q

˙

,

(79)
for ℓ “ 1, 2, . . . , L ´ w ` 1.

Denote by G˚
convpL,wq the percolation threshold of

the convolutional pT,G,Λpxq, R, F,wq-CPR system with L
stages. The only way to know the exact value of G˚

convpL,wq

is to evaluate the density evolution equations in (78). In this
section, we prove a lower bound of G˚

convpL,wq by using the
potential function of the corresponding pT,G,Λpxq, R, F q-
CPR (under certain conditions of the window size w). Such
a stability result for the convolutional pT,G,Λpxq, R, F,wq-
CPR system with L stages is called the saturation theorem in
this paper.

In addition to the single-system threshold G˚
s in (71), we

define the potential threshold of the pT,G,Λpxq, R, F q-CPR.
We will show that the potential threshold is a lower bound of
G˚

convpL,wq in the saturation theorem.
Definition 18: (cf. Def. 6 in [30]) Consider the scalar ad-

missible system described in Definition 14 with the potential
function Upp;Gq in (68). The potential threshold of the scalar
admissible system, denoted by G˚

conv , is defined below:

G˚
conv “ suptG P r0, 1s| min

pPr0,1s
Upp;Gq ě 0u. (80)

To give the specific conditions for the window size of the
saturation theorem, we define the following terms.

Definition 19: (cf. Def. 5, and 6 in [30]) Consider the scalar
admissible system pf, hq in Definition 14 with the potential
function Upp;Gq in (68).

(i) For G ą G˚
s , the minimum unstable fixed point is

the number

upGq “ suptp̃ P r0, 1s|U 1pp;Gq ě 0, p P r0, p̃su.
(81)

(ii) The energy gap of the scalar admissible system for
G P pG˚

s , 1s is the number

∆EpGq “ min
pPrupGq,1s

Upp;Gq. (82)

(iii) A constant Kf,h “ ||h1||8 `||h1||28||f 1||8 `||h2||8,
where

||h||8 “ sup
xPr0,1s

|hpxq|

for functions h : r0, 1s Ñ R.
Now we state the saturation theorem.
Theorem 20: (The saturation theorem for the convolutional

pT,G,Λpxq, R, F,wq-CPR) Consider the single-class (K “

J “ 1) convolutional pT,G,Λpxq, R, F,wq-CPR system with
L stages governed by the density evolution recursion in (79).
If G ă G˚

conv and

w ą
Kf,h

∆EpGq
, (83)
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then the only fixed point of (79) is p “ 0. As such,
the convolutional pT,G,Λpxq, R, F,wq-CPR system with L
stages is stable for all G ă G˚

conv .
Our proof is analogous to that for the stability of spatially

coupled LDPC codes (Theorem 1 in [30]), and it requires a
sequence of lemmas and definitions of terms. Here we outline
the basic steps of the proof. The detailed proof can be found
in Appendix B of the supplemental material.
(i) Let L̃ “ L ´ w ` 1. We reverse all the indices of the
recursion relation (79). Then, the recursion (79) becomes

p
pi`1q

ℓ “ 1´

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

1

w
Psuc

ˆ

GΛ1p1q

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

λpp
piq

ℓ̃
q

˙

.

(84)
(ii) If h is a function with one variable and p “ pp1, . . . , pL̃q P

RL̃ is a vector, we define

hppq “ phpp1q, hpp2q, . . . , hppL̃qq

and

fpp;Gq “ pfpp1;Gq, fpp2;Gq, . . . , fppL̃;Gqq

for the ease of representation. Let ppiq “ pp
piq
1 , p

piq
2 , . . . , p

piq

L̃
q,

then (84) can be written as the following matrix form:

ppi`1q “ A2fpAT
2 hpppiqq;Gq, (85)

where A2 is an L̃ ˆ L matrix defined as:

A2 “
1

w

»

—

—

—

—

—

–

1 1 . . . 1 0 0 . . . 0

0 1 1 . . . 1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . 0 1 1 . . . 1 0

0 . . . 0 0 1 1 . . . 1

fi

ffi

ffi

ffi

ffi

ffi

fl

, (86)

where all the rows of A2 contain w ones, and the functions
f and h are specified in (63) and (64), respectively. Such a
system of recursive equations is called the basic spatially-
coupled system in [30], up to that the matrix A2 is transposed.
Like the scalar admissible system, the basic spatially-coupled
system is also characterized by the two functions f and h.
(iii) Consider the recursive equations in the following matrix
form:

ppi`1q “ AT fpAhpppiqq;Gq, (87)

where A is an L ˆ L matrix defined as:

A “
1

w

»

—

—

—

—

—

—

—

—

—

—

—

–

1 1 . . . 1 0 . . . 0

0 1 1 . . . 1
. . .

...
...

. . . . . . . . . . . . . . . 0

0 . . . 0 1 1 . . . 1

0 0 . . . 0 1 . . . 1

0 0 . . . 0 0 1 1

0 0 . . . 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (88)

where the 1st, 2nd, . . . , and the pL ´ w ` 1q-th rows of A
contain w ones, and the functions f and h are specified in (63)
and (64), respectively. Such a system of recursive equations is
called the vector one-sided spatially-coupled recursion system

in [30] and [34]. We will briefly call this kind of system a one-
sided system in this paper. Like the scalar admissible system,
the one-sided system is also characterized by the two functions
f and h.

One may illustrate that the one-sided system gives a
component-wise upper bound of the basic spatially-coupled
system for ℓ “ 1, . . . , L̃. Hence, the percolation threshold of
the basic spatially-coupled system is not smaller than that of
the one-sided system. Once we prove the saturation theorem
for the one-sided system, the results will also apply to the
basic spatially-coupled system.
(iv) The potential function of the one-sided system has the
following representation:

Upp;Gq “ hppqTp ´ Hppq ´ F pAhppq;Gq, (89)

where
Hppq “

ÿ

ℓ

Hppℓq, (90)

and
F pp;Gq “

ÿ

ℓ

F ppℓ;Gq, (91)

with the functions F and H being defined in (69) and (70),
respectively. This shows how the potential function of the one-
sided system is coupled with that of the scalar admissible
system.
(v) Reproduce the properties of the potential function in
Lemma 3 and Lemma 4 of [30] to show a specific relation
between the potential function of the one-sided system and
that of the scalar admissible system. Specifically, for a non-
decreasing vector p “ pp1, . . . , pLq P r0, 1sL, define the shift
operator S : RL Ñ RL so that rSps “ p0, p1, p2, . . . , pL´1q.
Then

UpSp;Gq ´ Upp;Gq “ ´UppL;Gq. (92)

(vi) Reproduce the bound for the norm of the Hessian
U2pp;Gq in Lemma 5 of [30], i.e.,

||U2pp;Gq||8 ď Kf,h, (93)

where the constant Kf,h is specified in Definition 19 (iii).
(vii) Suppose p ‰ 0 is a fixed point of (87). As in the
proof of Theorem 1 of [30], one can use the Taylor series
(with the bound for the norm of the Hessian U2pp;Gq) to
show that the inner product of the gradient U 1pp;Gq with a
specific direction Sp ´ p is smaller than 0 for G ă G˚

conv

and w satisfying the condition in (83). Since each component
of the vector Sp ´ p is not greater than 0, there must exist a
positive component, say the ℓ0-th component, of the gradient
U 1pp;Gq. As such, one more iteration further reduces the
value of pℓ0 . This then leads to a contradiction and thus shows
that p “ 0 is the only fixed point of (78).

Note that if L is large enough, one can always choose
a window size w large enough to satisfy (83). An imme-
diate consequence of Theorem 20 is that G˚

convpL,wq ě

G˚
conv if w ą Kf,h{∆EpGq, as Theorem 20 provides a

sufficient condition for the stability of the convolutional
pT,G,Λpxq, R, F,wq-CPR system with L stages. However,
it is also possible that G˚

convpL,wq is larger than G˚
conv even

when the condition in (83) is not satisfied. This is due to the
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puncturing effect that reduces the offered load. In addition,
the condition for w in Theorem 20 often results in large
window size. However, our numerical results in Section VI-A
demonstrate that |G˚

convpL,wq ´ G˚
conv| ă 0.0001 can be

achieved in some cases.

C. The upper bound by the area theorem

In this section, we consider another threshold G˚
up that

is defined as the unique positive solution of the equation
Up1;Gq “ 0. For the potential function of a system of CPR
in (72), G˚

up is the unique positive solution to the following
equation:

G “

ż GΛ1
p1q

0

Psucpρqdρ. (94)

Now we show by the area theorem [26] that G˚
up is an

upper bound for the stable offered load of a system of CPR.
For ppiq and qpiq in the two recursive mappings in (59) and
(60) to converge to 0 as i Ñ 8, the area theorem in [26]
provides a necessary condition that requires the sum of the
two areas under the two mappings to be not greater than 1,
i.e.,

ż 1

0

p1 ´ PsucpqGΛ1p1qqdq `

ż 1

0

λppqdp ď 1. (95)

Since λppq “ Λ1ppq{Λ1p1q,
ş1

0
λppqdp “ 1{Λ1p1q. Let ρ “

qGΛ1p1q. We can write the inequality in (95) as follows:

G ď

ż GΛ1
p1q

0

Psucpρqdρ. (96)

For the D-fold ALOHA system described by (3) and (5),
G˚

up is the solution to the following equation:

G “ D ´

D´1
ÿ

τ“0

pD ´ τqe´Gd pGdqτ

τ !
. (97)

This is the same as the upper bound in Theorem 1 of [27]
for the spatially coupled D-fold ALOHA system. It is also the
same as the upper bound in Section III when the underlying
channel is modeled by a ϕ-ALOHA receiver [28]. In view of
the extended upper bound for a mixture of D-fold ALOHA
in Example 1, we have the following corollary.

Corollary 21: Suppose that the T Poisson receivers of the
pT,G,Λpxq, R, F q-CPR with one class of users and one class
of receivers in (72) are induced from a mixture of D-fold
ALOHA in Example 1. Then the stable offered load of such a
system is bounded above by G˚

up, where G˚
up is the solution

to (94). As such, G˚
up is an upper bound for the percola-

tion threshold of the convolutional pT,G,Λpxq, R, F,wq-CPR
with an infinite number of stages, i.e.,

lim
LÑ8

G˚
convpL,wq ă G˚

up

regardless of the choice of the degree distribution Λpxq and
the window size w.

In the following theorem, we show the single-system thresh-
old G˚

s in (71) is smaller than the potential threshold G˚
conv ,

and the potential threshold G˚
conv is smaller than the upper

bound G˚
up.

Theorem 22: Consider the scalar admissible system pf, hq

in Definition 14 with the potential function Upp;Gq. Then

G˚
s ă G˚

conv ă G˚
up. (98)

Proof. (i) First, we demonstrate that G˚
s ă G˚

conv . From the
integral representation in (68) and the fact that the function
f is strictly increasing in G from (P1), we deduce that
Up0;Gq “ 0 for all G and Upp;Gq is strictly decreasing
in G. From the definition given in (71) of G˚

s , it is clear
that U 1pp;Gq ą 0 when G ď G˚

s . Therefore, the function
Upp;Gq is strictly increasing in p when G ď G˚

s . This implies
that Upp;Gq ą 0 for all p P p0, 1q and G ď G˚

s . Since
Upp;Gq decreases for G, when Upp;Gq becomes 0 for some
value of G and p is not 0, such a G must be greater than
G˚

s . The supremum of all such possible G values results in
G˚

s ă G˚
conv .

(ii) Now we show that G˚
conv ă G˚

up. By (A4), we have
Λ1p1q ą 0 and λ1p1q ą 0. Since PsucpGΛ1p1qq ą 0 from (A1),
we have

U 1p1;Gq “ λ1p1qPsucpGΛ1p1qq ą 0.

Thus, p “ 1 cannot be a local minimum of Upp;Gq for
G ą 0. As such,

Up1;G˚
convq ą min

pPr0,1s
Upp;G˚

convq “ 0. (99)

As argued in (i), Up1;Gq is strictly decreasing in G. Thus,
we have from (99) that Up1;Gq ą 0 for all G ď G˚

conv .
This shows that G˚

conv ă G˚
up if G˚

up exists. It remains to
show the existence of the unique positive solution G˚

up of
the equation Up1;Gq “ 0. Since Up1;Gq is continuous and
decreasing for G ą 0, and fpp;Gq is strictly increasing in
both p and G, Up1;Gq Ñ ´8 when G Ñ 8 by (68).
Therefore, combining with (99), the unique positive solution
to the equation Up1;Gq “ 0 exists on pG˚

conv,8q.

Given Theorem 20 and Theorem 22, one can improve
the percolation threshold of a pT,G,Λpxq, R, F q-CPR system
from G˚

s to at least G˚
conv by adopting the spatially-coupled

method. Though the window size w needs to be large to
satisfy the condition in (83), our numerical results in Section
VI-A show that adopting w “ 2 significantly improves the
percolation threshold.

Theorem 22 also reveals the existence of a numerical gap
between G˚

conv and G˚
up. However, as shown in Section VI,

this gap is small in most cases, with |G˚
up ´ G˚

conv| typically
being smaller than 10´2.

Example 6: (IRSA with a regular degree) In this example,
we illustrate how G˚

s , G˚
conv and G˚

up are related for IRSA
with a regular degree d, i.e., Λpxq “ xd and Psucpρq “ e´ρ.
Then we have from (77) (with D “ 1) that

Upp;Gq “
1

d

´

pd ´ 1qpd ´ dpd´1 `
1 ´ e´Gdpd´1

G

¯

, (100)

and

U 1pp;Gq “ pd ´ 1qpd´2pp ´ 1 ` e´Gdpd´1

q. (101)
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Fig. 1. The plot of the potential function Upp;Gq as a function of p for
various values of G in Example 6 with d “ 3.

For d “ 3, we use a computer search to find G˚
s , G˚

conv and
G˚

up as follows:

G˚
s “ suptG P r0, 1s|

dpd ´ 1qpd´2pp ´ 1 ` e´Gdpd´1

q ą 0,@p P p0, 1su

« 0.8184,

G˚
conv “ suptG P r0, 1s|

min
pPr0,1s

pd ´ 1qpd ´ dpd´1 `
1 ´ e´Gdpd´1

G
ě 0u

« 0.9179,

G˚
up “ tG : G “ 1 ´ e´dGu « 0.9405.

In Figure 1, we plot the potential function Upp;Gq as a
function of p for various values of G. This plot illustrates
how the potential function changes for the parameter p under
various values of the parameter G.

VI. NUMERICAL RESULTS

In this section, we provide numerical results for various
systems of convolutional coded Poisson receivers. The con-
vergence criteria are defined as |q

piq
k,ℓ ´ q

pi´1q

k,ℓ | ă 10´8 (or
|p

piq
k,ℓ ´ p

pi´1q

k,ℓ | ă 10´8) for all ℓ. The percolation thresh-
old is determined by identifying the value of G such that
limiÑ8 ppiq exhibits the first significant jump. The numerical
results presented here are obtained using a step size of
δ “ 0.0001 for G and L “ 40. All numerical values are
rounded to four decimal places.

A. Convolutional coded Poisson receivers with one class of
users and one class of receivers

In this section, we focus on the single-class system (con-
volutional coded Poisson Receivers with K “ J “ 1). This
section aims to validate the results obtained in Section V.

In Table I, we provide percolation thresholds for the scalar
admissible system (w “ 1) with Psucpρq “ e´ρ, i.e., IRSA.

TABLE I
PERCOLATION THRESHOLDS FOR CONVOLUTIONAL IRSA.

Convolutional IRSA
d w “ 1 w “ 2 w “ 3 w “ 4 G˚

s G˚
conv G˚

up

3 0.8184 0.9177 0.9179 0.9179 0.8184 0.9179 0.9405
4 0.7722 0.9708 0.9767 0.9767 0.7722 0.9767 0.9802
5 0.7017 0.9625 0.9914 0.9924 0.7017 0.9924 0.9930
6 0.6370 0.9258 0.9917 0.9970 0.6370 0.9973 0.9975

TABLE II
PERCOLATION THRESHOLDS FOR THE CONVOLUTIONAL 2-FOLD

ALOHA.

Convolutional 2-fold ALOHA
d w “ 1 w “ 2 w “ 3 w “ 4 G˚

s G˚
conv G˚

up

3 1.5528 1.9560 1.9760 1.9763 1.5528 1.9764 1.9790
4 1.3336 1.8966 1.9894 1.9961 1.3336 1.9964 1.9966
5 1.1577 1.7722 1.9639 1.9955 1.1577 1.9994 1.9995
6 1.0216 1.6326 1.9071 1.9833 1.0216 1.9999 1.9999

TABLE III
PERCOLATION THRESHOLDS FOR THE CONVOLUTIONAL 3-FOLD

ALOHA.

Convolutional 3-fold ALOHA
d w “ 1 w “ 2 w “ 3 w “ 4 G˚

s G˚
conv G˚

up

3 2.1744 2.8990 2.9874 2.9916 2.1744 2.9918 2.9923
4 1.8108 2.7127 2.9577 2.9950 1.8108 2.9993 2.9994
5 1.5456 2.4744 2.8636 2.9739 1.5456 2.9999 3.0000
6 1.3487 2.2425 2.7240 2.9213 1.3487 2.9999 3.0000

These percolation thresholds are evaluated using the density
evolution equation in (15). The columns w “ 2, 3, 4 present
the percolation thresholds G˚

convp40, wq for w “ 2, 3, 4,
respectively, evaluated using the equation in (50). Addition-
ally, we numerically evaluate G˚

s , G˚
conv , and G˚

up by their
definitions. As for the degree distribution, we set Λpxq “ x5

to reproduce the numerical results presented in [27]. Table II
and Table III show the corresponding results for the 2-fold
ALOHA and the 3-fold ALOHA, respectively, with Psucpρq

being defined in (5)).
From these tables, we observe that G˚

s ă G˚
conv ă G˚

up

holds. Also, though the condition of the saturation theorem
is not satisfied, the gap between G˚

convpL,wq and G˚
conv is

small. Specifically, the gap ranges from 0.0001 to 0.1. Note
that G˚

convpL,wq and G˚
up in the first two rows of each table

match very well with those in Table I of [32] and Table I of
[27].

B. IRSA with two classes of users and two classes of receivers

In this section, we consider the IRSA system with two
classes of users and two classes of receivers Example 3 with
the spatially coupled applied. As in Example 3 and [25], we
consider the following two packet routing policies:

1) Complete sharing: every packet has an equal prob-
ability to be routed to the two classes of receivers,
i.e., r11 “ r22 “ r12 “ r21 “ 0.5.
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Fig. 2. The boundaries of the stability region of the convolutional IRSA
system with two classes of users and two classes of receivers under the
complete sharing policy. The gray area presents the outer bound (41) for the
complete sharing policy.

Fig. 3. The boundaries of the stability region of the convolutional IRSA
system with two classes of users and two classes of receivers under the
receiver reservation policy. The gray area is the intersection of the outer
bounds (43) and (44) for the receiver reservation policy.

2) Receiver reservation: class 1 packets are routed to
the two classes of receivers with an equal probability,
i.e., r11 “ r12 “ 0.5, and class 2 packets are routed
to the class 2 receivers, i.e., r21 “ 0, r22 “ 1.

For our numerical validations, we set the number of itera-
tions of (51) to 10, 000. We set the number of stages L “ 40
and the window size w is set from 2 to 4. These numerical
results are obtained from a grid search with a step size of
δ “ 0.01 for both G1 and G2. For the sake of numerical
stability in our computation, we round up p

p10000q

k,L{2 pG1, G2q

to 0 if its computed value is smaller than 10´5.
In Figure 2 and Figure 3, we depict the stability region

boundaries for two classes of users with two different degree
distributions for w “ 2, 3, 4. We choose Λ1pxq “ x5 and
Λ2pxq “ 0.5102x2 ` 0.4898x4, where Λ2pxq is selected

from Table 1 of [10] to achieve a high percolation threshold
of 0.868 in IRSA with a single class of users. The legend
w “ 1 denotes the conventional coded Poisson receiver
(without convolution), reproducing the numerical results in
[25]. The colored dashed lines represent the boundary of
stability regions for different values of w. In both figures,
the boundaries of the stability regions almost overlap for
w “ 2, 3, 4.

Furthermore, the shaded regions in both figures represent
the outer bounds of the stability region evaluated in Exam-
ple 3. Moreover, in both figures, we observe a significant
enlargement of the stability region from w “ 1 to w “ 2,
consistent with the findings of Theorem 13. Therefore, the
spatial coupling effect can enlarge the stability region. This
expansion continues as w monotonically increases from 2 to
4. Eventually, the boundaries of the expanded stability regions
are close to their outer bounds. These empirical results align
with the single-class scenario discussed in Section VI-A. For
Figure 3, the reservation policy (r21 “ 0) notably constrains
the outer bound (44) for G2. Thus, the stability region is
significantly limited in G2 compared to that of G1.

VII. CONCLUSION

In this paper, we introduced a probabilistic framework
known as convolutional coded Poisson receivers, extending
the concept of coded Poisson receivers by drawing inspiration
from convolutional LDPC codes. The main contributions of
this paper are summarized as follows:

(i) We established the outer bounds for the stability
region of a system of CPRs in Theorem 9, applicable
to both CPRs and CCPRs. These outer bounds are
extended to encompass multiple traffic classes.

(ii) We established the saturation theorem (Theorem 20)
as a sufficient condition for CCPRs to demonstrate
a higher percolation threshold compared to conven-
tional CPRs. We validated the numerical results in
Section VI-A.

(iii) For the single-class user and receiver scenario of
CCPRs, we employed the potential function to char-
acterize three important thresholds, namely G˚

s ă

G˚
conv ă G˚

up, as presented in Theorem 22.
(iv) Our numerical results showed that the stability re-

gion of CCPRs might approach its outer bounds
under finite iterations of the density evolution equa-
tions.

As a future direction, we are interested in exploring the
parallel statement to Theorem 10 in [29]. Specifically, we aim
to investigate whether

lim
wÑ8

lim
LÑ8

G˚
convpL,wq “ G˚

conv.
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APPENDIX A
PROOF OF LEMMA 10

Proof. Consider a particular Poisson receiver. During the
SIC decoding process, we assume that there are nkℓ

ą 0
class kℓ packets that are decoded during the iℓ-th iteration,
ℓ “ 1, 2, . . . ,M for some M . Without loss of generality, we
assume that i1 ď i2 ď . . . ď iM . Let ek be the 1 ˆ K
vector with its k-th element being 1 and 0 otherwise. Thus, the
number of packets decoded by this receiver can be represented
by the vector

řM
ℓ“1 nkℓ

ekℓ
. To prove this lemma, we need

to show that the decoded packets by this Poisson receiver is
within the capacity region of the ϕ-ALOHA receiver, i.e.,

ϕp

M
ÿ

ℓ“1

nkℓ
ekℓ

q “

M
ÿ

ℓ“1

nkℓ
ekℓ

(102)

This is equivalent to showing that

ϕc
kℓ

p

M
ÿ

ℓ“1

nkℓ
ekℓ

q “ 0, (103)

for ℓ “ 1, 2, . . . ,M . From the all-or-nothing property, we
know that M ď K as packets of the same class are decoded
in the same iteration.

We prove (103) by induction. Suppose that there are npiq “

pn
piq
1 , n

piq
2 , . . . , n

piq
K q remaining packets at the receiver during

the i-th iteration. As the number of decoded class k packets
cannot be larger than the number of remaining class k packets,
we have

nk1
ek1

ď npi1q. (104)

As there are nk1
ą 0 class k1 packets that are decoded

during the i1-th iteration, we have from the monotone property
and the all-or-nothing property that

ϕc
k1

p

M
ÿ

ℓ“1

nkℓ
ekℓ

q ď ϕc
k1

pnpi1qq “ 0. (105)

Now assume that (103) holds for ℓ “ 1, 2, . . . ,m as the
induction hypothesis. From the induction hypothesis, we have

ϕcp

M
ÿ

ℓ“1

nkℓ
ekℓ

q ď

M
ÿ

ℓ“m`1

nkℓ
ekℓ

. (106)

From the closure property, the monotone property and (106),
we know that

ϕc
km`1

p

M
ÿ

ℓ“1

nkℓ
ekℓ

q “ ϕc
km`1

pϕcp

M
ÿ

ℓ“1

nkℓ
ekℓ

qq

ď ϕc
km`1

p

M
ÿ

ℓ“m`1

nkℓ
ekℓ

q. (107)

As the number of decoded class k packets cannot be larger
than the number of remaining class k packets, we have at the
im`1-th iteration that

M
ÿ

ℓ“m`1

nkℓ
ekℓ

ď npim`1q. (108)

It follows from the monotone property and the all-or-nothing
property that

ϕc
km`1

p

M
ÿ

ℓ“m`1

nkℓ
ekℓ

q ď ϕc
km`1

pnpim`1qq “ 0. (109)

Thus, ϕc
km`1

p
řM

ℓ“1 nkℓ
ekℓ

q “ 0, and we complete the induc-
tion.

APPENDIX B
DENSITY EVOLUTION FOR THE CIRCULAR
CONVOLUTIONAL CPR IN COROLLARY 11

In this appendix, we conduct the density evolution analysis
for the circular convolutional CPR with L stages. The analysis
is similar to that in [25] that uses the density evolution method
in [10], [12], [42], [43], [47], [48] and the reduced Poisson
offered load argument in [24], [49]–[51]. For our analysis,
we call an edge a class k edge if the user end of the edge is
connected to a class k user. Also, we call an edge a class
pk, jq-edge if the receiver (resp. user) end of the edge is
connected to a class j receiver (resp. class k user).

The density evolution analysis consists of the following
steps:
(i) The initial offered load of class k packets to a class j
Poisson receiver in the ℓth stage, defined as the expected
number of class k packets transmitted to that receiver, is

ρk,j,ℓ “

ℓ
ÿ

ℓ̂“ℓapw´1q

G
pℓ̂q

k Λ1
kp1q

1

w
rk,j{Fj . (110)

To see (110), note that (a) there are G
pℓ̂q

k T class k users
in the ℓ̂th stage, (b) each class k user transmits on average
Λ1
kp1q copies, (c) each copy in the ℓ̂th stage (with ℓ̂ P rℓ a

pw ´ 1q, ℓs), is sent to class j Poisson receivers in the ℓth

stage with the routing probability rk,j{w, and (d) a copy sent
to class j Poisson receivers is uniformly distributed among the
FjT class j Poisson receivers. When T goes to infinity, the
number of class k packets at a class j receiver in the ℓth stage
converges (from a binomial random variable) to a Poisson
random variable with mean ρk,j,ℓ, and the degree distribution
of class k packets at a class j receiver node is a Poisson
distribution with mean ρk,j,ℓ.
(ii) Let qpiq

k,ℓ be the probability that the user end of a randomly
selected class k edge in the ℓth stage has not been successfully
received after the ith SIC iteration. The offered load of class k
packets to a class j Poisson receiver in the ℓth stage after the
ith SIC iteration has a Poisson distribution with mean ρ

piq
k,j,ℓ

(from the reduced offered load argument), where

ρ
piq
k,j,ℓ “

ℓ
ÿ

ℓ̂“ℓapw´1q

q
piq

k,ℓ̂
G

pℓ̂q

k Λ1
kp1q

1

w
rk,j{Fj . (111)

Let
ρ̃

piq
j,ℓ “ pρ

piq
1,j,ℓ, ρ

piq
2,j,ℓ, . . . , ρ

piq
K,j,ℓq. (112)
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Note that one can represent the offered load at a class j
Poisson receiver in the ℓth stage after the ith SIC iteration
by the vector ρ̃piq

j,ℓ.

(iii) Let ppi`1q

k,j,ℓ be the probability that the receiver end of a
randomly selected class pk, jq-edge in the ℓth stage has not
been successfully received after the pi ` 1qth SIC iteration.
Then

p
pi`1q

k,j,ℓ “ 1 ´ Psuc,k,jpρ̃
piq
j,ℓq. (113)

That (113) holds follows directly from the definition of a
Poisson receiver in Definition 1 as the offered load at a class
j Poisson receiver in the ℓth stage after the ith SIC iteration
is ρ̃

piq
j,ℓ.

(iv) Let p
pi`1q

k,ℓ be the probability that the receiver end of a
randomly selected class k edge in the ℓth stage has not been
successfully received after the pi ` 1qth SIC iteration. Since
a class k edge in the ℓth stage is a class pk, jq-edge in the
ℓ̂th stage (for ℓ̂ P rℓ, ℓ ‘ pw ´ 1qs) with probability rk,j{w, it
follows that

p
pi`1q

k,ℓ “

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

J
ÿ

j“1

1

w
rk,jp

pi`1q

k,j,ℓ̂

“ 1 ´

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

J
ÿ

j“1

1

w
rk,jPsuc,k,jpρ̃

piq

j,ℓ̂
q.

(114)

(v) The probability q
piq
k,ℓ can be computed recursively from the

following equation:

q
pi`1q

k,ℓ “ λkp1 ´

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

J
ÿ

j“1

1

w
rk,jPsuc,k,jpρ̃

piq

j,ℓ̂
qq, (115)

with q
p0q

k,ℓ “ 1. To see this, note that a packet sent from a
user (the user end of the bipartite graph) can be successfully
received if at least one of its copies is successfully received
at the receiver end. Since the probability that the user end of
a randomly selected class k edge has additional d edges is
λk,d, the probability that the user end of a randomly selected
class k edge cannot be successfully received after the pi`1qth

iteration is

q
pi`1q

k,ℓ “ 1 ´

8
ÿ

d“0

λk,d ¨

´

1 ´ pp
pi`1q

k,ℓ qd
¯

“ λkpp
pi`1q

k,ℓ q. (116)

Using (114) in (116) yields (115).
(vi) Let P̃

piq
suc,k,ℓ be the probability that a packet sent from

a randomly selected class k user in the ℓth stage can be
successfully received after the ith iteration. Such a probability
is the probability that at least one copy of the packet has
been successfully received after the ith iteration. Since the

probability that a randomly selected class k user has d edges
is Λk,d, we have from (114) that

P̃
piq
suc,k,ℓ

“

8
ÿ

d“0

Λk,d ¨

´

1 ´ pp
piq
k,ℓq

d
¯

“ 1 ´ Λk

´

1 ´

ℓ‘pw´1q
ÿ

ℓ̂“ℓ

J
ÿ

j“1

1

w
rk,jPsuc,k,jpρ̃

pi´1q

j,ℓ̂
q

¯

.

(117)

APPENDIX C
PROOF OF THEOREM 20

The proof of Theorem 20 requires several lemmas similar
to those in [30] using the notations employed in this paper.
Though these lemmas may not have a direct physical interpre-
tation, they are crucial for establishing the proof of Theorem
20.

Let L̃ “ L ´ w ` 1. We first reverse the indices of the
recursion equation (79). Let p̃piq

ℓ “ p
piq

L̃´ℓ`1
, (79) becomes

p̃
pi`1q

ℓ “ 1 ´

L̃´ℓ`w
ÿ

ℓ̂“L̃´ℓ`1

1

w
Psuc

ˆ

GΛ1p1q

w

minrL̃,ℓ̂s
ÿ

ℓ̃“maxr1,ℓ̂´w`1s

λpp̃
piq

L̃´ℓ̃`1
q

˙

.

(118)

Let ℓ̃1 “ L̃ ´ ℓ̃ ` 1. The upper and lower indices of the
second summation could be changed into

ℓ̃1 “ minrL̃, L̃ ´ ℓ̂ ` ws

and
ℓ̃1 “ maxr1, L̃ ´ ℓ̂ ` 1s.

Note that the latter becomes not larger than the former in this
case. Thus, (118) further becomes

p̃
pi`1q

ℓ “ 1´

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

1

w
Psuc

ˆ

GΛ1p1q

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃1“maxr1,L̃´ℓ̂`1s

λpp̃
piq

ℓ̃1
q

˙

.

(119)
Hence, reversing the indices, the convolutional

pT,G,Λpxq, R, F,wq-CPR with L stages with one class
of users is governed by the following recursion equation:

p
pi`1q

ℓ “ 1´

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

1

w
Psuc

ˆ

GΛ1p1q

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

λpp
piq

ℓ̃
q

˙

,

(120)
where the initial condition is pp0q “ p1, 1, . . . , 1q.

A pT,G,Λpxq, R, F q-CPR is a kind of scalar admissible
system characterized by a pair of functions pf, hq, which
can be represented as a bipartite graph. If we construct a
large bipartite graph as the construction of convolutional
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pT,G,Λpxq, R, F,wq-CPR systems in Section IV, we ob-
tain a basic spatially-coupled system in [30], which is also
parametrized by a pair of functions pf, hq.

Definition 23: (The basic spatially-coupled system (cf.
Def. 10 in [30]) The basic spatially-coupled system is defined
by concatenating L bipartite graphs of a scalar admissible
system. The edges in the concatenated bipartite graphs are
rewired to form a single bipartite graph as follows: The
receiver end of each edge in the ℓ-th copy is rewired to
the corresponding receiver node in the ℓ̂-th copy, where ℓ̂
is chosen uniformly in rℓ, ℓ ‘ pw ´ 1qs. Then, we reverse the
index. Additionally, the recursion is defined as:

p
pi`1q

ℓ “
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

f

ˆ

1

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

hpp
piq

ℓ̃
q;G

˙

,

(121)

for ℓ “ 1, 2, . . . , L ´ w ` 1. Also, conditions (P1)-(P4) in
Definition 14 should be satisfied.

Define hppq “ phpp1q, hpp2q, . . . , hppL̃qq and fpp;Gq “

pfpp1;Gq, fpp2;Gq, . . . , fppL̃;Gqq, then the vector recursion
of (121) is given by:

ppi`1q “ A2fpAT
2 hpppiqq;Gq, (122)

where A2 is an L̃ ˆ L matrix defined as

A2 “
1

w

»

—

—

—

—

—

–

1 1 . . . 1 0 0 . . . 0

0 1 1 . . . 1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . 0 1 1 . . . 1 0

0 . . . 0 0 1 1 . . . 1

fi

ffi

ffi

ffi

ffi

ffi

fl

, (123)

and all the columns of A contain w ones.
Next, by examining the conditions in Definition 23, we

prove that CCPRs are one kind of basic spatially-coupled
system.

Lemma 24: The convolutional pT,G,Λpxq, R, F,wq-CPR
system is a basic spatially-coupled system. That is, for ℓ “

1, 2, . . . , L ´ w ` 1,

p
pi`1q

ℓ “
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

ˆ

1 ´ Psuc

´GΛ1p1q

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

λpp
piq

ℓ̃
q

¯

˙

.

(124)

Proof. First, rearranging (120),

p
pi`1q

ℓ “ 1 ´

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

1

w
Psuc

ˆ

GΛ1p1q

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

λpp
piq

ℓ̃
q

˙

.

(125)

Then, insert 1 into the summation,

p
pi`1q

ℓ “

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

ˆ

1

w
´

1

w
Psuc

ˆ

GΛ1p1q

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

λpp
piq

ℓ̃
q

˙˙

.

(126)

Taking 1{w out from the summation,

p
pi`1q

ℓ “
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

ˆ

1 ´

Psuc

ˆ

GΛ1p1q

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

λpp
piq

ℓ̃
q

˙˙

.

(127)

Assign

fpp;Gq “ 1 ´ PsucppGΛ1p1qq, (128)
hppq “ λppq. (129)

By Lemma 15, conditions (1)-(4) of Definition 14 are
satisfied.

Now we introduce the vector one-sided spatially-coupled
recursion system (briefly, a one-sided system in this paper) in
[30] and [34]. It is also parametrized by a pair of functions
pf, hq. Hence, there exists a correspondence between one-
sided systems, basic spatially-coupled systems, and scalar
admissible systems if they are characterized by the same pair
of functions pf, hq.

Definition 25: (The one-sided system (cf. Def. 10 in [30])
The one-sided system is defined by the recursion system:

p
pi`1q

ℓ “
1

w

ℓ
ÿ

ℓ̂“maxr1,ℓ´w`1s

f

ˆ

1

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

hpp
piq

ℓ̃
q;G

˙

,

(130)

where p P r0, 1sL. Conditions (P1)-(P4) in Definition 14
should be satisfied.

The vector recursion form of (130) is given by:

ppi`1q “ AT fpAhpppiqq;Gq, (131)

where A is an L ˆ L matrix defined as:

A “
1

w

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 . . . 1 0 . . . 0

0 1 1 . . . 1
. . .

...
...

. . . . . . . . . . . . . . . 0

0 . . . 0 1 1 . . . 1

0 0 . . . 0 1 . . . 1

0 0 . . . 0 0 1
...

0 0 . . . 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (132)
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where the 1st, 2nd, . . . , pL̃ ´ w ` 1q-th rows of A contain w
ones.

Next, we give two lemmas for the one-sided system.
The first one illustrates that the one-sided system gives a
component-wise upper bound of the basic spatially-coupled
system with a boundary condition s

piq
ℓ “ s

piq

L̃
for ℓ “

L̃, L̃ ` 1, . . . , L after each iteration. The second one shows
that ppiq in (131) is a non-decreasing vector.

Lemma 26: Consider a column vector ppiq “

pp
piq
1 , p

piq
2 , . . . , p

piq

L̃
q and a basic spatially-coupled system

ppi`1q “ A2fpAT
2 hpppiqq;Gq

with the initial condition pp0q “ p1, 1, . . . , 1q. Let spiq be a
vector of length L defined by the one-sided system

spi`1q “ AT fpAhpspiqq;Gq

with the initial condition

sp0q “ p1, 1, . . . , 1q. (133)

If we enforce s
piq
ℓ “ s

piq

L̃
for ℓ “ L̃, L̃ ` 1, . . . , L after each

iteration, we have

p
piq
ℓ ď s

piq

L̃`w´ℓ
, @ℓ “ 1, 2, . . . , L̃. (134)

Thus, the percolation threshold of the basic spatially-coupled
system is not smaller than that of the one-sided system.
Proof. We prove this lemma by induction. The initial condi-
tion (133) shows that pp0q

ℓ “ s
p0q

L̃`w´ℓ
“ 1 for ℓ “ 1, . . . , L̃.

Thus, (134) holds for i “ 0. Next, by (P1), (P2), and the
induction hypothesis, we have

p
pi`1q

ℓ “
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

f

ˆ

1

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

hpp
piq

ℓ̃
q;G

˙

ď
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

f

ˆ

1

w

minrL̃,L̃´ℓ̂`ws
ÿ

ℓ̃“maxr1,L̃´ℓ̂`1s

hps
piq

L̃`w´ℓ̃
q;G

˙

.

(135)

If we change the subscript by letting ℓ̃1 “ L̃ ` w ´ ℓ̃, then
the upper bound of (135) could be further evaluated

p
pi`1q

ℓ ď
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

f

ˆ

1

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃1“maxrℓ̂,ws

hps
piq

ℓ̃1
q;G

˙

“
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

f

ˆ

1

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“maxrℓ̂,ws

hps
piq

ℓ̃
q;G

˙

ď
1

w

L̃`w´ℓ
ÿ

ℓ̂“L̃`1´ℓ

f

ˆ

1

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

hps
piq

ℓ̃
q;G

˙

.

“ s
pi`1q

L̃`w´ℓ
.

(136)

The first equality holds since we change the indices of the
second summation. The second inequality follows from (P1)
and the fact that more terms are included. The last equality
follows from (130).

Hence, for ℓ “ 1, 2, . . . , L̃, (134) also holds for the pi`1q-
th iteration. This completes the proof.

Lemma 26 implies that once the saturation theorem holds
for the one-sided system, it automatically holds for the basic
spatially-coupled system as well.

Lemma 27: Consider the one-sided system

ppi`1q “ AT fpAhpppiqq;Gq

with the initial condition

pp0q “ p1, 1, . . . , 1q. (137)

If we enforce p
piq
ℓ “ p

piq

L̃
for ℓ “ L̃, L̃ ` 1, . . . , L after each

iteration, then the vector ppiq is non-decreasing, say

p
piq
0 ď p

piq
1 ď p

piq
2 ď . . . ď p

piq

L̃
“ p

piq

L̃`1
“ . . . “ p

piq
L (138)

for all i.
Proof. For i “ 0, (138) holds by the initial condition
(137). Suppose that (138) holds for the i-th iteration, we shall
examine (138) for the pi` 1q-th iteration. First, by (130), we
have

p
pi`1q

ℓ`1 ´ p
pi`1q

ℓ

“
1

w

ˆ

f

ˆ

1

w

min rL,ℓ`ws
ÿ

ℓ̃“ℓ`1

hpp
piq

ℓ̃
q;G

˙

´f

ˆ

1

w

minrℓ,Ls
ÿ

ℓ̃“ℓ´w`1

hpp
piq

ℓ̃
q;G

˙˙

.

(139)

Case I. ℓ ă w: By (P1) and (P2)

p
pi`1q

ℓ`1 ´ p
pi`1q

ℓ “
1

w
f

ˆ

1

w

ℓ`w
ÿ

ℓ̃“ℓ`1

hpp
piq

ℓ̃
q;G

˙

ą 0.

(140)

Case II. w ă ℓ ă L̃:

p
pi`1q

ℓ`1 ´ p
pi`1q

ℓ

“
1

w

ˆ

f

ˆ

1

w

ℓ`w
ÿ

ℓ̃“ℓ`1

hpp
piq

ℓ̃
q;G

˙

´f

ˆ

1

w

ℓ
ÿ

ℓ̃“ℓ´w`1

hpp
piq

ℓ̃
q;G

˙˙

ą 0.

(141)

The inequality follows from (P1), (P2), and the induction
hypothesis.
Case III. ℓ ě L̃: By the enforcement we make, p

pi`1q

ℓ`1 ´

p
pi`1q

ℓ “ 0
Thus, (138) holds for all i.

Following Lemma 2 in [30] and Lemma 14 in [29],
we introduce a lemma that serves as the convolutional
pT,G,Λpxq, R, F,wq-CPR version of Lemma 5 in [24].
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Lemma 28: Consider the recursion equation (130) with the
condition that ppiq

ℓ “ p
piq

L̃
is enforced for ℓ “ L̃, L̃ ` 1, . . . , L

after each iteration. If f and h is given by (63), then p
pi`1q

ℓ ď

p
piq
ℓ for all ℓ “ 1, . . . L and all positive integer i. Also, (130)

converges to a well-defined fixed point, say

lim
iÑ8

ppiq :“ pp8q “ pp
p8q

1 , . . . , p
p8q

L q.

Moreover, pp8q represents the (element-wise) largest so-
lution among all solutions in r0, 1sL. In other words, if
p̂ “ pp̂1, . . . , p̂Lq is another solution, then p̂ℓ “ p

p8q

ℓ , for
ℓ “ 1, . . . , L. Furthermore, as a result of this and Lemma 26,
the density evolution equation (120) of CCPRs also converges
to a well-defined fixed point.
Proof. We begin by showing that p

piq
ℓ is a decreasing

sequence. Since p
p0q

ℓ “ 1, then

p
p1q

ℓ “
1

w

ℓ
ÿ

ℓ̂“maxr1,ℓ´w`1s

ˆ

1´

Psuc

ˆ

GΛ1p1q

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

λp1q

˙˙

ď
1

w

ℓ
ÿ

ℓ̂“maxr1,ℓ´w`1s

p1 ´ PsucpGΛ1p1qqq

“ 1 ´ PsucpGΛ1p1qq

ă p
p0q

ℓ “ 1.

Suppose that p
pi`1q

ℓ ă p
piq
ℓ , by (P2) and that Psuc is

decreasing,

Psuc

ˆ

GΛ1p1q

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

λpp
pi`1q

ℓ̃
q

˙

ą Psuc

ˆ

GΛ1p1q

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

λpp
piq

ℓ̃
q

˙

,

for all ℓ̂ “ 1, . . . , L.
Multiplying the above inequality by ´1 and adding 1 to

each side, then taking the summation, we have

ℓ
ÿ

ℓ̂“maxr1,ℓ´w`1s

ˆ

1 ´ Psuc

ˆ

GΛ1p1q

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

λpp
pi`1q

ℓ̃
q

˙˙

ă

ℓ
ÿ

ℓ̂“maxr1,ℓ´w`1s

ˆ

1 ´ Psuc

ˆ

GΛ1p1q

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

λpp
piq

ℓ̃
q

˙˙

.

Multiplying by 1{w gives that ppi`2q

ℓ ă p
pi`1q

ℓ . Hence, by
induction, ppiq

ℓ is a decreasing sequence. Moreover, since p
piq
ℓ

itself is a probability, it is bounded below by 0. Hence pp8q

exists and is the fixed point of (130).
Suppose p̂ “ pp̂1, . . . , p̂Lq is another solution of (130). It

is obvious that p̂ ď 1 “ p
p0q

ℓ for all ℓ. Suppose p̂ℓ ď p
piq
ℓ

for some i ě 1, using the fact that λ is increasing and the
assumption that Psuc is decreasing, from (130), we have

p̂ℓ “
1

w

ℓ
ÿ

ℓ̂“maxr1,ℓ´w`1s

ˆ

1

´ Psuc

ˆ

GΛ1p1q

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

λpp̂ℓq

˙˙

ď
1

w

ℓ
ÿ

ℓ̂“maxr1,ℓ´w`1s

ˆ

1

´ Psuc

ˆ

GΛ1p1q

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

λpp
piq

ℓ̃
q

˙˙

“ p
pi`1q

ℓ

Hence, p̂ ď p
piq
ℓ ,@i. Taking i Ñ 8, we have p̂ℓ ď p

p8q

ℓ for
all ℓ.

The next lemma further illustrates the proposition of the
fixed point of the one-sided system.

Lemma 29: Let p “ pp1, p2, . . . , pLq be a fixed point of
(130). Suppose p ‰ 0 for ℓ “ 1, 2, . . . , L, then the system
has no fixed point with pL ă upGq.
Proof. By Lemma 27 and Lemma 28, such fixed point is
non-decreasing, say p1 ď p2 ď . . . ď pL. Thus, (130) gives
that,

pL “
1

w

L
ÿ

ℓ̂“L´w`1

f

ˆ

1

w

minrℓ̂`w´1,Ls
ÿ

ℓ̃“ℓ̂

hppℓ̃q;G

˙

ď
1

w

L
ÿ

ℓ̂“L´w`1

f

ˆ

1

w
¨ w ¨ hppLq;G

˙

“
1

w
¨ w ¨ fphppLq;Gq (142)

Hence, fphppLq;Gq ´ pL ě 0. By (75), we have that

U 1ppL;Gq “ λ1ppLqppL ´ 1 ` PsucpGΛ1ppLqq ď 0. (143)

Thus, by Definition 19, pL ą upGq.

Additionally, similar to the potential function of the scalar
admissible system pf, hq in (68), we define the potential
function of the one-sided system below.

Definition 30: (The potential function of one-sided sys-
tems (cf. Def. 11 in [30]) The potential function of the one-
sided system describe in Definition 25 is the line integral along
a curve C in RL̃ joining 0 and p “ pp1, p2, . . . , pL̃q,

Upp;Gq “

ż

C

h1pzqpz ´ AT fpAhpzq;Gqqdz, (144)

where h1ppq “ diagprh1ppℓqsq. Let

Hppq “

ż

C

hpzqdz “

L
ÿ

ℓ“1

Hppℓq
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and

F pp;Gq “

ż

C

fpp;Gqdp “

L
ÿ

ℓ“1

F ppℓ;Gq.

Then, (144) could also be written in the form

Upp;Gq “ hppqTp ´ Hppq ´ F pAhppq;Gq. (145)

The key insight is that the potential functions of the one-
sided system and the scalar admissible system are connected
through a shift operator. The advantage of this approach is
that it eliminates the need for evaluating the line integral in
(145) for exploring the properties of the stability region of the
convolutional pT,G,Λpxq, R, F,wq-CPRs.

Lemma 31: (Lemma 3, in [30]) Let p “ pp1, . . . , pLq P

r0, 1sL be a non-decreasing vector generated by averaging q P

r0, 1sL over a sliding window of size w. Let the shift operator
S : RL Ñ RL be defined by rSps “ p0, p1, p2, . . . , pL´1q.
Then,

||Sp ´ p||8 ă
1

w

and

||Sp ´ p||1 “ pL “ ||p||8.

Proof. Since

Sp ´ p “ p´p1, p1 ´ p2, p2 ´ p3, . . . , pL´1 ´ pLq,

and p is non-decreasing,

||Sp ´ p||1 “ |p1| `

L
ÿ

ℓ“2

|pℓ´1 ´ pℓ| “ pL “ ||p||8.

Furthermore,

|pℓ ´ pℓ´1| “

ˇ

ˇ

ˇ

ˇ

1

w

w´1
ÿ

ℓ̂“0

pqℓ´ℓ̂ ´ qℓ´ℓ̂´1q

ˇ

ˇ

ˇ

ˇ

“
1

w
|q0 ´ qL|

ď
1

w

for any ℓ “ 2, . . . , L. So ||Sp ´ p||8 ď 1
w .

Lemma 32: (cf. Lemma 4 in [30]) For the one-sided system
defined in (130) and the potential defined in Definition 30,
a shift changes the potential by UpSp;Gq ´ Upp;Gq “

´UppL;Gq.
Proof. First, we claim that

F prAhpSpqsℓ;Gq “ F prAhppqsℓ´1;Gq.

This can be done by careful inspection: Since hpSpq “

p0, hpp1q, . . . , hppL´1qq, by the definition of A,

AhpSpq “
1

w

ˆ

0,

hpp1q

hpp1q ` hpp2q

. . . ,

hpp1q ` hpp2q ` . . . ` hppw´1q,

hpp2q ` hpp3q . . . ` hppwq,

. . . ,

hppL`w´2q ` . . . ` hppL´1q

˙

.

This proves the claim. Next, write the potential functions
in the form of (145), i.e.,

Upp;Gq “

L
ÿ

ℓ“1

`

hppℓqpℓ ´ Hppℓq ´ F prAhppqsℓ;Gq
˘

,

and

UpSp;Gq “

L
ÿ

ℓ“1

`

hppℓqpℓ ´ Hppℓq ´ F prAhpSpqsℓ;Gq
˘

“

L´1
ÿ

ℓ“1

`

hppℓqpℓ ´ Hppℓq
˘

´

L
ÿ

ℓ“1

F prAhpSpqsℓ;Gq.

This gives that

UpSp;Gq ´ Upp;Gq

“ ´ hppLqpL ` HppLq

`

L
ÿ

ℓ“1

`

F prAhpSpqsℓ;Gq ´ F prAhppqsℓ;Gq
˘

“ ´ hppLqpL ` HppLq ` F p0;Gq

´ F phppL`w´1q ` . . . ` hppLq;Gq

“ ´ hppLqpL ` HppLq ` F prAhppqsL;Gqq

“ ´ UppL;Gq,

where that F p0;Gq comes from (69).

Lemma 33: (cf. Lemma 5 in [30]) For the potential function
of the one-sided system in Definition 25, the norm of the
Hessian U2pp;Gq is independent of L and w. It satisfies

||U2pp;Gq||8 ď Kf,h :“ ||h1||8 ` ||h1||28||f 1||8 ` ||h2||8,

where
||h||8 “ sup

xPr0,1s

|hpxq|

for functions h : r0, 1s Ñ R, and

||A||8 “ max
1ďiďL

L
ÿ

j“1

|aij |

for the matrix A.
Proof. The Hessian is given by

U2pp;Gq “ h1ppq ´ pAh1ppqqT f 1pAhppqGqAh1ppq

` h2ppqdiagpp ´ AT fpAhppq;Gqq.
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Here, h2pxq “ diagprh2pxiqsq. Taking the norms,

||U2pp;Gq||8 “ ||h1ppq||8

` ||Ah1ppq||8||f 1pAhppqGq||8||Ah1ppq||8

` ||h2ppqdiagpp ´ AT fpAhppq;Gqq||8.

Since ||A||8 “ 1, ||h1ppq||8 ď ||h1||8, and all the elements
inside pp ´ AT fpAhppq;Gqq are in r0, 1s. Hence,

||U2pp;Gq||8 ď Kf,h :“ ||h1||8 ` ||h1||28||f 1||8 ` ||h2||8.

Now we prove Theorem 20.
Proof. First, we claim that this theorem is true for the
one-sided system (130) with the condition that p

piq
ℓ “ p

piq

L̃

is enforced for ℓ “ L̃, L̃ ` 1, . . . , L after each iteration.
characterized by pf, hq in (63).

Consider a load G ă G˚
conv . This suffices to show that 0

is the only fixed point of (130), given that the iteration times
i Ñ 8. Suppose that p ‰ 0 is a fixed point of (130). By
Lemma 29, pL ą upGq. By Lemma 32, expand UpSp;Gq in
a Taylor series around Upp;Gq with remainder.

U 1pp;Gq ¨ pSp ´ pq

“UpSp;Gq ´ Upp;Gq

´

ż 1

0

p1 ´ tqpSp ´ pqTU2ppptq;GqpSp ´ pqdt

ď ´ UppL;Gq `

ˇ

ˇ

ˇ

ˇ

ż 1

0

p1 ´ tqpSp ´ pqTU2ppptq;GqpSp ´ pqdt

ˇ

ˇ

ˇ

ˇ

ď ´ UppL;Gq ` ||Sp ´ p||1||Sp ´ p||8 max
tPr0,1s

||U2ppptq;Gq||8

Lemma 27 indicates that p is non-decreasing. Thus, we may
put Lemma 31 and Lemma 33 into use. The last inequality
could be further estimated:

U 1pp;Gq ¨ pSp ´ pq ď ´UppL;Gq `
1

w
¨ pL ¨ Kf,h.

Next, since 0 ď pL ď 1, using the condition w ą

Kf,h{∆EpGq yields

U 1pp;Gq ¨ pSp ´ pq ď ´UppL;Gq `
1

w
Kf,h

ď ´UppL;Gq ` ∆EpGq

ď 0.

The inequality follows from the definition of ∆EpGq and
pL ą upGq.

By Lemma 27, p is non-decreasing. Therefore, each com-
ponent of Sp ´ p is not greater than 0. Hence, there exists a
component, say ℓ0-th of U 1pp;Gq, is greater than 0. Moreover,
by (P2),

rU 1pp;Gqsℓ0 “ rh1ppkqpp ´ AT fpAhppq;Gqqsℓ0

gives that
rAT fpAhppq;Gqqsℓ0 ă pℓ0 .

This shows that one more iteration reduces the value of pℓ0 ,
for some ℓ0 in 1, . . . , L, and it contradicts with such p ‰ 0 is
a fix point. Therefore, the only fixed point of (130) is p “ 0

under the load G ă G˚
conv . This completes the proof of the

claim.
Since the CCPR system with K “ J “ 1 governed by (120)

is the basic spatially-coupled system by Lemma 24, Lemma
28 demonstrates that (120) also converges to a well-defined
fixed point. Moreover, since Lemma 26 shows that p element-
wisely upper bounds the fixed point of (120), (120) converges
to 0 as i Ñ 8. Hence, by (19), Theorem 5, and Theorem 6,
all the loads G ă G˚

conv are stable for (120). Finally, as (120)
is a reversed-index version of (79), all the loads G ă G˚

conv

are stable for (79).

APPENDIX D
LIST OF NOTATIONS

We provide a list of notations used in this paper on the next
page.
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TABLE IV. List of Notations

A An L ˆ L matrix defined in (132)
A2 An L ˆ L̃ matrix defined in (123)
aij The elements of the matrix A

B The bound of a capacity envelope
pb1, . . . , bKq The capacity envelope

D The maximum number of packets that can
be successfully received in D-fold ALOHA

d The degree of the regular degree distribution
E The expectation operator
e Euler’s number
F The partition vector F “ pF1, . . . , FJq

Fj The fraction of Poisson receivers assigned to
class j

F pp;Gq The integral of fpp;Gq w.r.t. its first variable
F pp;Gq The integral of fpp;Gq w.r.t. its first variable

f One of the two functions that parameterize a
one-sided system or a scalar admissible
system. f is a real-valued function with
two variables

f 1 The partial derivative of f w.r.t. its first
variable

fpp;Gq A vector with L components.
fpp;Gq “ pfpp1;Gq, . . . , fppL;Gqq

G A vector of normalized offered load,
G “ pG1, G2, . . . , GKq

G˚
conv The potential threshold

G˚
convpL,wq The percolation threshold of a CCPR with L

stages and window size w

G˚
up The solution to the equation Up1;Gq “ 0

Gk The normalized offered load of class k

Gpℓq The normalized offered load vector of ℓth

stage, Gpℓq “ pG
pℓq

1 , . . . , G
pℓq

K q

G
pℓq

k The normalized offered load of class k on
ℓth stage

G˚
s The single-system threshold

Hppq The integral of hppq

Hppq The integral of hppq

h One of the two functions that parameterize a
one-sided system or a scalar admissible
system. h is a real-valued function

hppq A vector with L components.
hppq “ phpp1q, . . . , hppLqq with one variable

i The number of SIC iteration
J The number of classes of receivers
j The class of a receiver or the index of stages
K The number of classes of users
k The class of a packet or user

Kf,h A number defined in Lemma 33 related to
f and h

L The number of stages of CCPRs

L̃ L ´ w ` 1

Lk The number of copies of a class k packet
ℓ The index of stages of a CCPR

mpjq mpjq “ mint1, ℓ̂ a pw ´ 1qu

n The deterministic load n “ pn1, n2, . . . , nKq

Psucpρq The probability that a packet is
successfully received if the receiver is
subject to a Poisson offered load ρ

P´1
suc The inverse of Psuc

Psuc,Dpρq The success function of the D-fold
ALOHA system

Psuc,kpρq The probability that a class k packet is
successfully received if the receiver is
subject to a Poisson offered load ρ

Psuc,k,jpρq The probability that a class k packet is
successfully received by a class j

receiver if the receiver is subject to a
Poisson offered load ρ

P̃
piq
suc,k The probability that a packet sent from

a randomly selected class k user can
be successfully received after the
ith iteration

P̃
piq
suc,k,ℓ The probability that a packet sent from

a randomly selected class k user in the
ℓth stage can be successfully
received after the ith iteration

p A vector. p “ pp1, . . . , pLq

p̃
piq
ℓ The success probability after reversing the

indices of (79). p̃piq
ℓ “ p

piq

L̃´ℓ`1

pp0q The initial vector of pp
piq
1 , . . . , p

piq
L q

ppiq The probability that the receiver end of
a randomly selected edge has not been
successfully received after the ith

SIC iteration
pp8q The limiting vector of pp

piq
1 , . . . , p

piq
L q

with the initial vector pp0q “ 1

p
piq
k The probability that the receiver end of

a randomly selected class k edge has not
been successfully received after the
ith SIC iteration

p
piq
ℓ The probability that the receiver end of a

randomly selected edge in the ℓth

stage has not been successfully received
after the ith SIC iteration

p
piq
k,j The probability that the receiver end of

a randomly selected class pk, jq-edge has
not been successfully received after the
ith SIC iteration

p
piq
k,ℓ The probability that the receiver end of

a randomly selected class k edge in ℓth

stage has not been successfully received
after the ith SIC iteration
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p
piq
k,j,ℓ The probability that the receiver end of a randomly selected class pk, jq-edge in the ℓth stage has not

been successfully received after the ith SIC iteration
qpiq A vector of qpiq

k , qpiq “ pq
piq
1 , q

piq
2 , . . . , q

piq
K q

qp0q The initial vector of qpiq

qp8q The limiting vector of qpiq with the initial vector qp0q “ 1

q
piq
k The probability that the user end of a randomly selected class k edge has not been successfully received

after the ith SIC iteration
q

piq
ℓ A vector of qpiq

k,ℓ, q
piq
ℓ “ pq

piq
1,ℓ, q

piq
2,ℓ, . . . , q

piq
K,ℓq

q
piq
k,ℓ The probability that the user end of a randomly selected class k edge in the ℓth stage has not been

successfully received after the ith SIC iteration
R The K ˆ J routing matrix R “ prk,jq

R The set of real numbers
Rj A vector of parameters for class j receiver, Rj “ p

r1,j
Fj

,
r2,j
Fj

, . . . ,
rK,j

Fj
q

rk,j The routing probability that a class k packet transmitted to a class j receiver
rj rj “ r1,j ` . . . ` rK,j

S The stability region or the capacity region
S The shift operator
SL The stability region of a CCPR with L stages
T The number of Poisson receivers

Upp;Gq The potential function of a scalar admissible system
Upp;Gq The potential function of a one-sided system
upGq The minimum unstable fixed point
w The smooth window size of CCPRs

Xkptq The number of class k packets sent to the tth receiver
Ykptq The number of class k packets that are actually decoded by the tth receiver
Z` The set of nonnegative integers

∆EpGq The energy gap
δ The step size
Θk The throughput for a pPsuc,1pρq, . . . , Psuc,Kpρqq-Poisson receiver subject to a Poisson offered load ρ

Λk,d The probability that a class k packet is transmitted d times
Λ1pxq A vector of Λ1

kpxq, Λ1pxq “ pΛ1
1pxq,Λ1

2pxq, . . . ,Λ1
Kpxqq

Λkpxq The generating function of the degree distribution of a class k user
Λ1
kpxq The derivative of Λkpxq

Λ1
kp1q The mean degree of a class k user node
λk,d The probability that the user end of a randomly selected class k edge has additional d edges excluding the

randomly selected edge
λkpxq The generating function of the excess degree distribution of a class k user
µj The mean of the Poisson random

řK
k“1 bkXkptq

ρ The Poisson offered load ρ “ pρ1, . . . , ρKq

ρk The Poisson offered load of class k

ρ̃j The Poisson offered load at a class j Poisson receiver ρ̃j “ pρ1,j , ρ2,j , . . . , ρK,jq

ρk,j The Poisson offered load of class k packets to a class j Poisson receiver
ρ̃j,ℓ The vector of ρk,j,ℓ. ρ̃j,ℓ “ pρ1,j,ℓ, ρ2,j,ℓ, . . . , ρK,j,ℓq

ρk,j,ℓ The Poisson offered load of class k packets to a class j Poisson receiver in the ℓth stage
ϕ The ϕ-ALOHA receiver. ϕpnq “ pϕ1pnq, . . . , ϕKpnqq
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