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We study the formation and properties of perfectly-flat zero energy bands in a multi-layer graphene
systems in the chiral limit. Employing the degrees of freedoms of the multi-layer system, such as
relative twist-angle and relative shifts, in a way that preserves a set of symmetries, we define a
two-dimensional parameter plane that hosts lines of two and four flat bands. This plane enables
adiabatic continuation of multi-layer chiral systems to weakly coupled bi- and tri-layer systems, and
through that mapping provides tools for calculating the Chern numbers of the flat bands. We show
that a flat band of Chern number C can be spanned by C effective Landau levels, all experiencing
an effective flux of 1/C flux quantum per unit cell, and each carrying its own intra-unit-cell wave
function. The flat bands do not disperse under the effect of a perpendicular magnetic field, and the
gap to the dispersive bands closes when the externally applied flux cancels the 1/C effective flux.

I. INTRODUCTION

Systems made of twisted graphene monolayers have
proven to be a powerful platform to explore strongly
correlated phases and topological flat bands[1–4], due to
the tunability of the Fermi velocity and electronic band
structure. While for twisted bi-layer graphene (TBG) the
twist angle is the major controlled degree of freedom,
for twisted trilayers (TTG) there are two twist angles
and one inter-layer shift degree of freedom that may be
controlled. These extra degrees of freedom allow tuning
of new and interesting electronic structures, including a
band structure with four flat bands per valley, non-zero
total Chern numbers of the flat bands in each valley and
significantly larger gaps around these bands.

Beyond the three-layer case, twisted multilayer
graphene systems (TMG) have significantly more de-
grees of freedom that may be engineered, such as the
twist angles and relative shifts of each layer. Certain
multilayers, defined by twist angles between neighbor-
ing layers are such that θn,n+1 = −θn+1,n+2, and form
the so called symmetric multilayers. These multi-layers
may be reduced to superpositions of twisted bilayers and
monolayers[5–11]. This simplification cannot be carried
out in generic multilayers[12–26] (see also earlier refer-
ences in[27–31]).

In this work we analyze perfectly-flat bands that oc-
cur in TTGs and TMGs at the chiral limit. In the ab-
sence of inter-layer tunneling, a stack of NL graphene
layers harbors NL Dirac cones per valley. In the situa-
tions we consider, inter-layer tunneling leaves nD Dirac
cones gapless and unflattened. The rest, NL − nD take
part in the construction of flat bands. Out of these, nA
construct flat bands on the A-sublattice, and nB on the
B sublattice. When presented in a sub-lattice basis, the
flat bands carry non-zero Chern numbers. We analyze
how the Chern numbers of the flat bands are related to
nA, nB and the symmetries of the system, suggesting ef-
ficient ways to infer the Chern numbers of the flat bands.
We map each band with a Chern number C to a set of C

lowest Landau Levels, each carrying one state per C unit
cells. The levels have an effective flux that corresponds to
1/C flux quanta in each unit cell, and are distinguished
by their sub-unit cell wave-functions. When subjected to
a perpendicular magnetic field, the flux associated with
the external field adds to the effective flux. When the two
cancel one another, i.e., when the external flux carries
−1/C flux quantum per unit cell, the gap between the
zero energy bands and the dispersive bands must close.
We connect the possible flat band structures in TMG

to those in TBG, emphasizing the role of symmetries in
the determination of the conditions needed for the for-
mation of flat bands. We then study the evolution of flat
bands when the inter-layer tunneling amplitudes are var-
ied. We find it illuminating to introduce two inter-layer
tunneling amplitudes f1, f2 such that pairs of consecu-
tive layers have different tunnel coupling strength, see
Fig. (2) . When f1 = 0 or f2 = 0 every other pair of
layers is decoupled, and the system reduces to decou-
pled TBG systems and, for an odd number of layers, one
monolayer graphene. We show that there are curves in the
two-dimensional parameter plane f1, f2 that preserve the
flat bands and their properties, including their number
and Chern numbers. In some cases, the flat band curves
extend from the decoupled TBG case (either f1 = 0 or
f2 = 0) to the equal-amplitudes case f1 = f2 and are
therefore adiabatically connected to flat bands in TBG.
Interestingly, in other cases TMG solutions may not be
connected adiabatically to TBGs. For f1 ≈ f2 these pa-
rameters can be viewed as directly related to the twist
angles because to first order in f1 − f2 changes in f1 and
f2 are equivalent to changes in the angles. The stabil-
ity we find may be viewed as stability with respect to
variation in the twist angles.

The structure of the paper is as follows: In Sec. (II)
we define the Chiral model for the cases we consider, and
generalize the method used to find flat bands to the TMG
cases. In Sec. (III) we show the analogy between a set of
Landau Levels and the perfectly flat bands in graphene.
In Sec. (IV) we introduce a method to adiabatically con-
nect the perfectly flat bands in TMG to those in TBG
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and following it show in Sec. (V) that this connection
determines the behavior of these flat bands. We calcu-
late a variety of numerical examples to demonstrate the
accuracy and applicability of the method in Sec. (VI).
We conclude in Sec. (VII) with a short summary of our
results and a few comments on possible implications.

II. CONTINUUM CHIRAL MODEL FOR
TWISTED MULTILAYER GRAPHENE

In the following, we consider an NL layers TMG sys-
tem with relative twists θl,l+1 = θl−θl+1 = pl,l+1θ0 for a
small θ0 ≪ 1 and relative shifts dl,l+1 that maintain the
C3 symmetry. In Sec. (III) we limit ourselves to the heli-
cal case, where pl,l+1 is a constant. All later sections are
valid also for commensurate angles. We neglect a small
deviation from the moiré unit cell in consecutive pairs
which leads to a meta-moiré. This meta-moiré can be
viewed as a position-dependent shift between layers[13],
and the size of the meta-moiré unit cell grows as (d/θ)2,
where d is graphene’s lattice constant (see appendix A).
We assume next that the shift between layers, dl,l+1 is
constant, which is a reasonable approximation to the lo-
cal properties of the multilayer when θ ≪ 1. Alterna-
tively, a combination of small heterostrains and twists,
of order θ2 can lead to the existence of a single moiré
scale of order θ.

We use the continuum approximation to the interlayer
tunneling in order to calculate the electronic structure of
the multi-layer[32, 33]. The existence of magic angles and
flat bands in the multilayers is determined using the chi-
ral approximation[34, 35], where hoppings between sites
in the same sublattice in neighboring layers are neglected.
Then, the Hamiltonian is of the form (see Appendix A):

HTMG =

(
0 D†(r)

D(r) 0

)
(1)

where the D† is the operator on sublattice A and the D
is the operator on sublattice B, The block matrix D is
defined by the intralayer terms,

(D)l,l = −2i∂ (2)

and nearest layer tunneling terms

(D)l,l+1 = fl,l+1

NL−1∑
l=1

U(pl,l+1(r − dl,l+1))

(D)l+1,l = fl+1,l

NL−1∑
l=1

U(pl,l+1(dl,l+1 − r))

(3)

Here U is the standard chiral graphene potential U(r) =
e−iq1r+eiϕe−iq2r+e−iϕe−iq3r, ϕ = 2π/3, q1 = kθ(0,−1),

q2,3 = kθ(±
√
3/2, 1/2) and kθ = 2KD sin(θ/2).

We now define the tunneling operator P such that,

D = −2i∂I + P (4)

For TBG and TTG it was shown that zero-energy flat
bands are present when a point r0 exists in which zero-
energy states at Dirac points Γ,K,K ′ are linearly depen-
dent, i.e. the zero-energy spinors satisfy

∑
i ciΨKi

(r0) =
0, where ci are constants. The search for such an r0 starts
by searching for a zero of the Wronskian, W (defined be-
low), and then using that W (r) = 0 to construct linearly
dependent Dirac spinors. The extension of these spinors
to a full flat band makes use of Jacobi theta functions
[16][36] [14]. Details are reviewed in Appendix C.
We generalize this approach to analyze a general TMG

system. The Wronskian is,

W (r) = det
(
ΨK1

. . .ΨKNL

)
(5)

where ΨKi
(r) are the Dirac zero modes such that

DΨKi
= 0. In the small angle limit, these modes oc-

cur at the K,K ′,Γ-points of the Brillouin zone formed in
the twisted system. Using the Jacobi formula and Liou-
ville’s theorem we can see that the Wronskian is position
independent W (r) = W (0) and there are flat bands if
and only if the Wronskian is zero. When W = 0 only
m < NL independent Dirac zero modes exist and every
possible zero energy solution can be expressed using these
Dirac zero modes,

ψ(r) =

m∑
i=1

ci(r)ΨKi(r) (6)

where ψ(r) is a zero energy solution. When W = 0 we
will necessarily have a point r0 in which the m Dirac zero
modes are linearly dependent. For each such point r0 we
can create a perfectly flat band by properly choosing ci(r)
such that the states satisfy the Bloch form for all points
in K space. Details of this generalization are given in
Appendix C.

III. CHERN NUMBERS

The Chern numbers, C, of the flat bands are deter-
mined by the dimension of the solution space, which is
number of independent Dirac zero modes from which we
construct our flat band. Generally, we show in Appendix
(D) that

NL = nD + nA + nB (7)

where NL is the number of layers, nD is the number of
Dirac cones for which the Dirac velocity is not made to
vanish by the periodic potential and nA, nB are the num-
ber of Dirac zero modes used to construct flat bands on
sublattices A and B respectively.

The Chern numbers are constrained by nA and nB such
that flat bands constructed from a single vanishing point
r0 will have Chern numbers |C| = nA,B . We will show in
Sec. (V) that the numbers nA and nB can often be de-
termined by symmetries and by adiabatically connecting
the system to a set of decoupled TBGs.
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FIG. 1: The periodic functions |G1|2 and |G2|2 as a
function of position within the unit cell, for each layer
for a tri-layer in the ABA case. The color coding is in

arbitrary units.

The C = 1 flat bands in chiral TBG were shown to be
spanned by a basis of functions

ψm(r) = G(r)(z− z0)
me

2π
CAm

|z−z0|2 (8)

where Am is the area of the unit cell, z0 is the complex
representation of r0, and G(r) is periodic up to a phase.
[37]. As we now show, flat bands with C = N are spanned
by N copies of the basis (8), where each of the copies has
its own periodic function G, and corresponds to a lowest
Landau levels with a flux of 1/N flux quanta per unit
cell. Consequently, each copy has 1/N of the density of
states of the full flat band.

The construction of a C = N flat band requires the
number of independent Dirac zero modes to be m = N
[14]. When that happens we can take these m Dirac zero
modes and construct N orthogonal flat bands with C =
1 each, {Ψi}Ni=1 , with the unit cell of each flat band
increased by a factor of N relative to the moire unit cell.

Ψi,m(r) = (z− z0)
m
e−

2π
CAm

|z−z0|2Gi(r) (9)

where Gi(r) are periodic functions, and the wave-
functions Ψi(r) are normalizable, see Appendix E. We
plot the functions |G1|2 and |G2|2 for a tri-layer in the
ABA case in Fig. (1). We can see that these functions
are concentrated in different regions of the unit cell. The
mapping of each of the N bands to a Landau level implies
that the Chern number of each of the bands is C = 1.

Introducing a magnetic field, b, perpendicular to the
TMG will change the number of states, ni(b), in each
Chern band, as this number changes with b according to

ni(b) = n0

(
1 + Φ

CΦ0

)
, where Φ is the flux per unit cell

and Φ0 is the flux quantum. When ni(b) ≤ 0 the Chern
number of the bands must change as one of the bands
empties and the gap to the dispersive bands must close
[37]. We also consider the same question from a Landau
level perspective by defining the Hamiltonian with mag-
netic field as Db = D′ +

1
2Izb. The new Hamiltonian has

solutions Ψb
i (r) = e−

1
4 b|z−z0|2Ψ0

i (r) which generates new
normalizable wave-functions,

Ψb
i,m(r) = (z− z0)

m
e−(

b
4+ 2π

CAm
)|z−z0|2Gi(r) (10)

This mapping allows us to see more directly that the
magnetic field introduces a topological phase transition
at −ϕ0/C, which is the point where n

4 + 2π
NAm

= 0 and
the wave functions are no longer normalizable. This is
the same condition as ni(b) = 0. The result was pre-
viously observed for chiral TBG [37]. However, for TBG
the topological phase transition does not exist away from
the chiral limit, since the total Chern number of the flat
bands is zero. While the sub-lattice separation between
the flat bands is not maintained for non-chiral TMG, the
total Chern number is conserved. As such, whenever the
total Chern number per valley is non-zero the system will
have Chern bands even away from the chiral limit. That
means a topological phase transition will happen in a va-
riety of TMG cases, including two flat bands in TTG and
twisted five layer graphene.

IV. FLAT BANDS IN TWISTED MULTILAYER
GRAPHENE

We now study the case in which the interlayer tunnel-
ing amplitudes {fl} can only take two possible values f1
and f2. We will show that there exist curves in the param-
eter space f1, f2 along which there are flat bands. Since
for f1 ≈ f2 these parameters can be viewed as directly
related to the twist angles, this finding implies that there
are curves in twist angles parameter plane along which
there are flat bands[14, 23].
For most of our discussion we assign the values f1 and

f2 as alternating values between consecutive pairs of lay-
ers, but a few other configurations will be used as well,
see Figure 2.
We can write the Hamiltonian in terms of the param-

eters f1 and f2 as,

D = −2i∂In×n + f1P1 + f2P2 (11)

where the operator P1 and P2 are the respective opera-
tors such that P = f1P1 + f2P2.
We now assume that there is a point f1,0, f2,0 at which

perfectly flat bands exist, and use degenerate perturba-
tion theory to analyze small deviations δf1, δf2 from this
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FIG. 2: The multi-layer systems we consider, where f1,2
are the tunnel coupling parameters. The configurations

of perturbation parameters f1 and f2 are used to
connect adiabatically between TMG and simpler cases.
For an odd NL we always start from decoupled TBG at
f1 = 0 or f2 = 0. For an even NL we consider two
separate configurations (a) and (b) that connect

adiabtically to a pair of TMG with (NL − 1)/2 layers
and a pair of opposite twist TBGs respectively.

point. At the original point, for every momentum k the
zero modes span a subspace whose dimension is the num-
ber of flat bands, two or four. When the projections of P1

and P2 onto that subspace commute with one another, a
deviation δf1 may be matched with a corresponding devi-
ation δf2 such that at least two eigenvalues remain zero.
As we discuss below, certain symmetries need to exist for
these two projected operators to commute. Importantly,
as shown in Sec II we do not need to analyze every mo-
mentum k, since we can construct an entire flat bands
from a single zero mode. Specifically, we can choose that
mode to be at the Γ-point, which allows symmetries that
are not local in K space to constrain the operators P1

and P2.
We will examine three key cases, distinguished by the

symmetries that they preserve. In order to extend the
TBG symmetries to a multi-layer case, we define ex-
tended layer-space NL ×NL Pauli matrices as,

(ηx)kj = δk+j=NL+1

(ηy)kj = (−i)k+1δk+j=NL+1

(ηz)kj = (−1)k+1δk=j

(12)

We now define unitary particle-hole-type symmetry, uni-
tary inversion symmetry and a anti-unitary time-reversal
symmetry,

P :ηy(r → −r)(f1 ↔ f2) (13a)

C2y :ηx(x→ −x)(f1 ↔ f2) (13b)

C2z :σx(r → −r) (13c)

T :K (13d)

C :σz (13e)

where ηx,y are the extended Pauli matrices (12) acting on
the layer indices and σx are regular Pauli matrices acting
on the sublattice indices. The first case is the general
case, which preserves only the chiral symmetry C and
a PC2yT symmetry. All configuration described above
maintain these symmetries. The second case is the central
symmetric case that has a symmetry around the central
layer. For this case θi = θn+1−i and di = dn+1−i, and two
further symmetries are satified C2yT and P . (see Eq. [13]
below). The third case is the unshifted case. It is central
symmetric case without shifts, such that di = 0 and also
satisfies the symmetry C2zT .

A. Flat band curves of two flat bands

At a point in the parameter space (f1, f2) in which
there are two flat bands, the two-band subspace may be
represented by a single set of Pauli matrices. The pro-
jected operators at the Γ point then satisfy,

Pi =
∑
j

gjisj (14)

where sj are the Pauli matrices within the projection
space. We can now use symmetries to significantly sim-
plify these representations. The coefficients gij would in
general depend on k, however as we are looking at the
Γ point we can treat them as scalar coefficients. We rep-
resent the chiral symmetry as sz, which limits the sum
over j to x and y.

Furthermore, we can use the particle-hole time reversal
symmetry PC2yT represented as ηzK(y → −y), where ηz
is an extended Pauli matrix for the layers. This operator
anti-commutes with the Hamiltonian. In the flat band
subspace it is s0K, such as to maintain correct com-
mutation relations with the Chiral symmetry and the
Hamiltonian. Then the projected Pi operators can only
be represented as,

Pi = gisy (15)

and therefore [P1,P2] = 0 within the projection space.
Then, for any shift ±δf1 there is as shift ±δf2 that main-
tains two degenerate flat bands. Consequently, with these
symmetries and two flat bands we are guaranteed to have
continuous flat band curves in parameter space f1, f2.

B. Flat band curves of four flat bands

When we have four flat bands at a point f1, f2 we
can represent the projected operators using two Pauli
matrices si and τj . The projected operators P1,P2 at
the Γ point,

Pi =
∑
j,k

gkjiτjsk (16)
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where, once again gkji are in general a function of mo-
mentum but can be treated as constants at the Γ point.
We can now use both earlier symmetries, but this time
choosing to represent ηzK(y → −y) as τzK giving the
following reduced representation,

Pi = gxxiτxsx +
∑

j∈{y,z}

gyjiτjsy (17)

The operators P1 and P2 are not necessarily commut-
ing and do not guarantee the existence of flat band curves
without additional symmetries. For the general case these
are the only symmetries, and therefore there will be no
curves of four flat bands in that case. Points of four flat
bands are still possible in the parameter space as the
intersection of two different two flat bands curves.

For the central symmetric case we have two addi-
tional symmetries: the unitary symmetry P and the anti-
unitary symmetry C2yT as defined in eq. (13). These
two symmetries impose new constraints on the repre-
sentation of P which allows us to reduce the constants
gxxi, gyyi, gzyi to a single constant c,

f1P1 + f2P2 = c (τxsx(f1 − f2) + (f1 + f2)(τzsy + τysy))
(18a)

f1P1 + f2P2 = c ((f1 + f2)τysy) (18b)

where Eq. (18a) shows the application of the first sym-
metry and eq. (18b) adds the application of the second
symmetry. This result shows that the central symmetric
case will have four flat bands curves in contrast to the
more general case. That implies that this symmetry
might be necessary to get a second order zero of the
wave function which is used to construct four flat bands
in TTG.

However, this would not be possible for the unshifted
case due to the extra C2zT symmetry prohibiting the
reduced operators P1,P2 from having non-zero matrix
elements in the subspace of the four bands. Consequently,
no four flat bands curves may occur for the unshifted
case.

V. GEOMETRIC STRUCTURE OF THE FLAT
BAND CURVES

For this section we study the odd NL configuration,
the geometric structures of the flat band curves in the
(f1, f2) plane for the central symmetric case and the un-
shifted case are determined by two geometric constraints.
The first constraint states that the flat band curve must
be orthogonal or tangential to the line f1 = f2. On the
line f1 = f2, the anti-unitary symmetry C2yT exchanges
f1 and f2 as defined in eq. (13b). Therefore, the small
perturbations δf1 and δf2 must be interchangeable. If
the perturbations δf1, δf2 affect the energy of the states
in the band at first order, then the bands will remain

flat only when δf1 = −δf2. Then, the flat band curve is
orthogonal to the line f1 = f2. If the correction is only
of second order, the flat band curve is tangential to the
line f1 = f2. In particular, we can see that four flat band
curves would be orthogonal to the line f1 = f2, as seen
from eq. (18b) which shows the order of the perturbation.

The second geometric constraint is that a flat band
curve for which there is a tangential line that crosses the
origin ((f1 = f2 = 0) point) is a four-band curve. To see
this, let us define such a line from the origin by defining
a new parameter α such that the line is

f2 = f̃2α f1 = f̃1α (19)

where f̃2, f̃1 is the point in which the line touches the flat
band curve. We can now examine a new perturbation in
terms of α,

(−2i∂)In×n + P + δαP (20)

At the point (f̃1, f̃2) the Dirac zero mode must vanish
at point r0, ΨΓ(r0) = 0, since flat bands exist. Then,
being tangential to the flat bands curve implies that the
first order correction to the wave function at r0 due to
the perturbation δα must be zero. This is only possible
if the expansion of the zero energy Dirac spinor ΨΓ to
first order in the deviation from r0 does not depend on z
such that PΨΓ = 0 near r0. Expanding the δα = 0 wave
function to lowest order in z around r0,

ΨΓ(r + r0) = zmη (21)

where η is a vector of the dimension of the number of
layers that does not depend on z, z is the deviation from
r0, and m is an integer. Due to the symmetry around the
central layer, We can now apply the product C2yT to get:

zmη = (−z)m (ηxη)
∗

(22)

This leads to the constraint m ≥ 2, which guarantees a
second order zero at that point and therefore four flat
bands.
These two geometric constraints mean that we can only

have four possible types of flat band curves, shown in
Fig 3. Type one are two-band lines that connect to flat
bands of decoupled TBGs, but approach the f1 = f2 line
tangentially, and form a four-band state at the point of
touch. Type two are two-band curves, which connect to
flat bands of decoupled TBGs, cross the f1 = f2 line at
a direct angle, and do not have a tangent that crosses
the origin. Type three are four-bands curves that do not
connect to any decoupled limit, but rather form a closed
curve. Type four are four bands curves that approach
asymptotically to the f1 = 0 and f2 = 0 lines. A four
flat bands line may never reach either axis and will have
two lines tangential to the origin forcing it to be either
of type 3 or type 4. Furthermore, on the line f1 = f2 we
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FIG. 3: The four types of possible flat band curves. In red are curves along which two flat bands exist. In blue are
curves that preserve four flat bands. Type one is seen in symmetric unshifted models and has four flat bands only at

the exact point f1 = f2 where the two lines meet. Type two is the general two flat bands case, seen for all
constructions we consider, except the unshifted case with an odd number of layers. Types three and four are four
flat band curves seen in the central symmetric models with shifts that preserve the symmetry around the central

layer and the C3 symmetry,

do not expect to see more than four flat bands because
two separate flat band curves would have to meet there
which would not expect without a further symmetry or
tuning parameter.

We can use these geometric conditions along with the
result from Sec. (III) to calculate the Chern numbers
for a variety of cases. If we know NL and nD (whose
calculation requires only the spectrum close to the Dirac
points) we can see from eq. (7) what would be the sum
of nA and nB . We can then gain further information by
considering the f1 − f2-plane curves. For curves of type
one and two we can count the number of Dirac spinors
nA when the system is close to the f1 = 0 or f2 = 0 axes,
and evaluate the Chern numbers of the two bands.

For curves of type 3 and 4 we can only calculate nA
and nB if nA + nB ≤ 4, cases in which there is only a
limited number of combinations. Furthermore, choosing
a different configuration of f1 and f2 could provide more
information, e.g. by decomposing the systems to a set of
building blocks that includes a trilayer it is possible to
directly connect a four flat band solution to the axis.

The analytical results for low Chern numbers are sum-
marized in Table (I). We calculate numerically the pa-
rameters needed to use Table (I) for 3 ≤ NL ≤ 9 and
present them in Table (II).

VI. EXAMPLE CASES

We now consider numerically several example cases for
constructions that already have known solutions on the
line f1 = f2. We consider the central symmetric trilayer
case and the unshifted trilayer case. In the central sym-
metric case, we could theoretically have flat band curves
of types 2,3 and 4 but specifically in the trilayer case we
only observe types 2 and 3 as can be seen numerically in
Fig 4.

In the unshifted case we can not preserve a four-band

FIG. 4: Numerical calculation of the perturbation for an
ABA tri-layer, showing type two flat band curves for

two flat bands in red and type three for four flat bands
in blue

.

curve and as such we can only have flat band curves of
types one and two. This case has an extra time-reversal-
like symmetry PCC2zT , which is an anti-unitary symme-
try that squares to −1 for an odd number of layers and to
+1 for an even number of layers. From Kramer’s theorem
we can see that for an odd number of layers this symme-
try must generate a new pair of flat bands at f1 = f2.
As such only type one curves are possible, and on the
line f1 = f2 there must be two independent pairs of flat
bands. This can be seen numerically for three layers in
Fig 6.

VII. CONCLUSIONS

In the last few years, studies of twisted van der Waals
systems have re-emphasized how the combination of nar-
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FIG. 5: As in Fig.[4], for a five layer stack.

FIG. 6: Numerical calculation of the flat bands for an
AAA tri-layer, showing type 1 flat band curves for two
flat bands resulting in a four flat band solutions at a

single point

.

row Bloch bands and electron-electron interaction leads
to the realization of sophisticated many-body systems.
As a consequence, much theoretical and experimental ef-
fort is presently devoted to the understanding of circum-
stances in which narrow electronic bands occur.

In this paper we studied the formation of perfectly flat
bands in the chiral limit of twisted NL-layer graphene
systems. While NL decoupled layers carry NL Dirac
cones per valley per spin, a proper combination of inter-
layer tunneling magnitude, twist angles and shifts leads
to the flattening of some of these cones into perfectly
flat bands. Here, we constructed a method for creating
such bands and analyzed their properties. While for bi-
layer graphene perfectly flat bands occur at a discrete
set of magic angles, we showed that for multi-layer sys-
tems flat bands occur along lines in the two-parameter
plane of alternating tunneling amplitude or alternating
twist angles. The flat bands carry Chern numbers, and
we showed how their Chern numbers are determined by
general principles, in particular the system’s symmetries.

We then showed how the flat bands may be spanned by
a basis that is very close to that of a lowest Landau level,
being made of a product of a lowest Landau level wave-
function multiplied by an intra-unit-cell wave function. A
perfectly flat band of Chern number C may be mapped
onto a set of C lowest Landau levels with an effective
flux of 1/C flux quanta per unit cell; with 1/C states per
unit cell per each of the C levels; and with a different
intra-unit-cell wave functions distinguishing between the
C levels.
When subjected to an external perpendicular magnetic

field the flat bands remain flat, but the number of states
within each band changes. When a band is emptied, the
gap between the flat and the dispersive bands must close.
This happens when the external flux cancels the effective
flux of 1/C flux quanta per unit cell. When the total
Chern number per valley is non-zero, such gap-closing
takes place even when the system deviates from the chiral
limit.
The mapping of a flat band with C > 1 to a set of

lowest Landau levels that differ in their intra-unit-cell
distribution provides a way to think about many-body
fractional Chern insulator states in such bands. In par-
ticular, it allows for a mapping of these bands onto a
lowest Landau level with C species, with the short range
part of electron-electron interaction becoming a matrix
in the space of species. Similar considerations occur in
multi-component fractional quantum Hall states [38].
Our analysis of the evolution of flat bands curves in the

f1 − f2 plane suggests the adiabatic continuation of flat
bands from the symmetric f1 = f2 line to the decoupled
f1 = 0 or f2 = 0 lines. This continuation provides a
way to analyze flat bands in NL-layer TMG, including
their Chern numbers, through their reduction to a set
of decoupled systems with a small number of layers. For
example, a tri-layer is fully gapped (nD = 0) at f1 = f2,
while at the f1 = 0 line it is reduced to a gapped bi-
layer and a gapless monolayer. The bi-layer has two flat
bands with C = ±1. As f1 is turned on the gapping of
the Dirac cone in the monolayer changes nD from one to
zero, and changes the Chern numbers of the flat bands to
2,−1 or 1,−2. Generally, we note that the configurations
introduced in Fig. (2) do not exhaust the possible ways
for such reductions, and further configurations may be
introduced and analyzed for large NL’s.
Experimentally, variations of the twist angles are rou-

tinely implemented at the growth level, and may even
be implemented continuously using a Quantum Twisting
Microscope [39]. Variations of the tunneling strength be-
tween layers may be implemented by growing of MLGs
in which some of the levels are separated by monolayers
of insulating hBN.
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Appendix A: Full Model derivation

We derive the chiral continuum Hamiltonian in eq. (1)
for NL stacked layers of graphene where each layer l is
twisted by angle θl, with a relative shift between layers
of dl,l+1 and tunneling is only permitted to the nearest
layer. The continuum model can be written as a sum
of NL isolated graphene Dirac Hamiltonians and nearest
layer tunnelling terms [14][5] [33],

H = −ivf
NL∑
l=1

êlêlσθl∇

+

NL−1∑
l=1

T l,l+1(r − dl,l+1)

+

NL−1∑
l=1

T † l+1,l(r − dl+1,l)

(A1)

Where, σθl ≡ e−iσz
2 θlσei

σz
2 θl , dl,l+1 is the moire pat-

tern displacement vector with a possible shift. The moire
potential T l,l+1 between adjacent layers is defined,

T l,l+1 =

3∑
n=1

(
ωl,l+1
AA σ0 + ωl,l+1

AB Qn

)
e−iql,l+1

n r (A2)

where, Qn = (σx cos(nϕ) + σy sin(nϕ)), ω
l,l+1
AA and ωl,l+1

AB
are the interaction strengths between site A on layer l
to sites A and B on layer l + 1 respectively. ql,l+1

n are
the reciprocal lattice vectors for the Moiré of each pair of
layers. We can define this by setting the first reciprocal
vector to be ŷ and achieve the other vectors in the lattice
by applying a rotation operator Rϕ where ϕ = 2π

3 . We
can now set the three reciprocal vectors for each pairs of
layers as,

ql,l+1
n = −Rn

ϕ2KD sin

(
θl − θl+1

2

)
R θl+θl+1

2

ŷ (A3)

We take the chiral limit where ωAA = 0 and the small
angle approximation to neglect the phase factors [14] [23],

FIG. 7: Charge densities per layer for the two flat bands
at the K point in the Brillouin zone at the first magic
angle. There are two flat bands, with Chern numbers

C = −2, 1. Top row: C = −2 band. Bottom row: C = 1
band. Each band is localized in a different sublattice.

ql,l+1
n = −Rn

ϕ2KD

(
θl − θl+1

2

)
ŷ (A4)

As such the the inter-layer potential is now ,

T l,l+1(r) = ωl,l+1
AB

3∑
n=1

Qne
−iql,l+1

n r (A5)

We define the interlayer tunneling coupling parameters

fl,l+1 by ωl,l+1
AB = fl,l+1ω0, where ω0 is the interlayer

coupling for chiral TBG.We can now rearrange the spinor
to be in the sublattice basis and rescale the coordinates
r → kθ0r for some small θ0 which is commensurate with
the angles θl [35],

HTMG =

(
0 D†(r)

D(r) 0

)
(A6)

Where, D is defined as in eq. (3) and this is the Hamil-
tonian defined in eq. 1.

Appendix B: Flat bands in chiral tri-layer systems

In this Appendix we present numerical calculations of
the spatial distribution of the Dirac zero modes at the
Γ,K,K ′ points at the three layers of a tri-layer. We con-
sider a chiral tri-layer system, where θ1,2 = θ2,3 = 1.570,
with an ABA arrangement.

1. Spatial distribution of the Dirac zero modes in a
tri-layer system

The figures below present our numerical results for the
density distribution of the zero modes (Figs. 7–9) and
the distribution of the Berry curvature for the two flat
bands (Fig. 10).
The structure observed at the Γ point, seen in Fig. (9),

may be understood using a tripod model, as we discuss
in the next subsection.
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FIG. 8: As in Fig.[7], but for point K ′.

FIG. 9: As in Fig.[7], but for point Γ. The charge
density is constant at the central layer for the C = −2

band, see Appendix B.

2. Tripod model for the wavefunction at Γ

The continuum model for the electronic structure of an
helical trilayer graphene stack is based on an expansion
on plane waves, defined by the moiré periodicity[32]. For
twisted bilayer graphene a truncation of this expansion,
the so called tripod model, leads to a simple, analytical,
approximation of the first magic angle[33]. We show here
that a similar approach describes exactly some states of
helical trilayer graphene at the Γ point.

We analyze helical trilayer graphene with the config-
uration ABA. This arrangement implies that top and
bottom layers are rotated with respect to each other by
and angle 2θ starting from an AA arrangement, while the
central layer is rotated with respect to the top layer by
an angle θ with respect to the AB stacking.

In a momentum representation, the interlayer tunnel-
ing terms, eq.(B 2), lead to matrix elements which com-
bine plane waves with different momenta in different lay-
ers.

A sketch of a few stars of reciprocal lattice vectors re-
quired for the continuum hamiltonian of a helical twisted
trilayer at the Γ point is shown in Fig.[11].These vectors
define an effective 13×13 hamiltonian similar to the 8×8
tripod hamiltonian defined in[33] for the K point. The
hamiltonian has matrix elements of absolute value tAB

between plane waves in different sublattices (A ↔ B),
different layers, and different wavevectors, as shown in
Fig.[11]. In addition, for each value of the wavevector,
vFG there are intersublattice matrix elements, of abso-
lute value vF |G|. The phases of these matrix elements
are shown in Fig.[11].

FIG. 10: Distribution of Berry curvature for the two flat
bands of an helical trilayer at the first magic angle.
Left: Band with Chern number C = −2. Right: Band

with Chern number C = +1.

FIG. 11: Representation of the three stars of reciprocal
lattice vectors used in the definition of the hamiltonian.
Blue points are in layer 1 (top), black points are in layer
2 (center), and red points are in layer 3 (bottom). Lines
describe the connections define in eq.(B 2). For each

wavevector the hamiltonian has two entries which define
the A and B sublattices. These entries are coupled by a

term hAB = vFKθ(Gx + iGy), where
Kθ = (4π/3d)2 sin(θ/2). The numbers on each point
and on each bond describe the phases of the matrix

elements connecting them. These phases (defined using
the arrows, and the convention B → A) are independent
of the numerical values of the parameters of the model.

The C3 symmetry and the phases in Fig.[11] lead to the
existence of a zero energy state whose wavefunction has
a finite weight at the B sublattice in the central wavevec-
tor, {Gx, Gy} = {0, 0}, in the central layer, and also fi-
nite weights on the first star of wavevectors, which defines
states in the top and bottom layers. The amplitude in the
next star of wavevectors, which reside in the central layer,
is zero, due to a destructive interference between the two
inequivalent paths which connect a point in this star to
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the central point. This interference, like the phases, is
independent of the value of the twist angle. As a result
there is a zero energy mode with a constant charge den-
sity in the central layer, localized at the B sublattice.
Time reversal symmetry implies that a state at the other
valley will also show a constant density localized at the
B sublattice of the central layer.

Appendix C: Wronskian and Flat bands

We now show that the vanishing of the Wronskian is
a sufficient condition for NL < 7 and often for any NL.
We start by showing that the Wronskian is constant in
space using the Jacobi formula:

∂W (r) = Tr
(
adj (ΨK1

. . .ΨKn
) ∂ (ΨK1

. . .ΨKn
)
)

= Tr

(
adj (ΨK1

. . .ΨKn
)
1

2i
P (ΨK1

. . .ΨKn
)

)
=

1

2i
det (ΨK1

. . .ΨKn
) Tr (P) = 0

(C1)

where we can see from eq. 4 that if Dψ = 0 than ∂ψ =
1
2iPψ. According to Liouville’s theorem we can see that
W (z) must be a constant or have a diverging point. Since
a divergence is not physical we can see that W (r) must
be a constant W0. We show by contradiction that we
can only have perfectly flat bands when the Wronskian
is zero. If W0 ̸= 0 then the Dirac zero modes fully span
the space of possible zero energy solutions and therefore
any zero energy wave function can be written as,

ψk(r) =

NL∑
i=1

ci(r)ΨKi
(r) (C2)

where ΨKi
(r) and ψk(r) are n-component vectors and

ci(r) are scalars.
We can now apply the operator D to this new zero

energy wave function,

0 = Dψk(r) =

NL∑
i=1

(
∂ci(r)

)
ΨKi(r) (C3)

as we have assumed W0 ̸= 0 we know that the Dirac zero
modes are linearly independent and therefore we must
have ∂ci(r) = 0, which is only possible if ci(r) = ci(z).
Then from Liouville’s theorem ci(z) must be constant or
have divergences. However, since W0 ̸= 0 we know that
the sum (C2) never vanishes and ci(z) can not physically
diverge. Consequently ci(z) = ci. However, a superposi-
tion of Dirac zero modes is a Dirac zero mode, and that
means we can not have flat bands because the only zero
energy states are at the Dirac points.

We now show that W0 = 0 is a sufficient condition for
the existence of flat bands by showing that it implies the

existence of a point r0 at which a particular superposition
of Dirac zero modes vanishes,

m∑
i=1

aiΨKi
(r0) = 0 (C4)

where ai are some constant coefficients which are not all
equal to zero. This superposition can be expanded to a
full flat band by multiplying it by a Jacobi theta function
as previously shown in [40] [35]. For the specific case of
Trilayer it was shown that it is possible to calculate ai
from symmetry considerations [16].

We can describe every Dirac point zero energy solution
Ψk as,

Ψk(r) =

m∑
i=1

ci(r)ΨKi
(r) (C5)

wherem is the number of linearly independent Dirac zero
modes, and m < NL since W0 = 0. We will show by con-
tradiction that ci(r) must depend on r using the existence
of NL zero energy solutions at the Dirac point. If the ci’s
are constant then,

ΨKm+1
=

m∑
i=1

ciΨKi
(r) (C6)

To satisfy Bloch’s theorem the ci’s should be non-zeros
only forKi’s which are identical toKm+1. We also require
that ΨKm+1 ̸= ΨKi , and therefore we need at least two
independent Dirac zero modes at this Dirac point for Eq.
(C6) to hold. Consequently, as long as m < 6 than ci’s
must depend on r.

If a subset of the ci’s depend on r then by applying
the operator D as in eq. (C3) we find ci(r) = ci(z) and
by Liouville’s theorem ci(z) must have diverging points
r0,i. In order to have Eq. (C5) finite on both sides, there
must be a vanishing superposition of Dirac zero modes
satisfying eq. (C4).

We explicitly construct the flat band using Jacobi
Theta functions as,

fk(z) = eiK1z
ϑ1(z − k)

ϑ1(k)ϑ1(z)
(C7)

and the flat bands as:

ψk(r) =

m∑
i=1

aifk−Ki
(r − r0)ΨKi

(r) (C8)

We can explicitly see that the number of simple poles is
equal to the number of non-zero ai’s. That number is the
absolute value of the band’s Chern number. For two flat
bands, these numbers are nA, nB of the main text.
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Appendix D: Chern number analysis

We will prove eq. (7), first we formally define the terms
nA and nB as the number of Dirac spinors used to con-
struct the Chiral and anti-chiral flat bands,

nA = dimVA = Sp ({Ψi}nA
i=1) (D1)

nB = dimVB = Sp ({χi}nB
i=1) (D2)

(D3)

where we can see that it is equivalent to the dimension
of the spinor spans VA and VB , we can immediately see
that:

VA ⊂ kerD (D4)

VB ⊂ kerD† (D5)

We will show that,

NL = dim(kerD†
⊕

kerD) (D6)

NL = nD + dim(VA
⊕

VB) (D7)

where the second equation follows the first immediately
because any Dirac spinor that is not part of a flat band
construction remains protected by the original symme-
tries. We show in C that when a flat band exists m =
dimkerD and a set of m linearly independent spinors
exists that only vanish at r0,

m∑
i=1

ciΨKi
(r0) = 0 (D8)

We can now observe that the linear dependent need not
include allm Dirac zero modes as such there is a minimal
value m̃ for whom 0 < m̃ < m and,

m̃∑
i=1

ciΨKi
(r0) = 0 (D9)

while it is technically possible to have multiple vanishing
points ri that would require multiple independent tuning
parameters in order to do and generate sets of flat bands
that are effectively independent of each other for this
calculation despite existing at the same time.

We can first examine the dimensionality of the anti-
chiral Dirac zero modes. We can extend the m Dirac
spinors into a complete geometric basis in any point r by
introducing a new set of completing vectors such that.

det
(
{ψKi}

NL
i=1

)
= 1 (D10)

where the choice of the basis completing vectors is arbi-
trary, we can always choose for any r except r0 vectors
such that the value remains 1 and the vectors are differ-
entiable. We can now define a new alternating linear map
using the potential matrix, P as,

NL∑
t=1

det
(
{GitψKi

}NL

i=1

)
Git =

{
i = t : P
i ̸= t : INL×NL

(D11)

where Git is an NL by NL matrix whose values depend on
i and t, and the map is effectively the sum of NL deter-
minants each of an NL×NL matrix. From the uniqueness
of alternating linear maps we can immediately see that,

NL∑
t=1

det
(
{GitψKi

}NL
i=1

)
= Tr{P} det

(
{ψKi

}NL
i=1

)
= 0

(D12)
where we know from uniqueness that the new map will
be scalar times the determinant. We can see that the the
scalar would be the trace of P by considering the map
for the standard vector basis.

We can use this result to show eq. (D6) by show-

ing that
(
kerD

)⊥ ⊂ kerD† and the reverse is also true(
kerD†)⊥ ⊂ kerD. Therefore dim(kerD† ⊕ kerD) = NL

which is the required result. We start by differentiating
the determinant in eq. (D10),

0 = ∂ det
(
{ψKi

}NL
i=1

)
=

m∑
t=1

det
(
{GitψKi}

NL
i=1

)
+

NL∑
t=m+1

det
(
{RitψKi

}NL
i=1

)

= −
NL∑

t=m+1

det
(
{GitψKi}

NL
i=1

)

+

NL∑
t=m+1

det
(
{RitψKi}

NL
i=1

)

=

NL∑
t=m+1

det
(
{DitψKi}

NL
i=1

)

=

NL∑
t=m+1

CtDψt

Rit =

{
i = t : ∂

i ̸= t : INL×NL

Dit =

{
i = t : D
i ̸= t : INL×NL

(D13)

where Ct is the cofactor t column. We know that ∀t >
m : Ditψi ̸= 0 and that we have no repeat values. We
know Ct ∥ ψt and we can write the complex conjugation
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of the above as:

0 =

NL∑
t=m+1

lt(r)ψtD†ψt (D14)

where lt are some space dependent periodic coefficients.
We can see the expression does not depend on the choice
of ψt or r and therefore ψt ∈ kerD† ⊕ kerD. Further-
more, we know that ψt ⊥ kerD and as such ψt ∈ kerD†

and that proves that t
(
kerD

)⊥ ⊂ kerD†. We can see
from this result or from C that we will have an anti-
Chiral solution,

nB∑
i=1

ciχKi
(r0) = 0 (D15)

where nB ≤ NL−nA and χKi are the other Dirac spinors.
We can again see that the solution need not depend on
all Dirac zero modes and as such nB <≤ dimkerD†.

The remaining question is does a non-trivial intersec-
tion exist between the two kernels, we can see that this is

possible for the case with no shifts and as an intersection
term represents a repeating zero mode.
We can directly infer nA and nB from the flat band

curves for curves of types 1−2 but not for curves of type
3 − 4 whose Dirac zero modes aren’t fully determined.
Furthermore, each of these sets may contribute 1 or 2 flat
bands depending on the order of the zeros. A few exam-
ples of the calculation for cases we observe for NL = 3, 5
are seen in Table I. We can calculate NL and nD nu-
merically for TMG as seen in Table II which we can use
to understand the possible Chern behavior without com-
plete calculation of the Berry curvature. We can directly
infer nA and nB from the flat band curves for curves of
types 1− 2 but not for curves of type 3− 4 whose Dirac
zero modes aren’t fully determined. Furthermore, each of
these sets may contribute 1 or 2 flat bands depending on
the order of the zeros. A few examples of the calculation
for cases we observe for NL = 3, 5 are seen in Table I. We
can calculate NL and nD numerically for TMG as seen
in Table II which we can use to understand the possi-
ble Chern behavior without complete calculation of the
Berry curvature.

TABLE I: Possible combinations of Chern numbers by type and the number of layers NL. Here |CA| and |CB | are
the absolute values of the Chern numbers per band.

Type shift # zero bands Parity |CA| |CB | nD

1 No 4 Either 1 or 2 1 or 2 NL − 2 , NL − 3 , NL − 4

2 No 2 Even 1 1 NL − 2

2 Yes 2 Either 2 1 NL − 3

3 Yes 4 Either 1 1 NL − 2

3 Yes 4 Either 2 2 NL − 4

4 Yes 4 Either 2 1 NL − 3

Appendix E: Mapping of the flat bands wave
functions onto lowest Landau level wave functions

We will now show that a flat band with a Chern num-
ber N will be spanned by N lowest Landau Levels each
with a density of states 1/N compared to the original flat
band, and each multiplied by a different periodic function
Gl. We examine flat bands constructed using the vanish-
ing of the zero modes as can be seen in Appendix C.

N∑
i=1

ciΨKi
(r0) = 0 (E1)

In order to construct a periodic solution we must find
quasi-periodic functions hi that maintain this relation-
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TABLE II: Magic angles by N-layer stacks where next nearest neighbors are rotated by the same angle in the same
direction. Results are shown for no interlayer shift, and for an interlayer shift at the center of the stack equal to the

distance between the center and the corner of the unit cell of monolayer graphene.

NL arrangement angle velocities vanishing # nD

{K,K′,Γ} velocities zero

bands

3 AAA 0.715◦ {{v1}, {v1}, {v2}} v1, v2 = 0 4 1

3 ABA 0.34◦ {{v1}, {v1}, {v2}} v1, v2 = 0 2 0

3 ABA 0.495◦ {{v1}, {v1}, {v2}} v1 = 0 4 1

3 ABA 1.57◦ {{v1}, {v1}, {v2}} v1, v2 = 0 2 0

4 AAAA 0.55◦ {{v1, v1}, {v2}, {v2}} v2 = 0 2 2

4 AAAA 0.8637◦ {{v1, v1}, {v2}, {v2}} v1, v2 = 0 4 0

4 BAAB 0.46◦ {{v1, v2}, {v3}{v3}} v1, v3 = 0 2 1

4 BAAB 0.64◦ {{v1, v2}, {v3}, {v3}} v1, v3 = 0 4 1

4 BAAB 1.84◦ {{v1, v2}, {v3}, {v3}} v1, v3 = 0 2 1

5 AAAAA 0.55◦ {{v1, v2}, {v3}, {v1, v2}} v1, v2 = 0 4 1

5 AAAAA 0.85495◦ {{v1, v2}, {v3}, {v1, v2}} v1, v2 = 0 4 1

5 BBABB 0.3◦ {{v1, v2}, {v3}, {v1, v2}} v1 = 0 2 3

5 BBABB 0.72◦ {{v1, v2}, {v3}, {v1, v2}} v1, v3 = 0 4 2

5 BBABB 0.905◦ {{v1, v2}, {v3}, {v1, v2}} v1 = 0 2 3

5 BBABB 1.99◦ {{v1, v2}, {v3}, {v1, v2}} v1, v3 = 0 2 2

6 AAAAAA 0.2253◦ {{v1, v2}, {v1, v2}, {v3, v3}} v1 = 0 2 4

6 AAAAAA 0.27◦ {{v1, v2}, {v1, v2}, {v3, v3}} v1 = 0 4 2

6 AAAAAA 0.326◦ {{v1, v2}, {v1, v2}, {v3, v3}} v1, v3 = 0 2 4

6 AAAAAA 0.6391◦ {{v1, v2}, {v1, v2}, {v3, v3}} v1 = 0 2 4

6 AAAAAA 0.85575◦ {{v1, v2}, {v1, v2}, {v3, v3}} v1 = 0 4 4

6 BBAABB 0.23◦ {{v1, v2}, {v1, v2}, {v3, v4}} v1, v3 = 0 4 3

6 BBAABB 0.32◦ {{v1, v2}, {v1, v2}, {v3, v4}} v1, v3 = 0 2 3

6 BBAABB 0.35◦ {{v1, v2}, {v1, v2}, {v3, v4}} v1, v3 = 0 2 3

6 BBAABB 0.77◦ {{v1, v2}, {v1, v2}, {v3, v4}} v1, v3 = 0 4 3

6 BBAABB 1.295◦ {{v1, v2}, {v1, v2}, {v3, v4}} v1, v3 = 0 2 3

6 BBAABB 2.08◦ {{v1, v2}, {v1, v2}, {v3, v4}} v1, v3 = 0 2 2

7 AAAAAAA 0.572401◦ {{v3, v4, v5}, {v1, v2}, {v1, v2}} v1, v3 = 0 4 4

7 AAAAAAA 0.856◦ {{v3, v4, v5}, {v1, v2}, {v1, v2}} v1, v3 = 0 4 4

7 ABBABBA 0.23◦ {{v3, v4, v5}, {v1, v2}, {v1, v2} v1, v3 = 0 4 4

7 ABBABBA 0.298◦ {{v3, v4, v5}, {v1, v2}, {v1, v2} v1, v3 = 0 4 4

7 ABBABBA 0.306◦ {{v3, v4, v5}, {v1, v2}, {v1, v2} v1, v3 = 0 2 4

7 ABBABBA 0.4◦ {{v3, v4, v5}, {v1, v2}, {v1, v2} v1, v3 = 0 2 4

7 ABBABBA 0.44◦ {{v3, v4, v5}, {v1, v2}, {v1, v2} v1, v3 = 0 4 4

Continued on the next page
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NL arrangement angle velocities vanishing # nD

{K,K′,Γ} velocities zero

bands

7 ABBABBA 0.8◦ {{v3, v4, v5}, {v1, v2}, {v1, v2} v1, v3 = 0 4 4

7 ABBABBA 2.14◦ {{v3, v4, v5}, {v1, v2}, {v1, v2} v1, v3 = 0 2 4

8 AAAAAAAA 0.404◦ {{v1, v2, v3}, {v4, v4}, {v1, v2, v3} v1 = 0 2 6

8 AAAAAAAA 0.59◦ {{v1, v2, v3}, {v4, v4}, {v1, v2, v3} v1, v4 = 0 4 4

8 AAAAAAAA 0.856◦ {{v1, v2, v3}, {v4, v4}, {v1, v2, v3} v1, v2 = 0 4 4

8 ABBAABBA 2.18◦ {{v1, v2, v3}, {v4, v5}, {v1, v2, v3} v1, v4 = 0 2 5

9 AAAAAAAAA 0.23◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v2 = 0 4 5

9 AAAAAAAAA 0.266◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 4 6

9 AAAAAAAAA 0.342◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v2 = 0 4 5

9 AAAAAAAAA 0.418◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4, v5 = 0 4 5

9 AAAAAAAAA 0.5875◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v2 = 0 4 5

9 AAAAAAAAA 0.85575◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4, v5 = 0 4 5

9 BABBABBAB 0.30◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 4 6

9 BABBABBAB 0.335◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 4 6

9 BABBABBAB 0.355◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 2 6

9 BABBABBAB 0.63◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 2 6

9 BABBABBAB 0.84◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 4 6

9 BABBABBAB 1.16◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 2 6

9 BABBABBAB 1.825◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 2 6

9 BABBABBAB 2.212◦ {{v1, v2, v3}, {v1, v2, v3}, {v4, v5, v6}} v1, v4 = 0 2 6

ships such that,

N∑
i=1

cihi(r0 +na1 +ma2)ΨKi
(r0 +na1 +ma2) = 0 (E2)

where a1,2 are the real space periods of the problem. To
do so we define the following function N functions,

hlKi
(z) = eiKiz

N∑
t=1

e2πiαltϑ (α(z + t)−Ki|αω) (E3)

where α = N−1
N , these functions maintain periodic rela-

tions ∣∣∣∣∣hlKi
(z + a1)

hlKi
(z)

∣∣∣∣∣ = 1 (E4)∣∣∣∣∣hlKi
(z + a2)

hl+1
Ki

(z)

∣∣∣∣∣ = e−
πα(Im a2)2

Imω (E5)

These functions are orthogonal and cancel the phase
that the zero mode solutions gain, we can now define the

new wave function solutions,

ψl(r) =

∑N
i=1 cih

l
Ki

(z − z0)ΨKi
(z − z0)

ϑ1(z − z0|ω)
(E6)

where ψl is a function at one point in K space that
is decaying in Im z and allows us to construct a nor-
malizable solution. ψl is periodic along a1 such that
|ψl(z + a1)| = |ψl(z)| and rotating along a2 such that

|ψl(z + a2)| = e−(Im z)2/(N Imω)|ψl+1(z)|. These function

decay along the imaginary axis as e−(Im z)2/(N Imω). Both
functions maintain the condition that all the zeroes of ϑ1
are cancelled by zeroes of the sum, that would be possi-
ble as long as the matrix

(
f li
)
il
has a determinant of 0 at

the vanishing points r0 +ma1 + na2. We can note that
if we have two identical K points than the matrix will
have two identical columns and such a solution {ci}Nk=1
would exist that satisfies eq. (E1) and eq. (E7). We note
that for the N = 2 case the f li are all even and as such
having ±K is sufficient to create two identical columns
and for N ≥ 4 there are only 3 possible K values and we
must have two identical columns. We can know define N
periodic G functions,
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Gl(r) = e
π

2NAm
|z−2z0|2 e

− π
2NAm

(z−2z0)
2

ϑ1(z − z0|ω)

×
N∑
i=1

cih
l
Ki

(z − z0)ΨKi
(z)

(E7)

Where we maintain periodicity as follows:

Gl(r + a1) = U1G
l(r) (E8)

Gl(r + a2) = U2G
l+1(r) (E9)

where U1,2 are phase vectors matching the required
boundary conditions. We can define l normalizable wave

functions that solve the original system,

Ψl
0 = e−

π
2NAm

|z−2z0|2Gl(r) (E10)

Ψl
b = e−(

b
4+

π
2NAm

)|z−2z0|2Gl(r)

≡ e−
beff
4 |z−2z0|2Gl(r)

(E11)

where beff = b+ 2π
NAm

and as such we can see that the wave

function would not be normalizable for b = − 2π
NAm

which

is consistent with b = ϕ0

N we received from the initial
understanding of the system. The system now consists of
N wave functions that decay at rate of 1/N compared to
the original system.
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