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We demonstrate a simple, low-cost and ultracompact chiral resonant metasurface design, which,
by strong local coupling to a quantum gain medium (quantum emitters), allows to implement
an ultra-thin metasurface laser, capable of generating tunable circularly polarized coherent lasing
output. According to our detailed numerical investigations the lasing emission can be transformed
from linear to circular and switch from right- to left-handed circularly polarized (CP) not only by
changing the metasurface chiral response but also by changing the polarization of a linearly polarized
pump wave, providing thus dynamic lasing-polarization control. Given the increasing interest for
CP laser emission, our chiral metasurface laser design proves to be a versatile yet straightforward
strategy to generate strong and tailored CP emission laser, promising great potential for future
applications in both photonics and materials science.

Polarization controllable and, even more, circular po-
larization (CP) lasers, featuring significant prospects in
spectroscopic, sensing and display technologies, are a
growing area in the field of light-matter interactions [1–9].
CP lasers can also serve as valuable tools for investigating
and comprehending chiral-light-matter interactions, an
issue playing a critical role in various scientific disciplines,
such as chemistry [10], biophysics [11] and quantum op-
tics [12–15]. Achieving CP lasing, in principle, requires
a combination of a gain medium and a chiral response
[16]. One way is to use natural chiral molecules [17] com-
bined with a gain medium [18]. However, this strategy
is inefficient due to the very weak chiral response of the
molecules. Another approach is based on chiral nematic
liquid crystals combined with active (gain) molecules [19–
21]. However, the requirement to synthesize the liquid
crystal with the dyes or quantum dots or wells (as active
”molecules”) complicates the preparation process of the
chiral nematic liquid crystal-based laser system.

Recently, chiral light sources based on two dimensional
transition metal dichalcogenides (TMDCs) [22–25] and
perovskites [26–30] combined with metamaterials have
attracted remarkable attention, due to their ability to
give chiral photoluminescence. However, the degree of
circular polarization (i.e. the polarization ellipticity of
the emitted wave) demonstrated in such media remains
weak, thus limiting their practical applications potential.

An alternative of chiral ”molecules” approach to
achieve CP lasing is to employ chiral nanophotonic struc-
tures (operating as optical cavities). In recent years
various nanophotonics structures have been proposed to
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modulate the environment of the quantum emitters and
to enhance the radiation emission or/and control its po-
larization state [31–40]. Among these, chiral metasur-
faces based on quasi-bound states in the continuum [41]
are remarkable due to the fact that they can exhibit a
highly CP laser output. However, these chiral metasur-
faces are not offered for dynamic polarization control and
are not rigorously planar, which may cause cumbersome-
ness in their fabrication process. Therefore, a flexible
strategy to develop controllable CP laser at large scale
with low-cost and feasible fabrication remains challeng-
ing. Here we propose and investigate an approach based
on a compact bi-layer-metal chiral metasurface with gain,
and demonstrate its high potential and capabilities for
controllable CP lasing.

Chiral metamaterials (CMMs), i.e. artificial struc-
tures composed of building blocks with no mirror symme-
try plane [42–47], are characterized by strong magneto-
electric coupling, i.e. strong chirality, since it is not re-
stricted by the atomic size as in natural chiral materials.
Indeed, strong circular dichroism (i.e. absorption dif-
ference between left- and right-handed CP waves) and
large polarization rotation (effects connected with the
strength of chirality) have been demonstrated using chi-
ral metamaterials [47–49], in various frequency ranges.
These effects and possibilities make chiral metamateri-
als suitable for applications based on wave polarization
control, such as ultrathin circular polarizers, polarization
modulators, etc. Interestingly, it has been recently shown
that combining chiral media with Parity-Time-symmetry
[50–52] in a simple double-layer system opens the way to
a plethora of electromagnetic wave control applications,
such as circular polarization lasing, polarization isolation,
as well as asymmetric (side-dependent) electromagnetic
wave transmission [51].

Inspired by these developments, here we introduce the
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FIG. 1. (a) Schematic illustration of the unit cell for the
silver-based twisted-crosses chiral metasurface and the em-
ployed four level gain system. (b) Calculated linear spectra
for transmittances and reflectances for the structure shown in
Fig. 1 (a). The green lines show the profile of the gain medium
[real (solid line) and imaginary (dashed line) part of its elec-
tric permittivity - see Eq. (6)] for pump rate Rp = 1.5× 108

s−1. The shadow highlights the gain material bandwidth.

concept of a resonant bi-isotropic chiral metasurface, lo-
cally strongly coupled to a thin, realistic quantum gain
medium, as a promising approach to ultracompact, con-
trollable CP wave metasurface lasers. The linear scat-
tered field of our chiral metasurface arises from the col-
lective radiated field of the periodic resonant chiral meta-
atoms. Properly designed, it can be made purely circular
polarized. Strong coupling to the quantum gain material
mediated by the resonant near-field of the chiral meta-
atoms will compensate the losses in these plasmonic res-
onators and eventually have them spontaneously oscil-
late coherently, i.e., drive them into laser state. The
lasing output of this surface laser is the circularly po-
larized radiated field of the lasing resonant plasmonic
eigenmode of the chiral metasurface, where the chiral
crossed-wires resonator effectively constitutes the sub-
wavelength, plasmonic ”resonant cavity” of the laser, al-
lowing for strongly enhanced light-matter interaction and
sub-wavelength size. For the chiral metasurface we em-
ploy a design based on two mutually twisted metallic
crosses (as, e.g., in Ref.[53]) and validate the polarization
controllable lasing by numerical simulations. Adjusting
the twist-angle between the crosses or, more importantly,
adjusting dynamically the input polarization angle en-
ables the manipulation of the chiral response, which cou-
ples with the optical gain band, thus allowing different
laser emission behaviors to be demonstrated. Our ac-

tive (gain) chiral metasurface provides an opportunity to
design lasing with any desired polarization state, includ-
ing CP, eliminating the need for expensive and tedious
fabrication.
The unit cell of the chiral metasurface considered here

is shown in Fig. 1(a). It consists of two mutually twisted
metallic crosses, of twist angle θ = 22.5◦ (the first cross
is rotated 11.25◦ to the left with respect to the diago-
nal while the second 11.25◦ to the right), embedded in a
dielectric host of refractive index n = 1.41. The struc-
ture (metasurface) has square periodicity (along x, y di-
rections) with lattice constant a = 300 nm, and thick-
ness (along z-direction) l = 100 nm. The metallic
crosses are made of silver, described here by a Drude
model: ϵ(ω) = ϵ∞ − ω2

p/(ω
2 + iωγ) with ϵ∞ = 9.07,

ωp = 2π × 2159 × 1012 rad/s and γ = 2π × 25 × 1012

rad/s. The additional geometric parameters of the metal-
lic crosses are their height (side-length), h = 250 nm, the
width, w = 56 nm and the metal-thickness (along z),
s = 25 nm. Figure 1 (b) illustrates the calculated lin-
ear spectrum (with and without gain) of transmittances
T++ and T−− and reflectances R = R+− = R−+ for
the structure of Fig. 1 (a), for circularly polarized inci-
dent wave, where the first (second) subscript denotes the
output (input) wave polarization, and + and - indicate
right-handed circularly polarized (RCP) and left-handed
circularly polarized (LCP) wave respectively. Note that
the cross-polarized transmittances and co-polarized re-
flectances are zero (see Supplemental Material). Fig. 1
(b) shows a resonance at frequency around 214 THz,
which is a predominantly magnetic resonance rendered
chiral by the twist angle between the crosses (with an-
tiparallel currents at the two ”facing” crosses - see Sup-
plemental Material; also at [54]). This local magnetic
resonance is strongly coupled to the structure-material
with the near field. Such a coupling in the presence of
gain leads to reshaping and un-damping of the spectral
response as depicted in Fig. 1(b) and explained in more
detail below (Fig. 2).
The gain material can be obtained by doping the di-

electric host with dyes, described here as 4-level systems,
as depicted in Fig. 1 [55–59]. The population density in
each level is given by Ni (i = 0, 1, 2, 3). We assume that
initially all the electrons are in the ground state (N0).
Next, the electrons are pumped by an external electro-
magnetic wave with frequency h̄ωb = E3 −E0 where E3,
E0 are the energies of the excited (third level) and ground
state (zero level), respectively. After a short lifetime τ32,
the electrons relax into the metastable level, level 2. By
spontaneous and stimulated emission as well as by non-
radiative processes the electrons are transferred to the
first level, level 1. Levels 1 and 2 are the lasing states
and the lasing frequency is h̄ωa = E2−E1. The lifetimes
and energies of the lasing levels are τ21, E2 and τ10, E1.
The atomic populations at each spatial point obey the
following rate equations [55–59]:

Ṅ3 = (h̄ωb)
−1E · Ṗ(b)

G − (τ32)
−1N3 (1)
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Ṅ2 = (τ32)
−1N3 + (h̄ωa)

−1E · Ṗ(a)

G − (τ21)
−1N2 (2)

Ṅ1 = (τ21)
−1N2 − (h̄ωa)

−1E · Ṗ(a)

G − (τ10)
−1N1 (3)

Ṅ0 = −(h̄ωb)
−1E · Ṗ(b)

G + (τ10)
−1N1 (4)

where P
(a)
G is the induced electric polarization density of

the atomic transition between the lasing levels (1 and 2,

radiation emission), P
(b)
G is the induced electric polariza-

tion density of the transition between ground and excited
state (0 and 3, pumping, radiation absorption) while the
dots on the populations and polarizations indicate time
derivative. The induced macroscopic polarization is re-
lated with the microscopic polarization of the molecules
(see Supplemental Material) and is coupled to the local
electric field E by the following equation:

P̈
(a,b)

G + Γa,bṖ
(a,b)

G + ω2
a,bP

(a,b)
G = −σa,b∆Na,bE (5)

where ∆Na = N2 − N1, ∆Nb = N3 − N0, Γa, Γb are
the linewidths of the atomic transitions at the emitting
angular frequencies and σa, σb are the coupling strength

of the P
(a)
G , P

(b)
G to the electric field E whose values can

be obtained experimentally. Within this framework, the
Maxwell’s equations are coupled with the rate equations
(1)-(4) via Eqn. (5), through the polarization density,
while all equations share the same simulation domain,
along with the same spatial and temporal discretization.
Here we integrate our four-level formalism into the chi-
ral metasurface and perform the combined system anal-
ysis using Finite Element Time Domain (FETD) simula-
tions through the COMSOL Multiphysics software. The
parameters for the four-level system are chosen as fol-
lows [55, 60]: Total electron density Nel = N0(t = 0) =
5 × 1023 m−3, coupling coefficients σa = 10−4 C2/kg,
σb = 5 × 10−6 C2/kg, linewidths Γa = 2π × 10 × 1012

rad/s, Γb = 2π × 20 × 1012 rad/s and relaxation times
τ10 = τ32 = 0.05 ps, τ21 = 20 ps.
In order to better understand the population dynam-

ics and the effective polarizablility (permittivity) con-
tributed by the gain system, we consider the station-
ary state lasing, replacing the pump field by an average
pumping rate, approximating the rate of absorbed pump

photons per volume, (h̄ωb)
−1E · Ṗ(b)

G , by an abstract
pumping rate of electrons from the ground level to the
top level, N0Rp. The pump rate Rp is related to the ab-
sorbed pump intensity, Ipump, viaN0Rp = Ipump/(h̄ωa l),
where l is the thickness of the gain layer within the
metasurface. Then the macroscopic polarization den-
sity induced by the gain medium can be incorporated in

the frequency-dependent constitutive relations: P
(a)
G =(

εg(ω)−εh
)
ε0E, where εh is the host relative permittiv-

ity. Applying the steady state approximation assuming
weak fields in Eqn. (1)-(4) and (5), neglecting all non-
linear terms except the leading order (which is constant
in the population numbers, dNi/dt ∼ 0, i ∈ {0, 1, 2, 3}),
and linear harmonic time-dependence in the electric field
and polarizations, we can express the relative permittiv-

ity of the gain-host material as [60–62]:

εg(ω) = εh +
1

ε0

∑
m∈{a,b}

−σm ∆Nm

ω2
m − ω2 − iω Γm

(6)

where ∆Na = (τ21 − τ10)Rp N0, ∆Nb = (τ32Rp − 1)N0,
and N0 = [1 + (τ32 + τ21 + τ10)Rp]

−1Nel. From the last
equation, under the chosen conditions, we find that the
contribution from the lasing transition is about one or-
der of magnitude smaller than the host permittivity εh
which will affect the metasurface by renormalzing the
resonances of the chiral meta-atoms, both in frequency
and damping, while the correction from the pump transi-
tion is yet another order of magnitude weaker and mostly
negligible except for the fact that it renders the lasing
resonance of the chiral metasurface slightly sensitive to
the intensity (and polarization) of the pump radiation.
For the metasurface shown in Fig. 1(a) and pump rate
1.5×108 s−1 this permittivity εg(ω) is shown in Fig. 1(b).
Fig. 1(b) also shows the metamaterial response for pump
on, i.e. for the host of relative permittivity as in Eq. 6.
Note that the coupling of the chiral structure with the
gain material results to un-damping of the metamaterial
resonance, as is expected (see also [63]). This change is
highly affected by the pump rate, Rp.

FIG. 2. Real (solid lines) and imaginary (dashed lines)
parts of the effective sheet conductivities (dimensionless quan-
tities), i.e. the electric sheet conductivity (a), the magnetic
(b), and the magneto-electric (c), for the system of Fig. 1,
for pump rates Rp = 0.0 s−1 and Rp = 1.5 × 108 s−1. Panel
(d) shows the absorption amplitudes for RCP/+ and LCP/-
waves for the same system and pump-rates. The shadow
regime corresponds to the gain resonant response for pump
rate Rp = 1.5× 108 s−1.

To quantify the chiral structure response and exam-
ine how it is affected by the gain we use the standard
retrieval procedure [64] suitable for thin metamaterial
layers/sheets, to extract the effective dimensionless sheet
conductivities, see, smm, sem, of the structure with and
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without gain (see also effective material parameters in
the Supplemental Material). Figure 2(a) shows the re-
trieved results for the real (solid lines) and the imagi-
nary (dashed lines) parts of the effective electric conduc-
tivity see, with gain (different pump rates) and without
gain. One can see that increasing the pump rate, and
hence the available gain, leads to a slight decrease in the
real part of the electric dimensionless conductivity in the
frequency range close to the maximum emission cross-
section of the gain medium, demonstrating reduced losses
(in agreement with Fig. 1(b)). Figure 2(b) shows the real
(solid lines) and imaginary (dash lines) parts of the effec-
tive magnetic conductivity smm, with and without gain.
We observe that with the incorporation of gain, the weak
and broad magnetic resonance of the passive metasurface
becomes strong and narrower, indicating that that the
electric gain counteracts the magnetic losses. Besides ef-
fective electric and magnetic conductivities, we also cal-
culate the effective sheet magneto-electric conductivity
sem, a measure of the chiral response of the structure.
Figure 2(c) illustrates the real and the imaginary parts
of sem, with and without gain. We see that increasing
the pump rate leads to a strong enhancement of both real
and imaginary parts of sem, i.e. a strong enhancement
of the system chiral response (see Supplemental Material
for details).

In order to clarify and quantify the impact of gain on
the polarization state of the transmitted wave through
the system, we calculate the absorption for RCP (+) and
LCP (-) waves (determining the wave ellipticity; for the
corresponding ellipticity see Supplemental Material) - see
Fig. 2(d). One can see that the increasing of pump rate
reduces the absorption peak for LCP waves, while it nar-
rows the peak for RCP waves without affecting much
its maximum value. The corresponding ellipticity, which
without gain is close to 20◦, for Rp = 1.5× 108 s−1 gets
close to 40◦, indicating pure circularly polarized waves.
Hence, we find that the effective amplification in the gain-
metasurface system, which is controllable via pump rate,
highly affects the polarization state of the output wave,
allowing dynamic polarization tuning. It is worth-noting
here that the LCP absorption (A−) is more sensitive to
the gain value; as we will show later, it is this mode
(LCP) which will first lead to lasing.

In the above analysis we show the strong coupling
between gain and chiral response, resulting to gain-
controllable transmitted wave ellipticity; however, the
main objective of this study is to demonstrate control-
lable (including circular) polarization lasing in our struc-
ture. For this demonstration and the understanding of
the underlying physical mechanisms, we examine the ac-
tive chiral metasurface of Fig. 1 (a) employing the ”quan-
tum” approach for the gain, i.e. Eqn. (1)-(5), and lin-
early polarized input/pump wave. We first pump the
gain molecules with a short intensive Gaussian pump
pulse with a central frequency of ωb = 2π × 335 × 1012

rad/s and duration tp = 2 × FWHM = 2ps, where FWHM
denotes the full-width at half maximum of the pulse;

FIG. 3. The incident and transmitted waves as a function of
time for the structure of Fig. 1 excited by a pump pulse [panels
(a)-(c)] and continue waves (CW) [panels (g)-(i)] of frequency
335 THz and polarization angle ϕ = 45◦. Panels (a), (b)
and (c) are the incident, transmitted Ex, and transmitted Ey

waves for input pump-pulse amplitude 0.8×106 V/m. Panels
(d), (e) and (f) are the corresponding Fourier transformed
spectra of the incident and transmitted waves. Panels (g), (h)
and (i) are the incident, transmitted Ex, and transmitted Ey

waves, as a function of time, for input/pump CW amplitude
0.8× 106 V/m. Panels (j), (k) and (l) are the corresponding
Fourier transformed spectra. The sharp peaks at about 335
THz is the incident beam (driving the gain from level 0 to 3).

Ep(t) = (x̂ cosϕ+ŷ sinϕ)Ep sin (ωbτp) exp [− 1
2 (τp/σp)

2],

where τp = t − tp and σp = FWHM/(2
√
2 log 2). Figures

3(a)-(c) depict the incident, co-polarized transmitted and
cross-polarized transmitted waves as a function of time
for polarization angle ϕ = 45◦. Then, we Fourier trans-
form the time-dependent transmitted electric fields to see
if there is emission and how strong is the emitted radia-
tion around ωa = 2π×205×1012 rad/s (lasing frequency).
The results are depicted in Figs. 3(d)-(f). The pump-
pulse amplitude, Ep, is 0.8×106 V/m and we do observe
a peak at the emission frequency. An even higher am-
plitude of the pump pulse leads to higher emitted/lasing
power. A worth-noticing feature in Fig. 3 is the equal
amplitudes of the x and y components of the lasing fields
(see (e), (f)), indicating the possibility of circularly polar-
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ized emitted wave. Observing the relative phase between
the two components we see that it is close to π/2, ver-
ifying the circular polarization character of the emitted
wave.

FIG. 4. The incident and transmitted power spectral den-
sity (color) for different polarization angles. Panels (a), (b)
and (c) show the incident, RCP transmitted, |E+|2, and LCP
transmitted |E−|2 wave, respectively, as a function of time
and frequency for incident polarization angle ϕ = 0◦. Panels
(d), (e), (f) show the corresponding results for polarization
angle ϕ = 45◦.

To investigate further the lasing wave polarization and
examine the possibility of its control, we keep the same
pump-pulse amplitude, 0.8×106 V/m, we modify the rel-
ative polarization angle, ϕ, from ϕ = 0◦, corresponding to
linearly polarized incident pulse along x-axis, to ϕ = 90◦,
corresponding to linearly polarized incident pulse along
y-axis. The results for ϕ = 0◦ and ϕ = 45◦ are shown
in Fig. 4, where the two rows denote the two different
angle cases, and both input and output waves are trans-
formed in the circular polarization basis. Figs. 4 (a), (d)
show the power spectral density (in log scale) of the in-
cident, (b), (e) of the RCP transmitted (E+) and (c), (f)
of the LCP transmitted (E−) waves. When the polar-
ization angle is ϕ = 0◦ we observe that above 2.5 ps the
E+ polarized emitted wave vanishes, while the E− polar-
ized wave is the dominant, indicating the pure circularly
polarized output. As we tune the polarization angle to
ϕ = 45◦ (the incident pulse is now polarized parallel to
the diagonal of the metasurface unit-cell), we observe an
interchange between the E+ and E− transmitted waves
at the lasing frequency; thus the dominant transmitted
wave is the RCP, E+, wave. (Further increase of the po-
larization angle, i.e. ϕ = 90◦, leads again to LCP, E−,
transmitted output; intermediate cases are shown in the
Supplemental material). This indicates that by modify-
ing the angle ϕ one can dynamically tune the polarization
state of the lasing mode, going from linear to circular
polarization, and from RCP to LCP, a capability of high
importance in all applications based on or affected by the
wave-polarization.

In the previous example we demonstrated that it can

FIG. 5. The incident and transmitted power spectral den-
sity (color) from the structure of Fig. 1 for incidence of a
continuous linearly polarized wave (CW) of different polar-
ization angles, ϕ. Panels (a), (b) and (c) show the incident,
RCP transmitted, |E+|2, and LCP transmitted, |E−|2, wave,
respectively, as a function of time and frequency for inci-
dent polarization angle ϕ = 0◦. Panels (d), (e), (f) show
the corresponding results for incident pump polarization an-
gle ϕ = 45◦.

be achieved an input-polarization-controllable circular
polarization laser but for a very short duration, as we
excite the system with a pulse of relatively short dura-
tion. To examine further the impact of the input polar-
ization angle on the output wave polarization, we cal-
culated the RCP/+ and LCP/- transmitted waves for
our chiral metasurface under continuous wave (CW) ex-
citation. The results are shown in Fig. 5. Observing
the results of Fig. 5, we see that they follow closely the
ones of Fig. 4. I.e., for ϕ = 0◦ the target lasing mode is
dominated by LCP/-, with negligible RCP/+ emission.
Twisting the polarization angle by ϕ = 45◦ things re-
verse and the main lasing mode is dominated by RCP/+
radiation (with LCP/- emission at the noise level). Cor-
responding results for intermediate angles demonstrate
further the input-polarization controllable laser output.
To confirm and investigate further the polarization of

the outgoing laser radiation, we calculate also the linear
components of the transmitted waves, Ey versus Ex, for
a specific time duration. The results are shown in Fig.
6. We observe that at ϕ = 0◦ an almost perfect circu-
larly polarized emission laser is achieved. To determine
also the handedness of the output laser we calculate the
transmitted waves, Ex versus Ey, over a single period.
The results indicated by the color in 6 clearly show that
at ϕ = 0◦ we observe an anti-clock wave while at ϕ = 45◦

a clockwise wave. The above analysis clearly shows that
our structure and approach can lead to controllable and
pure circular polarization laser. To the best of our knowl-
edge, up to date, there are no efficient routes to demon-
strate and control pure (with a high degree of circular
polarization) CP lasing in an ultra-compact form.

Closing, we would like to highlight here an at first look
unexpected feature observed by comparing the results of
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FIG. 6. The transmitted waves Ex versus Ey for different
polarization angles of the incident wave (ϕ = 0◦ and ϕ = 45◦

for a specific time duration, denoted in the colobar. Each
panel is marked by the corresponding angle.

Figs. 2(d) and 5; we can observe that the lasing mode
of Fig. 5(c) (LCP mode) is the mode which below las-
ing threshold is associated with the higher absorption
and thus lower transmittance compare to the other CP
mode. In other words, while our chiral structure in the
absence of gain shows large cicrular dichroism resulting
to highly RCP transmittance when it lases it first emits
LCP wave. This is not surprising though, taking into
account that emission is in fact inverse-absorption, and
both processes are determined by the same material char-
acteristics. Thus, the mode of the higher absorption be-
low lasing threshold is the one that first emits/lases above
lasing threshold.

In conclusion, we have presented a simple planar, low-
cost, and ultracompact active chiral resonant metasur-

face design that allows easy fabrication of an ultra-thin
metasurface laser capable of generating circularly polar-
ized coherent lasing output. Coherent, circularly polar-
ized output arises from direct lasing action of the collec-
tive resonant plasmonic eigenmode of the periodic, reso-
nant chiral meta-atoms of the metasurface. Strong cou-
pling to the quantum gain material mediated by the res-
onant near-field of the meta-atoms will compensate the
dissipative losses in plasmonic twisted crosses-wire res-
onators and eventually have them spontaneously oscil-
late coherently, i.e., drive them into a lasing state. The
lasing output of this surface laser is the circularly po-
larized radiated field of the lasing resonant plasmonic
eigenmode of the chiral metasurface, where the chiral
crossed-wires resonator effectively constitutes the sub-
wavelength, plasmonic ”resonant cavity” of the laser, al-
lowing for strongly enhanced light-matter interaction and
sub-wavelength size. We have shown that both the ge-
ometrical twist-angle of the crosses wire meta-atoms as
well as the polarization of an incident pump radiation
can be used to control the emission polarization state of
the laser from linear to circular and to switch from right-
to left-circular polarized output. Furthermore, we have
shown purely circularly polarized lasering output for both
pulsed and continuous-wave pump operation. We believe
that our findings could guide new experimental efforts
towards realization of polarization controllable circularly
polarized output ultra thin surface lasers using resonant
chiral metasurfaces, which offer access to a plethora of
exciting photonic applications.
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