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ISOMONODROMY AND PAINLEVÉ TYPE
EQUATIONS, CASE STUDIES

MARIUS VAN DER PUT AND JAAP TOP

Abstract. There is an abundance of equations of Painlevé type
besides the classical Painlevé equations. Classifications have been
computed by the Japanese school. Here we consider Painlevé type
equations induced by isomonodromic families of linear ODE’s hav-
ing at most z = 0 and z = ∞ as singularities. Requiring that the
formal data at the singularities produce isomonodromic families
parametrized by a single variable t leads to a small list of hierar-
chies of cases. The study of these cases involves Stokes matrices
and moduli for linear ODE’s on the projective line.

Case studies reveal interesting families of linear ODE’s and
Painlevé type equations. However, rather often the complexity
(especially of the Lax pair) is too high for either the computations
or for the output. Apart from classical Painlevé equations one re-
discovers work of M. Mazzocco, M. Noumi and Y. Yamada. A
hierarchy, probably new, related to the classical P3(D8), is discov-
ered. Finally, an amusing “companion” of P1 is presented.

Introduction and Summary

We study families M of connections on a vector bundle on the com-
plex projective line, defined by the data of a finite set of singular points
and for each singular point the type of the singularity. These data give
rise to a monodromy space R which is built from the possibilities for
the topological monodromy, the Stokes matrices and the links.

The Riemann–Hilbert map RH : M → R sends a connection to its
monodromy data. The fibres of RH are the isomonodromic families,
i.e., the (maximal) subspaces of M with constant monodromy. We are
interested in the cases where the fibres are locally parametrized by one
complex variable t, called here the time variable. In general there are
more “time variables”.

A family M can be represented by a matrix differential operator
d
dz
+A where the entries of the matrix A = A(z, v1, . . . , vr) are rational

functions in z and depend on a certain number of variables v1, . . . , vr.
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2 MARIUS VAN DER PUT AND JAAP TOP

If the fibres of RH are parametrized by a time variable t, then the
v1, . . . , vr are, restricted to the fibre, functions of t. By assumption,
the monodromy, the links and the Stokes matrices of the operator
d
dz

+ A(z, v1(t), . . . , vr(t)) are constant. Let Y (z, t) denote a funda-

mental matrix. Then d
dt
Y (z, t) has the same monodromy, links and

Stokes matrices as Y (z, t) and thus B(z, t) := − d
dt
Y (z, t) · Y (z, t)−1

has trivial monodromy, links and Stokes matrices. Therefore B(z, t)
extends to a matrix whose entries are rational in z and locally an-
alytic in t. It follows that d

dt
+ B(z, t) commutes with the operator

z d
dz

+ A(z, v1(t), . . . , vr(t)). This pair of operators is called a Lax pair.

The knowledge that z d
dz

+ A(z, v1(t), . . . , vr(t)) is part of a Lax pair
suffices to obtain an explicit system of differential equations

d

dt
vi(t) = Ri(v1(t), . . . , vr(t)), i = 1, . . . r, with rational functions Ri.

This is usually called a vector field of Painlevé type. This system has
the Painlevé property, i.e., “local solutions extend to global multivalued
meromorphic solutions”. For more details, see [Sib].

The classical Painlevé equations P1 − P6 arise from isomonodromy.
There are in fact many isomonodromic families. The Japanese school
has an extensive literature on equations of Painlevé type and also de-
veloped classifications (see for instance [J-M-U, K-N-S, H-K-N-S, K2,
K3, K4, Mi, N-Y, O1, O-O]).

Here, we modestly restrict ourselves to classifying and studying rather
special cases, namely assuming that at most z = 0 and z = ∞ are sin-
gular and assuming that there is only one time variable. One reason for
this restriction is that the quantum differential equations associated to
algebraic varieties have two singularities z = 0 (regular singular) and
z = ∞ (irregular singular). A further reason is that the theory and
algorithm of Stokes matrices provide most of the information for R
and M. Furthermore, we are more interested in hierarchies of families
than in individual families. A hierarchy can be obtained by putting a
“natural” condition on the eigenvalues at the singular points z = 0 and
z = ∞.

Now we describe the data for M and R. The point z = ∞ is
supposed to be irregular singular and z = 0 can be regular or regular

singular or irregular singular.
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For the convenience of the reader we describe the formal classification

at z = ∞ of differential modules in terms of tuples (V, {Vq}q, γ); details

may be found in [vdP-Si].
A tuple consists of a complex vector space V of dimension n with

additional structure. The q’s denote elements of ∪r≥1z
1/rC[[z1/r ]]. For

each q there is given a linear subspace Vq ⊆ V and V = ⊕Vq. The
eigenvalues are the finitely many q1, . . . , qr with Vq 6= 0. The mul-
tiplicity m = m(q) is the dimension of Vq. The dimension of V is
therefore equal to

∑
m(qj). One writes (q)m to denote eigenvalue q

with multiplicity m.

The ramification index e is the smallest positive integer such that
qj ∈ z1/eC[[z1/e]] for all j. The degree of qj is the highest (rational)
power of z occurring in qj . The Katz invariant κ is the maximum of
the degrees of the qj ’s. The Galois group of ∪r≥1C((z

−1/r))/C((z−1)) has
a topological generator σ which acts by σ(zλ) = e2πiλzλ for λ ∈ Q.

Further, γ, the formal monodromy, is an automorphism of V and
has the property γ(Vq) = Vσ(q) for all q.

The classification of differential modules M over C((z−1)) by the tu-
ples (V, {Vq}q, γ) is based upon the fact that the solutions of M can
be written as a sum of expressions exp(

∫
q dz

z
) · F with q as above and

F a combination of formal power series in roots of z and log(z). The
V associated to M is the space of these formal or symbolic expres-
sions. It has a natural decomposition as ⊕Vq. Further, the formal
monodromy γ, is given by σ applied to the above expressions. The
functor M 7→ (V, {Vq}q, γ) is an equivalence of Tannakian categories.

Let a family of data for eigenvalues q1, . . . , qr, multiplicities and for-

mal monodromies γ be given. This gives rise to a family of formal
differential operators z d

dz
+ F . The construction of the space of con-

nections M amounts to computing a family of differential operators
z d
dz

+ A over C(z) with singular points z = 0 and z = ∞. The condi-

tion is that this operator is at z = ∞ formally equivalent to z d
dz

+ F .
Moreover, at z = 0 the operator should be regular, or regular singular,
or formally equivalent to another given formal operator.

Some details on the definition and the construction of the monodromy

space R. For each difference qk − ql, k 6= l one considers a solution
y 6= 0 of z dy

dz
= qk − ql. The singular directions d ∈ R for qk − ql are
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defined by y(e2πidr) tends to zero for r → +∞ with maximal speed
(maximal descent).

The Stokes matrix Std ∈ GL(V ) for direction d reads 1V +
∑

k,l mk,l,
where the sum is taken over the pairs such that d is singular for qk − ql

and mk,l denotes a linear map V
projection→ Vk → Vl ⊆ V .

We note that Std+1 = γ−1Stdγ holds for d ∈ R. Therefore the
Stokes data can be identified with the space of all Stokes matrices Std
with d ∈ [0, 1) and can be identified with a vector space of dimension
N :=

∑
k 6=l deg(qk − ql) · dimVk · dimVl.

The formal data combined with the data of the Stokes matrices
classify the analytic singularity at z = ∞. In particular, mon∞,
the topological monodromy at z = ∞, is equivalent to the product
γ ◦ Stds ◦ · · · ◦ Std1 , where ds > · · · > d1 are the singular directions in
[0, 1). This property will be called the monodromy identity. For the
construction of R we have to consider the various cases.

(i) z = 0 is regular singular. Given are V = Vq1 ⊕ · · · ⊕ Vqr , an action
of σ on {q1, . . . , qr}, the singular directions 1 > ds > · · · > d1 ≥ 0
with the corresponding differences qk − ql. We note, in passing, that
the highest coefficient of a difference qk − ql may depend on t. In such
a case the singular directions also depend on t. In the cases that we
computed R itself is independent of t.

In general, R is defined as the set of equivalence classes of all pos-
sibilities for the Stokes data and the topological monodromies. In the
present case, R consists of the equivalence classes of all possible tuples
(γ, Stds, . . . , Std1) ∈ SL(V )s+1, where by assumption γ is supposed to
have distinct eigenvalues. We now make R explicit.

Let (V, {Vq}, γ, {Std}) be given. The action of σ on the eigenvalues
has orbits (i.e., Galois orbits) Q1, . . . , Qr and Qi = {qi,0, . . . , qi,ℓi−1}
for all i. Let di = dimVqi,0. Put d =

∑r
i=1 di and as before we write

N =
∑

deg(qi,j − qk,l) · dim(Vqi,j) · dim(Vqk,l).

Lemma 0.1. R is isomorphic to the quotient of the space (C∗)d−1×CN

by the action of a group isomorphic to (C∗)d−1. This quotient has

an open, affine, dense subspace isomorphic to (C∗)d−1 × CN−d+1. In

particular dimR = N .

Proof. There is no restriction on the possibilities for the Stdj . This
produces the vector space CN . In order to make the restrictions on γ
explicit, we consider a Galois orbit, here written as, Q = {q0, . . . , qℓ−1}
with dimVq0 = f . Choose a basis e1, . . . ef of eigenvectors for the action
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of γℓ on Vq0. Let α1, . . . , αf denote the distinct eigenvalues. This basis
is unique up to permuting and scaling of the basis vectors. Consider, for
i = 1, . . . , ℓ− 1, the basis of Vqi to be γi(e1), . . . , γ

i(ef ). One concludes
that the data for the matrix of γ on the space ⊕Vqi is equivalent to the
tuple (α1, . . . , αf). Moreover, the set of all ℓth roots of all αi is the set
of eigenvalues of γ.

Thus the total data for γ on V is given by the eigenvalues of γli on
the space Vqi,0 for i = 1, . . . , r. Since, by assumption, γ has determinant

1, the space of possibilities for γ is (C∗)−1+
∑

di .
The automorphisms of (V, {Vq}, γ) are the τ ∈ PGL(V ) such that

τ(Vq) = Vq for all q and τγ = γτ . One concludes that τ is determined
by its action on all Vqi,0 . Furthermore, τ has on this space the same

eigenvectors as γℓi . This implies that the group of automorphism is
isomorphic to (C∗)d−1. It is seen that the group acts faithfully on the
Stokes data. Finally, by scaling suitable Stokes data to 1, one obtains
this affine, open, dense subspace of R. �

(ii) z = 0 is regular. As above in (i), but now with the additional
restriction γ ◦Stds ◦· · ·◦Std1 = 1V . For every candidate a computation
is needed to find out whether R is not empty and to find its dimension.

(iii) z = 0 is irregular singular. Let W denote the solution space at
z = 0. It has similar additional data as V , namely q’s, γ, Std, mon0.
The link (in [J-M-U] called ‘connection’) is a linear bijection L : W → V
commuting with the mon∗. The space R is the space of equivalence
classes of the data at V , W and the link L.

The parameter space P is defined by data of the topological and
the formal monodromies, more precisely by their characteristic poly-
nomials. By “fibre” we will mean a fibre of R → P, which has the
interpretation as space of initial conditions. Each fibre determines a
Painlevé vector field (or scalar differential equation) of rank (or order)
equal to the dimension of the fibre.

The rules used for composing our list of families of connections.
The requirements concern the formal data at z = ∞ (and also at z = 0
if this point irregular singular).

R1. The (distinct) eigenvalues q1, . . . , qr with multiplicity m1, . . . , mr

satisfy: all qj 6= 0,
∑

mjqj = 0 and (in case e > 1) invariance

under the Galois group of C((1/z)) over C((1/z)). Further, one
requires that the formal monodromy γ is “generic”, meaning
that it has n distinct eigenvalues.
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R2. If z = 0 is regular, then the formal data are normalized by the
action of the group {z 7→ az + b}. If z = 0 is singular, the
formal data are normalized using the group {z 7→ az}. For the
description of all formal data at z = ∞ and at z = 0 (if this
point is also irregular singular) only one variable t is needed.
This is the translation of the requirement that the fibres of
M → R are locally parametrized by a single t, called the time

variable.
R3. The data should not define a subfamily of a family with more

“time variables”. However, in Section ??, we will consider a
“companion of P1”, which is a subfamily of an interesting “two
time variables family”.

R4. The emphasis is on hierarchies and not on individual families.
By hierarchy we mean a sequence of families defined by cer-
tain properties of the eigenvalues. For example, z = 0 regu-
lar singular; e = 1, κ = 1 defines the hierarchy given by the
eigenvalues and multiplicities (z)m1 , (tz)m2 , (−m1+tm2

m3
z)m3 for

m1, m2, m3 ≥ 1.

In § 1 a complete list for the cases with multiplicities 1 is presented.
This includes of course the classical Painlevé equations with at most
two singular points. This list extends in an obvious way to a complete
list of hierarchies by allowing multiplicities.

In the next sections, the cases of the list which are not classical, are
studied in more detail.

Details on definition and construction of the space of connections M.

(i) Case z = 0 is regular singular. We start by assuming that the irreg-
ular singularity z = ∞ is unramified and is given by data (V, {Vq}, γ).

We choose a basis of V , consisting of eigenvectors of γ, and ma-
trices w.r.t. this basis. This leads to a choice standard differential
operator z d

dz
+ S where S is a diagonal matrix with diagonal entries

(Q1 + a1, . . . , Qn + an). The Q1, . . . , Qn are the eigenvalues q1, . . . , qr,
repeated according to their multiplicities. Thus

∑
Qj = 0. The

a1, . . . , an ∈ C satisfy
∑

aj = 0 and are chosen such that the mon-
odromy of the operator z d

dz
+ diag(a1, . . . , an) equals γ.

Now we follow [vdP-Si, § 12] and consider the fine moduli space de-
fined by the connections on P1 with the properties:
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(a). the vector bundle of rank n is trivial;
(b). z = 0 is regular singular;
(c). A formal isomorphism at z = ∞ with z d

dz
+ S is given.

According to [vdP-Si, Corollary 12.15 and its proof], the universal fam-
ily of this fine moduli space is represented by the family of differential
operators Pr(g(z d

dz
+ S)g−1) where g runs in the N -dimensional affine

space

{1V +
∑

k 6=ℓ

Hom(Vk, Vℓ)⊗C (Cz−1 + · · ·+ Cz− deg(qk−qℓ))}.

The notation Pr denotes “principal part” and is defined here as

Pr(z
d

dz
+

∑

k <<∞
Akz

k) = z
d

dz
+

∑

0≤ k <<∞
Akz

k.

This completes the construction of M for the case z = 0 regular sin-
gular and z = ∞ is unramified. We note in passing that the above de-
scribes a (co-adjoint) orbit of a linear algebraic group over C. Therefore
M has a natural symplectic structure, see also [Bo].

For the ramified case one considers the cyclic covering of P1 of de-
gree e, ramified over 0 and ∞. With respect to the variable z1/e, one
computes the universal family z d

dz
+ A as above. The final step is a

computation of the operator on a σ-invariant basis (compare [vdP-Si,
§ 12.5])).

(ii). The case z = 0 regular. From the data (V, {Vq}, γ) one first com-
putes, as above in (i), a universal family of matrix differential operators
z d
dz

+
∑

0≤ k <<∞Akz
k. We propose for M the subfamily defined by

the condition that all the entries of A0 are zero. An explicit computa-
tion is needed to verify whether M is not empty and to compute its
dimension.

(iii). The case z = 0 and z = ∞ irregular singular. One expects
a universal family of differential operators z d

dz
+

∑
−∞<< k <<∞Akz

k.

For the righthand part
∑

0≤ k <<∞ Akz
k the method of (i) produces

a proposal. The same holds for the lefthand part
∑

−∞<< k ≤0Akz
k.

Gluing of the two proposals may result in a suitable family. A priori,
it is not clear whether the formal data at z = 0 and at z = ∞ can be
combined to a family M and a corresponding monodromy space R.
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The explicit computation of R works quite well. The computation
of M in cases (i) or (ii) may fail or may lead to a result unsuitable
for further analysis, due to complexity. For case (iii) one needs a good
guess to start the computation.

The number of cases where a complete computation of the Lax pairs
can be given is, again due to complexity, rather small. In case (i), the
differential equations involve N =

∑
k,ℓ deg(qk − qℓ) · dimVqk · dimVqℓ

functions of t. This system is mostly too large.
A first step is normalization by scaling the basis vectors of V . A

next step is to reduce this system by the use of invariants, which are
independent of t. The coefficients of the characteristic polynomials of
the formal and the topological monodromy, generate the algebra of in-
variants. Their computation as expressions in the above functions and
elimination some of the N variables is a source of complexity. For the
cases (ii) and (iii) there are similar complexity problems.

A list of the most detailed and interesting explicit cases.
Here n denotes the rank of the connections and the formula gives rep-
resentatives for the Galois orbits of the eigenvalues.

§ 2 z2/n+tz1/n, n ≥ 3. The hierarchy of M. Noumi and Y. Yamada.
§ 5.1 z1/2, tz1/2, n = 4. Conjectured to be related to P4.

§ 7 z, tz, (−1 − t)z, n = 3. M. Mazzocco’s equation, related to P6.
§ 9 z2,−z2 − tz, tz, n = 3. Complete results, including an explicit

Hamiltonian. Conjectured to be related to P1.
§ 12 z−1/n and tz1/n, n ≥ 2. A hierarchy, probably new, related to

P3(D8), with explicit description of the Lax pairs.
§ 13 z5/2 + tz1/2, n = 2. “Companion of P1”, a variation on P1.

1. List of cases with one time variable

With z = 0 regular singular or regular.
The condition “one time variable t” implies that there are at most three
Galois orbits of eigenvalues. A regular singular case can restrict to a
regular case, e.g., z, tz, (−1− t)z and z = 0 regular exists and produces
trivial Stokes data. In the table representatives for the Galois orbits
of the eigenvalues are given; the rightmost column indicates in which
section this example is discussed and which classical Painlevé equation
Pj it relates to (the Flaschka-Newell equation which is equivalent to
P2, is denoted P2FN); see, e.g., [vdP-Sa].
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• One Galois orbit; z = 0 regular singular;
z3/2 + tz1/2; P2FN

z2/e + tz1/e for e ≥ 3. § 2
• One Galois orbit; z = 0 regular;

z5/2 + tz1/2; P1

z4/3 + tz2/3. §3
• Two Galois orbits; z = 0 regular singular;

z2 + tz, −(z2 + tz); P4

z + tz1/2, −2z. §4
z1/e1 , tz1/e2 for e1 ≥ e2 ≥ 2. §5

• Two Galois orbits; z = 0 regular;
z3 + tz, −(z3 + tz). §6, P2

• Three Galois orbits; z = 0 regular singular;
z,tz, (−1− t)z; §7
z1/e, tz, −tz with e > 1. §8

• Three Galois orbits; z = 0 regular;
z2, −z2 − tz, tz. §9

With both z = 0 and z = ∞ irregular singular.
• 1/z,−1/z at z = 0 and tz,−tz at z = ∞. §10, P3(D6)
• z−1/2 at z = 0 and tz,−tz at z = ∞. §11, P3(D7)
• z−1/n at z = 0 and tz1/n at z = ∞ with n ≥ 2. §12, P3(D8)
More general:
n1, n2 ≥ 2 and z−1/n1 at z = 0 and tz1/n2 at z = ∞
(with suitable multiplicities).

We discuss these cases in the indicated sections.

2. z2/n + tz1/n, n ≥ 3, Hierarchy of M. Noumi and Y. Yamada

We study the structure of the moduli spaces Mn,Rn and the Lax
pair computations, separately for n odd and n even.

2.1. The moduli spaces Mn and Rn for odd n.

Computations for Rn.
A module M ∈ Mn has the eigenvalues qj = σj(q0) = ω2jz2/n+ tωjz1/n

for j = 0, . . . , n− 1 at z = ∞, where ω := e2πi/n.
The tuple (V, {Vq}, γ, {Std}) that classifies M at z = ∞ has the form

V = Ce0⊕· · ·⊕Cen−1 where Cej = Vqj for j = 0, . . . , n−1. This basis
is chosen such that γ satisfies e0 7→ e1 7→ · · · 7→ en−1 7→ e0.



10 MARIUS VAN DER PUT AND JAAP TOP

The space of the Stokes matrices at z = ∞ is isomorphic to CN ,
where N = n(n− 1) · 2

n
= 2(n− 1). Since the basis e0, . . . , en−1 of V is

unique up to multiplication of all basis vectors by the same constant,
one finds Rn = C2(n−1) and dimMn = 1 + 2(n− 1).

The parameter space Pn is the space of the conjugacy classes of SLn.
This is identified with a space of characteristic polynomials and it has
dimension n − 1. The fibres of Rn → Pn have dimension n − 1. This
can be verified by an explicit computation, as in [CM-vdP].

It has been verified for n = 3 and n = 5 that the combination with
z = 0 regular is not possible.

The fibre for n = 3 is computed in [vdP-T] to be the affine surface
xyz + x2 + p1x + p2y + p3z = 0 for certain invariants p1, p2, p3. This
hints at a possible relation with P4. A computation of the Lax pair
equations produces indeed this relation.

For n = 5, we present details of the computation. Write ω = e2πi/5,
q0 = z2/5 + tz1/5, q1 = ω2z2/5 + ωtz1/5, . . . , q4 = ω3z2/5 + ω4tz1/5.
The singular directions in [0, 1) are 7/8 for q0 − q2, q3 − q4, 5/8 for
q1 − q4, q3 − q2, 3/8 for q1 − q2, q3 − q0 and 1/8 for q1 − q0, q4 − q2.
The fibres of R5 → P5 are rational 4-folds. After eliminating 3 of the
8 variables for R5, the affine fibre is given by a degree 5 polynomial
equation in 5 variables and with 4 parameters.

Construction of Mn and the Lax pairs.
We make the method explained in the Introduction and Summary,
explicit. A differential module M ∈ Mn over C(z) is replaced by
N := C(z1/n)⊗M . Let D denote the differential operator ∇z d

dz
on M .

Now D extends uniquely to a differential operator, also called D, on
N . This D commutes with the semi-linear automorphism σ : N → N ,
induced by the automorphism σ of C(z1/n), given by σz1/n = ωz1/n.
Thus the M ∈ M are replaced by pairs (N, σ), as above.

Let e0, . . . , en−1 be a basis of N over C(z1/n) such that the map σ
satisfies σ : e0 7→ e1 7→ · · · 7→ en−1 7→ e0. The operator D is determined
by D(e0). The formula D(e0) = (z2/n + tz1/n)e0 +

∑n−1
i=1 (ai + biz

1/n)ei
is supported by [vdP-Si, §12.3-12.5] (compare the Introduction and
Summary). For the operator E := d

dt
+ B such that {D,E} forms a

Lax pair, one makes the guess that E is the σ-invariant operator with
E(e0) = z1/ne0 +

∑n−1
j=1 cjej .
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One deduces from this the matrix of D with respect to the ba-
sis B0, . . . , Bn−1 of M := N<σ>, where Bj :=

∑n−1
k=0 σ

k(zj/ne0) for
0 ≤ j ≤ n− 1 and Bn := zB0, Bn+1 := zB1. The formula is

D(Bj) =
j

n
Bj +

n−1∑

i=1

aiω
−ijBj + tBj+1 +

n−1∑

i=1

biω
−i(j+1)Bj+1 +Bj+2.

The formula for E on this basis is E(Bj) = Bj+1 + (
∑n−1

k=1 ω
−kjck)Bj.

Put ǫj =
j
n
+
∑n−1

i=1 aiω
−ij; fj = t+

∑n−1
i=1 biω

−ij. The operator D is

z
d

dz
+




ǫ0 0 0 ∗ ∗ z zf0
f1 ǫ1 0 0 ∗ 0 z
1 f2 ǫ2 0 ∗ ∗ 0
0 1 f3 ǫ3 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 fn−2 ǫn−2 0
∗ ∗ ∗ 0 1 fn−1 ǫn−1




,

note that
∑

ǫj =
n−1
2

and
∑

fj = nt. The ǫ0, . . . , ǫn−1 are the param-
eters of the family. The {e2πiǫj} are the eigenvalues of the topological
monodromy at z = 0. These can be seen as parameters for Rn. For
an isomonodromic family the ǫj are constant and the f0, . . . , fn−1 are
analytic functions of the parameter t.
The operator E reads on the above basis

d

dt
+




g0 0 0 0 ∗ ∗ z
1 g1 0 0 ∗ ∗ 0
0 1 g2 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 gn−2 0
0 0 0 0 0 1 gn−1




with gj = (
∑n−1

k=1 ω
−kjck) and

∑
gj = 0. For an isomonodromic family,

the {gj} are functions of t and are in fact eliminated by the Lax pair
condition DE = ED.
For n = 5, the Painlevé type differential system for this Lax pair is

f ′
1 = f1(−f1 − 2f2 − 2f4 + t) + 2ǫ1 + ǫ2 + ǫ3 + ǫ4,
f ′
2 = f2(−2f1 + f2 − 2f4 − t)− ǫ1 + ǫ2,
f ′
3 = f3(−2f1 − f3 − 2f4 + t)− ǫ2 + ǫ3,
f ′
4 = f4(2f1 + 2f3 + f4 − t)− ǫ3 + ǫ4.
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For n = 7, one has
∑

fj = 7t,
∑

ǫj = 3 and

f ′
0 = f0(−f1 + f2 − f3 + f4 − f5 + f6) + ǫ0 − ǫ6 + 1,
f ′
1 = f1(f0 − f2 + f3 − f4 + f5 − f6)− ǫ0 + ǫ1,
f ′
2 = f2(−f0 + f1 − f3 + f4 − f5 + f6)− ǫ1 + ǫ2,
f ′
3 = f3(f0 − f1 + f2 − f4 + f5 − f6)− ǫ2 + ǫ3,
f ′
4 = f4(−f0 + f1 − f2 + f3 − f5 + f6)− ǫ3 + ǫ4,
f ′
5 = f5(f0 − f1 + f2 − f4 + f4 − f6)− ǫ4 + ǫ5,
f ′
6 = f6(−f0 + f1 − f2 + f3 − f4 + f5)− ǫ5 + ǫ6.

The general case for odd n is similar.

Observation. Apart from small changes the above is the symmetric Lax
pair introduced by M. Noumi, Y. Yamada et al.(see [N-Y, S-H-C]). The
changes are:
(a). ǫj is changed into ǫj − n−1

2n
in order to obtain a matrix with trace

zero. This corresponds to a small change in the definition of D, namely

D(e0) = (z2/n + tz1/n − n− 1

2n
) e0 +

n−1∑

i=1

(ai + biz
1/n) ei.

(b). A notational change of t into t
n
.

(c). Transposing the matrix. This is due to the relation between a
covariant solution space and a contravariant solution space.

An alternative method for n = 3, i.e., the Noumi-Yamada form for P4.

The Lax pair equations are equivalent to ED(e0) = DE(e0). The
normalized operator D given as

De0 = (z2/3 + tz1/3 +
2

3
)e0 + (a1 + b1z

1/3)e1 + (a2 + b2z
1/3)e2,

where a1, a2 are constants and b1, b2 are functions of t, commutes with
the operator E such that E(e0) = z1/3e0 + c1e1 + c2e2 (for suitable
functions c1, c2 of t) if and only b1, b2 satisfy the differential equations

b′1 = a1(1− ω) + b1t(2ω + 1) + b22(−2ω − 1),
b′2 = a2(ω + 2) + b21(2ω + 1) + b2t(−2ω − 1).

This is in fact a Hamiltonian system b′1 =
∂H
∂b2

, b′2 = −∂H
∂b1

with ω = e2πi/3

and H = −(
b31
3
+

b32
3
)(2ω+1)+ b1b2t(2ω+1)− b1a2(ω+2)− b2a1(ω−1).

After a linear change of variables this Hamiltonian coincides with
Okamoto’s standard Hamiltonian for P4 (see [O1, p. 265]).
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2.2. The moduli spaces Mn and Rn for even n.
We proceed as in §2.1. Write n = 2m and ω = e2πi/n. The eigenvalues
at z = ∞ are qj = ωj/mz1/m + ωj/2mtz1/2m for j = 0, . . . , 2m− 1.

Now N :=
∑

i 6=j deg(qi − qj) = 4m − 3, R2m
∼= CN and M2m has

dimension 1 + 4m − 3. The parameter space P2m for the monodromy
space consists of the characteristic polynomials of the monodromy at
z = 0. Since Λ2mM is trivial, this monodromy has determinant 1.
Thus dimP2m = 2m − 1. The fibres of R2m → P2m have dimension
2m − 2. We make the method of construction a differential operator,
a Lax pair and Painlevé type equations explicit for n = 4. The general
case is discussed after that.

2.2.1. The case n = 4. We expect, based on [vdP-Si, §12.3-12.5], that
the differential operator D has on the basis e0, e1, e2, e3 the formula

D(e0) = (z1/2+
t

4
z1/4−3/8) e0+(a1+b1z

1/4) e1+a2 e2+(a3+b3z
1/4) e3,

and D commutes with σ defined by σej = ej+1 for j = 0, 1, 2 and
σe3 = e0 and σz1/4 = iz1/4. Consider the following basis of invariants:

B0 = e0 + e1 + e2 + e3, B1= z1/4(e0 + ie1 + i2e2 + i3e3),
B2 = z1/2(e0 − e1 + e2 − e3), B3= z3/4(e0 − ie1 − e2 + ie3).

The matrix of D with respect to this basis is








− 3
8
+ a1 + a2 + a3 0 z z( t

4
+ b1 + b3)

t
4
− ib1 + ib3 − 1

8
− ia1 − a2 + ia3 0 z

1 t
4
− b1 − b3

1
8
− a1 + a2 − a3 0

0 1 t
4
+ ib1 − ib3

3
8
+ ia1 − a2 − ia3









and D is equal to the differential operator z d
dz

+









ǫ0 0 z zf0
f1 ǫ1 0 z
1 f2 ǫ2 0
0 1 f3 ǫ3









with
∑

ǫj = 0, f0 + f2 = f1 + f3 =
t
2
. The ǫ0, . . . , ǫ3 are parameters.

The operator D is completed to a Lax pair by the differential op-
erator E w.r.t. d

dt
. This operator, written on the basis e0, e1, e2 is

σ-invariant and has the form E(e0) = z1/4e0 +
∑3

j=1 hjej for suit-
able functions h1, h2, h3 of t. On the basis B0, B1, B2 one obtains

E := d
dt

+









g0 0 0 z
1 g1 0 0
0 1 g2 0
0 0 1 g3









with
∑

gj = 0. The assumption that E

commutes with D produces equations for the derivatives of f0, f1, f2, f3,
seen as functions of t. These formulas are similar to those derived by
Noumi–Yamada. Moreover, combining the differential equations for f0
and f1 leads to the standard P5 equation, see [N-Y, S-H-C] for details.
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An alternative computation is a consequence of the observation that
isomonodromy is given by DE(e0) = ED(e0) and with a1, a2, a3 ∈ C.
This produces equations with parameters a1, a2, a3:

4t · db1
dt

= −16ib21b3 + t2b1i+ 16ib33 − 4ia1t+ 4a1t− 32a2b3

4t · db3
dt

= −16ib31 + 16ib1b
2
3 − t2b3i+ 4ia3t− 32a2b1 + 4a3t,

h1 = −ib1/2 + b1/2, t · h2 = 2b21i− 2b23i+ 4a2, h3 = b3i/2 + b3/2.

One observes that the equations for b1, b3 form a Hamiltonian system
with

t
db1
dt

=
∂H

∂b3
, t

db3
dt

= −∂H

∂b1
,

H =
i(b21 − b23)

2

t
+

itb1b3
4

+
4a2(b

2
1 − b23)

t
− (1 + i)a3b1 + (1− i)a1b3.

Comments. The above Hamiltonian H and the differential equations
for b1, b3 coincide, after a linear change of variables, with Okamoto’s
standard polynomial Hamiltonian for P5, see [O1, p. 265].

The fibers of R4 → P4. The eigenvalues at z = ∞ are:
q0 = z1/2+tz1/4, q1 = −z1/2+itz1/4, q2 = z1/2−tz1/4, q3 = −z1/2−itz1/4.
The differences q0−q1, q0−q3, q2−q1, q2−q3 have the form 2z1/2+ . . .
and further q0−q2 = 2tz1/4 and q1−q3 = 2itz1/4. There is one singular
directions in [0, 1) for the terms ±2z1/2. For the terms ±2tz1/4,±2iz1/4

there is only one singular direction in [0, 1). This leads to the mon-
odromy identity

mon∞ =




−1
1

1
1







1
1 y

1
1







1
x1 1 x2

1
x3 x4 1


.

One observes that mon∞ cannot be the identity. Thus for the data
considered here, z = ∞ singular with eigenvalues z1/2 + tz1/4 and its
conjugates and z = 0 regular cannot be combined.

The space P4 is parametrized by p1, p2, p3, where the characteristic
polynomial of mon∞ is written as T 4+p3T

3+p2T
2+p1T+1. For a suit-

able choice of elimination of two variables (e.g., x1, x2), the fibres are
described by a cubic equation in three variables y, x3, x4 and parameters
p1, p2, p3. The equation reads v1v2v3+∗v21+∗v22+∗v1+∗v2+∗v3+∗ = 0
for suitable affine expressions ∗’s in the parameters p1, p2, p3. The cubic
equation for the monodromy of P5 has the same features.
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2.2.2. The general case with n = 2m.
Consider the C(t)[z1/2m]-lattice with basis e0, . . . , e2m−1, provided with
the action of σ given by the formulas: σzλ = e2πiλzλ and σej = ej+1

for j = 0, . . . , 2m− 2 and σe2m−1 = e0. The operator D (with respect
to the derivation z d

dz
) representing M2m, is σ-invariant and is given by

D(e0) = (z1/m +
t

2m
z1/2m − 2m− 1

4m
)e0 +

2m−1∑

j=1

(aj + bjz
1/2m)ej ,

with varying aj, bj ∈ C and where bm = 0.
On the basis B0, . . . B2m−1 of invariants, D has the form z d

dz
+A0+zA1.

We make this explicit for n = 6, m = 3. The general n = 2m case is
similar.

D = z
d

dz
+




ǫ0 0 0 0 z z( t
6
+ f0)

t
6
+ f1 ǫ1 0 0 0 z
1 t

6
+ f2 ǫ2 0 0 0

0 1 t
6
+ f3 ǫ3 0 0

0 0 1 t
6
+ f4 ǫ4 0

0 0 0 1 t
6
+ f5 ǫ5




.

The ǫj are linear combinations of a1, . . . , a5 satisfying
∑

ǫj = 0, and the
f0, . . . , f5 are linear combinations of b1, b2, b4, b5 such that the relations
f0 + f2 + f4 = f1 + f3 + f5 = 0 hold.

One observes that the data of the eigenvalues of A0 are equiva-
lent to a1, . . . , a2m−1. Thus for an isomonodromic family the aj are
constant and the b1, . . . , b2m−1 (with the condition bm = 0) are func-
tions of t. The differential equations for the bj are derived from a
Lax pair z d

dz
+ A0 + zA1,

d
dt
+ B with an, a priori, unknown matrix

B depending on t and z. The action of the operator d
dt

+ B on the

C(t)[z1/2m]-lattice with basis e0, . . . , e2m−1 is called E. It is σ-invariant
and we make the “correct” guess

E(e0) = z1/2me0 +
2m−1∑

j=1

hjej, for certain functions h1, . . . , h2m−1 of t.

We make this explicit for n = 6, m = 3 (again, the general case n = 2m
is similar).

E =
d

dt
+




g0 0 0 0 0 z
1 g1 0 0 0 0
0 1 g2 0 0 0
0 0 1 g3 0 0
0 0 0 1 g4 0
0 0 0 0 1 g5




and
∑

gj = 0.
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The Painlevé type equations are similar to those in §2.2.1.

An alternative computation. From the equation DE(e0) = ED(e0)
and all aj are constants, the differential equations for b1, . . . , b2m−1

follow. For the case n = 6, m = 3 one obtains the following Painlevé
type equations for b1, b2, b4, b5 (b3 = 0, w = e2πi/6):

−18tdb1dt = 288b1b2b4w − 2b1t
2w − 24b2b5tw − 288b24b5w + 18a1tw

−144b1b2b4 + b1t
2 + 12b2b5t+ 144b24b5 − 18a1t+ 216a3b4,

−6tdb2dt = −4b21tw + 96b1b2b5w − 2b2t
2w + 12b24tw − 96b4b

2
5w + 6a2tw

+2b21t− 48b1b2b5 + b2t
2 − 6b24t+ 48b4b

2
5 − 12a2t+ 72a3b5,

−6tdb4dt = 96b21b2w − 96b1b4b5w − 12b22tw + 2b4t
2w + 4b25tw − 6a4tw

−48b21b2 + 48b1b4b5 + 6b22t− b4t
2 − 2b25t+ 72a3b1 − 6a4t,

−18tdb5dt = 88b1b
2
2w + 24b1b4tw − 288b2b4b5w + 2b5t

2w − 18a5tw
−144b1b

2
2 − 12b1b4t+ 144b2b4b5 − b5t

2 + 216a3b2.

There is a Hamiltonian function H such that
db5
dt

= −∂H

∂b1
,
db1
dt

=
∂H

∂b5
,
db4
dt

= −∂H

∂b2
,
db2
dt

=
∂H

∂b4
with H defined by 3tH =

(w − 1/2)(b2b4 + b1b5/3)t
2 + ((−2w + 1)b32 + ((2b25 − 3a4)w − b25 − 3a4)b2

+(1− 2w)b34 + ((2b21−3a2)w − b21 + 6a2)b4 − (3a1b5 + 3a5b1)w + 3a1b5)t
+12(−b1b2 + b4b5)((−b1(2w − 1)b2 + b5(2w − 1)b4 − 3a3),

where w = e2πi/6.

3. z4/3 + tz2/3 and regular z = 0.

The q0 = z4/3 + tz2/3, q1 = ωz4/3 + ω2tz2/3, q2 = ω2z4/3 + ωtz2/3

with ω = e2πi/3 are the eigenvalues. First we assume that z = 0
is a regular singular point. Then the monodromy space R is iso-
morphic to C8. The monodromy mon at z = ∞ (or equivalently
at z = 0) is a product of the formal monodromy and 8 Stokes ma-
trices. The singular directions in [0, 1) are 15

16
, 13
16
, 11
16
, 9
16
, 7
16
, 5
16
, 3
16
, 1
16

for q1 − q2, q1 − q0, q2 − q0, q2 − q1, q0 − q1, q0 − q2, q1 − q2, q1 − q0.
Each Stokes matrix has one nontrivial entry and these are in the
same order x12, x10, x20, x21, x01, x02, y12, y10. A computation shows that
R → Sl3(C) is birational. Moreover, the preimage of 1 ∈ Sl3(C) is one
point, namely

x01 = −1, x02 = 1, x10 = 1, x12 =−1, x20 =−1, x21 = 1, y10 = 1, y12 =−1.

The rather curious conclusion is that the monodromy space, for the

case that z = 0 is regular, consists of one point.

The formal matrix differential operator is z d
dz +




−1
3 tz z2

z 0 tz
t z 1

3


. The



ISOMONODROMY AND PAINLEVÉ TYPE EQUATIONS, CASE STUDIES 17

guess that M is represented by the family of operators of the form

d
dz +




0 3t
2 z

1 0 3t
2

0 1 0


 is verified by a Lax pair computation.

One concludes that the Stokes matrices, which are nontrivial, in this

family do not depend on t.

4. z + t1/2z1/2, z − t1/2z1/2,−2z and regular singular z = 0.

The above formulas are the eigenvalues q0, q1, q2 at z = ∞. For
t ∈ R, t > 0, the singular directions in [0, 1) are 1/2 for q0 − q2, q1 − q2
and 0 for q1 − q0, q2 − q0, q2 − q1. The monodromy identity is

mon =




0 −1 0
1 0 0
0 0 1


 ·




1 0 0
0 1 0
x02 x12 1


 ·




1 x10 x20
0 1 x21
0 0 1


.

This presentation is unique up to scaling the third basis vector. One
has dimR = 4, dimP = 2 and the fibers are affine cubic surfaces with
an equation of the form x1x2x3 + x2

1 + ∗x1 + ∗x2 + ∗x3 + ∗ = 0. This
suggest that the corresponding Painlevé type equation is equivalent to
P4. The data do not match with z = 0 regular, since mon = 1 has no
solution.

In order to simplify the computation, the eigenvalues at z = ∞ are
replaced by z1/2,−z1/2, tz. This is similar to the case z± t1/2z1/2,−2z.
The method of [vdP-Si, §12.5] (especially, the proof of Corollary 12.15
and Lemma 12.16) produces an explicit formula for the universal family
with these data. It depends on 5 variables. By scaling of the basis
vectors, one of the variables is normalized and the resulting operator
has the form z d

dz
+ A with

A =




−2a1 z a4t− a3
1 2a1 + a3t a3t

−(a1 + 2a8)t− 1 tz tz − a3t


 .

The Lax pair formalism produces a set of differential equations dai
dt

= Ri

for i = 1, 3, 4, 8 where the Ri are rational functions in a1, a3, a4, a8, t.
The eigenvalues of the residue matrix of A at z = 0 are indepen-
dent of t. One of the eigenvalues is 2a1 + a3t. Adding the equation
d(2a1+a3t)

dt
= 0 to the above system of equations eliminates a4 and pro-

duces: a1 = c1, a3 = c2/t with constants c1, c2 and a Riccati equation
for a8. In particular, the Painlevé type equation for this family is solv-

able by classical functions.

We have no explanation of this computational result. In contrast,
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a computation of the monodromy space for the case ±z1/2, tz pro-
duces again a 2-dimensional family of affine cubic surfaces of the type
x1x2x3+x2

1+∗x1+∗x2+∗x3+∗ = 0. This corresponds to the P4 case.

5. z1/e1 , tz1/e2 , e1 ≥ e2 ≥ 2 and regular singular z = 0.

For e1 > e2 ≥ 2, one has dimR = 3e1+e2−3 and dimP = e1+e2−1.
For the smallest case e1 = 3, e2 = 2 one has dimR = 8, dimP = 4,
R → P is (generically)surjective and the fibres have dimension 4. The
formulas for the fibres are complicated. This makes the computation
of M and the Lax pair nearly impossible.

For e1 = e2 = m ≥ 2, n = 2m, one has dimR = n(n−1)
m

−1 = 2n−3,
dimP = n−1. For the smallest case m = 2 one has dimR−dimP = 2.
The computation in § 5.1 below produces a second order Painlevé equa-
tion which is probably a pull back of the classical P4 equation.

5.1. The case z1/2, tz1/2. The monodromy space R.
The eigenvectors are q1 = z1/2, q2 = −z1/2, q3 = tz1/2, q4 = −tz1/2

with a basis f1, f2, f3, f4 of eigenvectors is such that γ permutes the
two pairs {f1, f2} and {f3, f4}. There are 6 variables present in the
Stokes matrices. Now f1 and f3 can be scaled independently and so
dimR = 6 − 1 = 5. Further P ∼= C3 is the space of the characteristic
polynomials T 4 − p3T

3 + p2T
2 − p1T + 1 of the elements of SL4.

For the case t = i, the singular directions in [0, 1) are 0 for q2 − q1,
1
4

for q2 − q4 and for q3 − q1,
1
2

for q3 − q4,
3
4

for q1 − q4 and for q3 − q2.
The topological monodromy mon, which has the above characteristic

polynomial, is equal to the product



1
1

1
1


 ·




1 x14
1 x23

1
1


 ·




1
1

1
x43 1


 ·




1 x13
1

1
x42 1


 ·




1 x12
1

1
1


 .

The fibres of R → P have the following data. Assume that x42 6= 0
(note that x42 = 0 implies reducibility). After eliminating x12, x23 there
remains one cubic equation in the variables x14, x42, x43, x13, namely

x14x42x43 − p3x43 + x13x42 + x2
43 + p2 + 2 = 0.

After normalizing x13 to 1 (note that x13 = 0 produces a similar cubic
equation), the cubic equation is almost identical to the one for P4
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([vdP-Sa]) which is x1x2x3+x2
1−(s22+s1s3)x1−s22x2−s22x3+s22+s1s

3
2 = 0.

Therefore one expects a relation with the classical P4.

Observation. The monodromy identity depends strongly on t. For
instance, if t ∈ R>0, t 6= 1 then there is only one singular direction in
[0, 1). The fibres of R → P are again rational surfaces. The dependence
of these surfaces on t is somewhat mysterious.

The space of connections M.
A differential module M over C(z) in this moduli space can be consid-
ered as a differential module N over C(z1/2) with an automorphism σ
satisfying σ ◦ z1/2 = −z1/2 ◦σ and σ2 = 1. Now N can be given a basis
e1, e2, e3, e4 such that σ permutes the two pairs {e1, e2} and {e3, e4}.
The corresponding module M over C(z) has the basis

B1 = e1 + e2, B2 := z1/2(e1 − e2), B3 = e3 + e4, B4 = z1/2(e3 − e4).

Let D denote the operator of the form z d
dz

+ (a matrix) acting upon
N . This operator commutes with σ and is determined by De1, De3.
The formal part D̂ of D is given by D̂e1 = z1/2e1, D̂e3 = tz1/2e3. Using
[vdP-Si, §12] one concludes that D is given by the formulas

De1 = z1/2e1 + a1e2 + a2e3 + a3e4, De3 = tz1/2e3 + a4e1 + a5e2 + a6e4

with constants a1, . . . , a6. For the generic case one can normalize to
a5 = 1. A computation of D on the basis B1, . . . , B4 produces the
operator (normalized to trace equal to zero) z d

dz
+ A with

A =




a1 − 1/4 z a4 + a5 0
1 −a1 + 1/4 0 a4 − a5

a2 + a3 0 a6 − 1/4 tz
0 a2 − a3 t −a6 + 1/4


 .

As mentioned above one may normalize to a5 = 1. Further the
coefficients of the characteristic polynomial of residue matrix at z = 0
are the parameters. We conclude that for fixed parameters, the above
family of operators has dimension 2 (not counting the variable t). This
is in agreement with the computation of the fibers of R → P.

The operator z d
dz

+ A is extended to a Lax pair by an operator of

the form d
dt

+ B with B = B0 + B1z for matrices B0, B1 depending

on t only. The property d
dt
(A) = z d

dz
(B) + [A,B] yields a vector field,

represented by differential equations d
dt
aj = Rj , j = 1, 2, 3, 4, 6 with Rj

rational expressions in a1, . . . a4, a6, t. The characteristic polynomial of
the residue matrix at z = 0 is written as T 4 + P2T

2 + P1T + P0. We
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have used the formulas for P1, P2 and another invariant P0 = a1+a6 to
eliminate (stepwise) the functions a3, a6, a2. For the remaining a1, a4
one obtains the equations

da1
dt

=
(2P1a24+(−4P 2

0 +(8a1+2)P0−8a21−4P2)a4+2P1)

(a24−1)(t2−1))
,

da4
dt

=
((−2a24+2)a1t2+2(a24+1)(P0−2a1)t+2(a4−1)(a4+1)(−a1+P0))

(t3−t)
.

The second equation can be used to write a1 as an expression in a4 and
da4
dt

. Substitution in the first equation yields an explicit (and rather
long) second order differential equation for a4. The poles w.r.t. t are
0, 1,−1,∞. We did not find a relation to a classical Painlevé equation.
A possible approach could be to search for a Hamiltonian and apply
the ideas used in [D-F-L-S].

6. (z3 + tz)m1 , (
−m1

m2
(z3 + tz))m2 and regular z = 0.

The case m1 = m2 = 1. Then q1 = z3 + tz, q2 = −(z3 + tz); the
singular directions for q1−q2 are 1,3,5

6
; the singular directions for q2−q1

are 0,2,4
6

. The monodromy identity reads

mon =
(
g 0
0 1/g

)(
1 x5

0 1

)(
1 0
x4 1

)(
1 x3

0 1

)(
1 0
x2 1

)(
1 x1

0 1

)(
1 0
x0 1

)
.

The equation mon =
(
1 0
0 1

)
and division by Gm (made explicit by nor-

malizing x5 = 1) produce an explicit R of dimension 3. Furthermore
dimP = 1 (parameter g). This is in fact the standard family for P2.

Case m1 = 2, m2 = 1, z3 + tz, z3 + tz,−2z3 − 2tz and z = 0 is regular.

Description of R. The Stokes matrices are described by 12 variables,
there are 2 variables describing the formal monodromy. The topological
monodromy is supposed to be the identity. This produces 8 equations.

Actual computation, using the monodromy identity produces a space
of dimension 6. Dividing by the action of G2

m, due to scaling the basis
vectors, produces dimR = 4. Moreover dimP = 2 and the fibers of
R → P have dimension 2. One expects a relation with a classical
Painlevé equation with at most two singularities.

We follow the discussion of the cases (i) and (ii) on pages 6-7 for the
construction of the matrix differential operator z d

dz
+ A. The formal

operator ST := z d
dz
+diag(z3+tz+a1, z

3+tz+a2,−2z3−2tz−a1−a2)
is conjugated with the matrix 1+M , where M =



0 0 b1/z + b2/z
2 + b3/z

3

0 0 b4/z + b5/z
2 + b6/z

3

b7/z + b8/z
2 + b9/z

3 b10/z + b11/z
2 + b12/z

3 0


 .
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This produces an operator z d
dz
+Ã = Prin(z d

dz
+(1+M)ST (1+M)−1).

Then A is obtained from Ã by adding the eight equations given by

Ã(0) = 0. After scaling the basis vectors one has b2 = 1, b11 = 1 and the
matrix A depends only on the variables b1, b5, b7, b8. The substitution
b5 = B5b8 removes some denominators. The characteristic polynomial
of the formal monodromy at z = ∞ is written as T 3 + pT + q. The
Lax pair equation together with the equations dp

dt
= 0, dq

dt
= 0 produce

a differential system

dB5

dt
= 0,

db1
dt

= −6B5b
3
1b7 − 6b31b7 − 3b21t− 3,

db7
dt

= (27b27(B5 + 1)2b21 + 18tb7(B5 + 1)b1 + 3t2 − p)/(3B5 + 3).

This is a Hamiltonian system db1
dt

= ∂H
∂b7

, db7
dt

= −∂H
∂b1

, depending on

parameters B5, p, with H = −3(B5 + 1)b27b
3
1 − 3tb7b

2
1 +

−3t2+p
3B5+3

b1 − 3b7.
There is no evident relation between this Hamiltonian and Okamoto’s
list of polynomial Hamiltonians in [O1]. Possibly the method described
in [D-F-L-S] can be applied here.

7. z, tz, (−1 − t)z and M. Mazzocco

7.1. Computation of Stokes data and monodromy space R.
The formal solution space V at z = ∞ has a basis e0, e1, e2 such that
the formal differential operator has the form

z
d

dz
+




z + a0
tz + a1

(−1− t)z − a0 − a1


 .

The formal monodromy and the Stokes matrices are given with respect
to this natural basis. The basis is unique up to multiplying each ej
by a scalar. Since z = 0 is regular singular, one has dimR = 6. The
formal monodromy at z = ∞ is the diagonal matrix diag(g1, g2, g3)
with g1g2g3 = 1 and g1 = e2πia0 , g2 = e2πia1 .

The singular directions depend on t. For t close to i, the singular
direction dkl ∈ [0, 1) for qk − ql are approximated by

0.93, 0.83, 0.62, 0.43, 0.33, 0.12 for d20, d21, d01, d02, d12, d10.

This determines the order of the six Stokes matrices in the monodromy
identity, which states that the topological monodromy mon at z = 0



22 MARIUS VAN DER PUT AND JAAP TOP

is, up to conjugation, equal to the product




g1
g2

1
g1g2


 ·




1
1

x20 1


 ·




1
1
x21 1


 ·




1 x01
1

1


·




1 x02
1

1


 ·




1
1 x12

1


 ·




1
x10 1

1


.

If z = 0 is regular (i.e., mon = 1), then the Stokes matrices and the
formal monodromy are equal to the identity. This case is uninteresting.

Suppose now that z = 0 is regular singular. Then dimP = 4 and
the basic parameters are g1, g2 and the coefficients of the characteristic
polynomial of mon. The fibers of R → P are affine cubic surfaces with
equation xyz + x2 + y2 + z2 + p1x+ p2y + p3z + p4 = 0 with p1, . . . , p4
expressions in the parameters. This is an indication that the Painlevé
type equation is related to P6. We will compute M and the Lax pair.
Due to the complexity, we did not find an explicit relation with P6.

M. Mazzocco ([Maz]) studied the equivalent situation in which the
eigenvalues at z = ∞ are 0, z, tz. The matrix differential equation has

the form z d
dz
+




0 0 0
0 tz 0
0 0 z



+W, where the “constant” matrix W has

a rather special form involving 4 parameters. This form is chosen in
order to produce a relation with P6 and its parameters by means of
explicit formulas connecting the solutions of the two equations. The
proof of this equivalence uses Fourier-Laplace transforms and Stokes
matrices.

7.2. Constructing the connection and the Lax pair.
A Zariski open subset of the moduli space of connections M is obtained
by considering the family of differential operators of the form

z
d

dz
+




a0 m1 m2

m3 a1 m4

m5 m6 −a0 − a1


 + z




1 0 0
0 t 0
0 0 −1 − t




(compare [vdP-Si, Theorem 12.4]). Each of the basis vectors for this
presentation can be multiplied by nonzero elements and the family
has to be divided by this action of G2

m. A Zariski open part of the
quotient space is obtained by assuming m3m4 6= 0 and normalizing
m3 = m4 = 1. In this way one obtains the following explicit description
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of an open part of M in terms of

z
d

dz
+




z + a0 v1 v2
1 tz + a1 1
v3 v4 (−1− t)z − a0 − a1


 .

This operator (with v1, . . . , v4 as functions of t) is completed to a Lax
pair with the operator d

dt
+B0(t)+zB1(t). The assumption that the two

operators commute leads to a set of differential equations for v1, . . . , v4,
namely

v′1 =
−3v3v1 + 3v2v4
2t2 + 5t+ 2

, v′2 =
(6t+ 3)v22 − 3v3(t− 1)v2 − 3v1(t+ 2) + (−9a0t+ 9a1)v2

2t3 + 3t2 − 3t− 2
,

v′3 =
(3t− 3)v23 + (−6t− 3)v2v3 + (9a0t− 9a1)v3 + 3v4(t+ 2)

2t3 + 3t2 − 3t− 2
, v′4 =

3v3v1 − 3v2v4
t2 + t− 2

.

In a monodromic family the topological monodromy is constant and
then also the characteristic polynomial of the residue matrix is con-
stant. This means that there are constants δ0, δ1, explicitly

−a20 − a0a1 − a21 − v2v3 − v1 − v4 = δ1,

a20a1 + a0a
2
1 + a1v2v3 − a0v1 + a0v4 − a1v1 − v1v3 − v2v4 = δ0.

The algebra of functions on the parameter space for the connection is
generated by a0, a1, δ0, δ1. They correspond to the 4 parameters for
the moduli space R of the analytic data. Using these equations one
eliminates v1 and v4 and one is left with the two differential equations

(2a0 + a1 − v2 + v3)(2t
3 + 3t2 − 3t− 2)v′2 =

= (−6t− 3)v32 + ((21a0 + 6a1 + 6v3)t+ 6a0 − 6a1 − 6v3)v
2
2

+{(−21a20 + (−12 a1 − 12 v3)a0 − 3 a21 − 6a1v3 − 3v23 − 3δ1)t− 6a20
+(12a1+12v3)a0 + 3a21 + 6a1v3 + 3v23 − 6δ1}v2 + 3(a30 + a0δ1 + δ0)(t+ 2),

(2a0 + a1 − v2 + v3)(2t
3 + 3t2 − 3t− 2)v′3 =

(3t− 3)v33 + ((15a0 + 3a1 − 12v2)t− 6a0 − 12a1 − 6v2)v
2
3

+{(15a20 + (6a1 − 24v2)a0 − 3a21 − 12a1v2 + 6v22 − 3δ1)t− 6a20
−(24a1 + 12v2)a0 − 15a21 − 6a1v2 + 3v22 − 6δ1}v3

−3(t+ 2)(a30 + 3a20a1 + (3a21 + δ1)a0 + a31 + a1δ1 − δ0).

This Painlevé vector field of dimension 2 can be transformed, as
follows, into a second order differential equation. The equation for v′3 is
used to eliminate v2. This introduces a quadratic extension of C(t, v3).
Substitution of this formula for v2 and its derivative in the equation
involving v′2 produces an implicit order two equation P (v′′3 , v

′
3, v3, t) = 0,

of degree 2 in v′′3 . Interchanging the roles of v2 and v3 produces a similar
result. The formulas are too complicated to present here.

Remarks. There are explicit formulas for reducible loci and the cor-
responding Riccati equations. These turn out to be hypergeometric
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differential equations, which is again an indication of a relation with P6.

Example: v3 = v4 = 0 and v′1 = 0, v′2 =
3(2t+1)v22−3(t+2)v1+9(−a0t+a1)v2

(t−1)(2t+1)(t+2)
.

7.3. The hierarchy (z)m1 , (tz)m2(
−m1−tm2

m3
z)m3 .

The m1, m2, m3 ≥ 1 stand for multiplicities. A computation shows
that “z = 0 is regular” leads to trivial Stokes matrices and formal mon-
odromy. Consider the case m1 = 2, m2 = m3 = 1. Then dimR = 10
and dimP = 6. According to [vdP-Si, Exercise 12.5, p. 300], the uni-
versal family is

z
d

dz
+




z + a1 0 x1 x2

0 z + a2 x3 x4

x5 x6 tz + a3 x7

x8 x9 x10 (−2− t)z − a1 − a2 − a3


.

Consider a normalization, say, x8 = x9 = x10 = 1, obtained by restrict-
ing to the open subspace defined by x8x9x10 6= 0 and multiplying the
base vectors by scalars. The Lax pair consists of the above operator and
d
dt
+B0 + zB1. An easy computation produces a system of differential

equations (or vector field)
dxj

dt
∈ C(a1, . . . , a4, x1, . . . , x7), j = 1, . . . , 7.

Using three coefficients of the characteristic polynomial of the residue
matrix at z = 0, one can eliminate x2, x4, x7 in a rational way. The
resulting vector field of rank 4 is a Painlevé type system. It is unfortu-
nately too complicated. The system contains, of course, many closed
subsystems corresponding to z, tz, (−1 − t)z, that produce equations
related to P6.

8. z1/e, tz,−tz, e > 1 and regular singular z = 0.

Write q1, . . . , qe for the conjugates of z1/e; write r and s for tz and
−tz. The value of the integer N (i.e., the dimension of the Stokes
data) is equal to e(e − 1)1

e
(for the qk − ql) plus e + e + e + e (for

qk−r, r−qk, qk−s, s−qk) plus 2 (for r−s, s−r) and sums up to 5e+1.
The formal monodromy γ depends on 1 parameter. Normalization
by the action of G2

m results in dimR = 5e. The parameters are the
e + 1 coefficients of the characteristic polynomial of the monodromy
at z = 0 and the eigenvalues of γ. This leads to dimP = e + 2 and
dimR− dimP = 4e− 2.

The case e = 2. For t = 1 the singular directions in [0, 1) are d = 1/2
for r−q1, r−q2, q1−s, q2−s, r−s and q2−q1, q1−r, q2−r, s−q1, s−q2, s−r
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for d = 0. This leads to a matrix formula for the topological mon-
odromy

mon0 =




−1
1

g
1/g


 ·




1 x1
1 x2

1
x3 x4 x5 1


 ·




1 x6 x7
1 x8

x9 x10 1 x11
1


.

One may normalize to x10 = x11 = 1. The parameters are g and
three coefficients of the characteristic polynomial of mon0. A Maple
computation verifies that the fibres of R → P are birational to A6.

For the differential operator z d
dz

+A we propose the following guess
(based on [vdP-Si, §12])

A =




a z ∗ ∗
1 −a ∗ ∗
∗ ∗ tz + b ∗
∗ ∗ ∗ −tz − b


,

where a, b and ∗ are variables. Since two of the constants can be nor-
malized to 0, this is a family of dimension 10 (over the field C(t)). The
invariants are three coefficients of the characteristic polynomial of the
residue matrix at z = 0 and b at z = ∞.

The Lax pair {z d
dz

+ A, d
dt
+B} has the form B = B0 + B1z, where

B0, B1 are traceless matrices depending on t only. The Lax pair calcu-
lations for the case e = 2 produces a rational Painlevé vector field of
dimension 6 which is too large to be presented here.

9. z2,−z2 − tz, tz and z = 0 regular.

The assumptions: z = 0 is regular and z = ∞ is unramified and has
Katz invariant 2 produces the eigenvalues (z2)m1 , (a2z

2+a1z)m2 , (b1z)m3

such that the m1, m2, m3 satisfy m1z
2 +m2(a2z

2 + a1z) +m3b1z = 0.
Then dimR = (n− 1)2, where n = m1 +m2 +m3 ≥ 3.

We present computations for the case m1 = m2 = m3 = 1. Then
dimR = 4 and dimP = 2. The fibers of R → P are affine cubic
surfaces, which have, after an affine linear change of the variables, the
equation xyz + x+ y + 1 = 0. We recall from [vdP-Sa], that in the P1

case, the parameter space P is one point and that R is the affine cubic
surface with the equation xyz + x+ y + 1 = 0. This suggests a strong
relation between P1 and the case under consideration.
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We propose a normalized differential operator

d

dz
+




z a1 1
1 −z − t a2
a3 a4 t


.

The reasoning for this proposal is the following. Observe that

z
d

dz
+




z2 + c1 0 0

0 −z2 − tz + c2 0
0 0 tz − c1 − c2





has at z = ∞ the universal deformation

z
d

dz
+




z2 + c1 ∗ ∗

∗ −z2 − tz + c2 ∗
∗ ∗ tz − c1 − c2



.

Here the ∗’s are arbitrary polynomials in z of degree ≤ 1. The as-
sumption that z = 0 is regular implies that c1 = c2 = 0 and the ∗ are
elements of Cz. Finally, in the general case one can, by a change of the
basis, arrive at two entries being z. Dividing by z produces the above
proposal.

For the Lax pair situation a1, a2, a3, a4 are functions of t and the
above operator is supposed to commute with d

dt
+B(z, t), where B(z, t)

has degree 1 in the variable z. The resulting differential equations are

a′1 = −3a1a2a3 + 3a4, a′2 = −3
2
a1a

2
2 + 3a22a3 − 9

2
a2t− 3/2,

a′3 =
3
2
a3a1a2 − 3

2
a4, a′4 =

3
2
a4a1a2 − 3a4a2a3 +

3
2
a1a3 +

9
2
a4t.

The two parameters describing the parameter space P are p1 = a1+2a3
and p2 := a1 + a3 + a2a4 (thus p′1 = 0, p′2 = 0). Elimination of a1, a3
leads to the system of differential equations

a′2 = −3
2
+ 6a32a4 +

9p1−12p2
2

a22 − 9a2t
2
,

a′4 =
3(−p1+2p2)(−p2+p1)

2
+ 9t

2
a4 + (−9p1 + 12p2)a2a4 − 9a22a

2
4.

The first equation can be used to write a4 as rational expression in
a2, a

′
2. Substitution in the second equation yields an explicit second

order equation. The Hamiltonian H is equal to

−3a24a
3
2 −

9p1 − 12p2
2

a4a
2
2 −

3p21 − 9p1p2 + 6p22
2

a2 +
3

2
a4 +

9a2a4
2

t.

where a′4 =
∂H
∂a2

, a′2 = − ∂H
∂a4

and p1, p2 are parameters (constants).
We did not find a relation with some P∗.
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10. 1/z,−1/z at z = 0 and tz,−tz at z = ∞.

The data above is the m = 1 case of the hierarchy Mm defined for
m ≥ 1 by the eigenvalues (z−1)m,−mz−1 at z = 0 and (tz)m,−mtz at
z = ∞. One shows that dimRm = 4m and dimP = 2m. The case
m = 1 is the family for P3(D6).

For m = 2 a computation reveals that R → P is surjective with fibres
of dimension 4. A computation of M, indicated in the “Introduction
and Summary”, and a choice of normalizations give rise to an operator
z d
dz

+ A representing an open affine subset of M, with A =

z−1 ·




1 0 0
0 1 0
0 0 −2


+




c1 0 −3m1

0 c2 −3
3 3m3 −c1 − c2


+tz ·P ·




1 0 0
0 1 0
0 0 −2


P−1,

where P =




1 0 x1

0 1 x2

x3 x4 1


. A straightforward Lax pair compu-

tation produces formulas for dxi

dt
, i = 1, ..., 4, as rational functions in

x1, x2, x3, x4, t. These are however too large to be displayed here.
The computation does show that indeed in an isomonodromic family
c1, c2, m3, m1 are constant.

11. z−1/2 at z = 0 and tz,−tz at z = ∞.

The above defines the usual family for P3(D7). By attaching multi-
plicities, e.g., (z−1/2)m, (tz)m, (−tz)m and m ≥ 1, one obtains a hierar-
chy. For the case m = 2, the space R is given by the equation

L ◦mon0 = mon∞ ◦ L with L : V (0) → V (∞) a linear bijection

where mon0 : V (0) → V (0), mon∞ : V (∞) → V (∞) are the topologi-
cal monodromies. The link L is considered up to multiplication by C∗

and the matrices of mon0 and mon∞ have the form

mon0 =




∗
∗

1
1


 ·




1 ∗ ∗
1 ∗ ∗

1
1


 ,

mon∞ =




∗
∗

∗
∗


 ·




1 ∗ ∗
1 ∗ ∗

1
1


 ·




1
1

∗ ∗ 1
∗ ∗ 1


.

After normalization one obtains dimR = 12 and dimP = 4. Therefore
the relative dimension of M over C(t) is also 12. The construction of
M and the Lax pair computations seem to be out of reach.
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12. z−1/n and tz1/n, a hierarchy related to P3(D8).

The assumption that z = 0 and z = ∞ are both irregular singular
and totally ramified leads, after normalization, to the Galois orbit of
z−1/n at z = 0 and the Galois orbit tz1/n at z = ∞. In the sequel we
replace t by t1/n. The moduli spaces will be denoted by Mn and Rn.
The standard isomonodromic family for P3(D8) is derived from M2.
First we study the structure of Rn.

12.1. The structure of the monodromy space Rn.
We refer to [vdP-Si, § 8,9] for notation and results. For a connec-
tion M ∈ Mn, the solution space V (∞) at z = ∞ has the structure:
V (∞) = ⊕n−1

j=0Cej with Cej = V (∞)qj , qj = σj(t1/nz1/n) = ζjnt
1/nz1/n,

where ζn = e2πi/n. The basis {ej} is chosen such that the formal mon-
odromy γV (∞) acts by e0 7→ e1 7→ · · · 7→ en−1 7→ (−1)n−1e0.

By Lemma 0.1, the space of the Stokes data at z = ∞ can be iden-
tified with Cn−1. The monodromy identity for the topological mon-
odromy mon∞ at z = ∞ has been studied in detail in [CM-vdP, p. 146-
147]. The surprising property is:

Let the Stokes data be (x1, . . . , xn−1) ∈ Cn−1. Then the characteristic

polynomial of the topological monodromy mon∞ is

T n + xn−1T
n−1 + · · ·+ x1T + (−1)n.

Thus the map from the Stokes data to the characteristic polynomial of
mon∞ is bijective.

The local solution space V (0) at z = 0 has a similar description. The
map from the space of the Stokes matrices to the (non trivial) coeffi-
cients of the characteristic polynomial of the topological monodromy
mon0 at z = 0, is bijective.

The monodromy space Rn consists of the local analytic data at
z = ∞ and z = 0 together with a link which glues the solution
space above P1 \ {∞} to the solution space above P1 \ {0}. More
precisely, the link L : V (0) → V (∞) is a linear bijection such that
L ◦ (mon0)

−1 = mon∞ ◦ L. The “inverse sign” reflects the difference in
directions of the paths for mon0 and mon∞.

It follows that all the structure of V (0) is determined by mon∞ and
the link. In particular, mon−1

0 has the same characteristic polynomial
as mon∞. Furthermore, the Stokes matrices at z = 0 are the same as
those at z = ∞, however taken in the opposite order.
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Let L0 be a fixed choice for the link. Any other link has the form
M ◦ L0 where M = (mi,j) ∈ GL(V (∞)) commutes with mon∞. Then
Rn can be identified with the tuples (M,x1, . . . , xn−1) as above and M
taken modulo multiplication by a scalar (since the basis of V (0) and
V (∞) can be scaled).

A computation, using the formulas in [CM-vdP, § 3.3, § 3.4] for
mon∞, shows that M is determined by its last row (mn,1, . . . , mn,n) and
that this space can be identified with the open subspace of Pn−1×An−1

consisting of the tuples

((mn,1 : . . . : mn,n), (x1, . . . , xn−1)) ∈ Pn−1 × An−1

such that the determinant F of the matrix M is not zero. One easily
sees that F is homogeneous of degree n in the n variables mn,1, . . . , mn,n

and its coefficients are polynomials in x1, . . . , xn−1. In particular, Rn

is smooth, connected, quasi projective of dimension 2(n− 1).

Example R2. The local analytic data at z = ∞ are:
V (∞) = V (∞)√tz ⊕ V (∞)−

√
tz = Ce0 + Ce1, γ : e0 7→ e1 7→ −e0. The

singular directions depend on t1/2. For t1/2 in a neighbourhood of 1,
the monodromy identity is: mon∞ =

(
0 −1
1 0

)(
1 0
x 1

)
=

(−x −1
1 0

)
.

As above, there is a surjective morphism R2 → A1 = Spec(C[x]).
The fibres consist of the (b3 : b4) ∈ P1 such that the determinant
F = −b3b4x + b23 + b24 of the matrix M :=

(
b1 b2
b3 b4

)
, commuting with

mon∞, is nonzero. Thus R2 ⊆ P1 × A1 is the complement of the
quadratic curve F = 0 over A1.

We note that the description in [vdP-Sa] of monodromy space for the
classical case P3(D8) is slightly different. There the link L is normalized
by the assumption detL = 1.

Example R3. The local analytic data at z = ∞ are
V (∞) = Ce0 + Ce1 + Ce2 with Cej = V (∞)qj for j = 0, 1, 2 and

q0 = t1/3z1/3, q1 = ζ3t
1/3z1/3, q2 = ζ23 t

1/3z1/3 and ζ3 = e2πi/3. The basis
vectors e0, e1, e2 are chosen such that the formal monodromy γ satisfies
e0 7→ e1 7→ e2 7→ e0. The basis e0, e1, e2 is unique up to a simultaneous
multiplication by a scalar.
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For t1/3 equal to 1, the topological monodromy mon∞ at z = ∞ is
mon∞ = γ · St3/4 · St1/4 which is explicitly

mon∞ =




0 0 1
1 0 0
0 1 0







1 0 0
0 1 0
0 x21 1







1 x01 0
0 1 0
0 0 1


 =




0 x21 1
1 x01 0
0 1 0


 .

The characteristic polynomial of mon∞ is X3 − x01X
2 − x21X − 1.

The space A2 of the topological monodromies at z = ∞, consists of
the pairs (x01, x21) ∈ C2. The fibres of the obvious map R3 → A2 con-
sist of the elements (m3,1 : m3,2 : m3,3) ∈ P2 such that the determinant
F of M is invertible. Explicitly,

F = a37x1x2 + a27a8x
2
1 + a27a9x

2
2 + a7a8a9x1x2 − a27a8x2 + a27a9x1

−2a7a
2
8x1 + 2a7a

2
9x2 − a28a9x2 + a8a

2
9x1 + a37 − 3a7a8a9 + a38 + a39,

where (a7, a8, a9) = (m3,1, m3,2, m3,3) and x1 = x0,1, x2 = x2,1. Thus
R3 ⊆ P2 × A2 is the complement of the cubic curve over A2 with
equation F = 0.

12.2. Construction of Mn by using a cyclic covering.

The space Mn will be represented by the “universal” matrix differ-
ential operator L = z d

dz
+ A of size n × n over C(z). This operator

has only at z = 0 and z = ∞ singularities and these are given by the
Galois orbits of z−1/n at z = 0 and tz1/n at z = ∞. As in § 2, we use
the n-cyclic covering of P1 to produce explicit formulas.

Now L is seen as a map on a vector space V of dimension n over
C(z). Let σ denote the automorphism of C(z1/n) over C(z), given by
σ(z1/n) = ωz1/n with ω = e2πi/n. Then σ acts as semi-linear map on
W := C(z1/n) ⊗ V and L extends uniquely to a derivation D on W .
The operator D has no ramification. Define the trace tr : W → V by
tr(w) =

∑n−1
j=0 σ

j(w).

We apply the method of [vdP-Sa, Chapter 12], to construct a universal

family. One considers a basis e0, e1, . . . , en−1 of W over C(z1/n) such
that σ acts by e0 7→ e1 7→ · · · 7→ en−1 7→ e0 and D has, w.r.t. this
basis, poles of order 1 at z1/n = 0 and at z1/n = ∞ and no further sin-
gularities. By construction, D commutes with σ. In particular, D(e0)
determines D and D(e0) has the form

∑n−1
j=0 (ajz

−1/n + bj + cjz
1/n)ej

where the aj , bj , cj are variables, parametrizing the family.
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Define the V -basis {B0, B1, . . . , Bn−1} by Bj = tr(zj/ne0) for all j.
In the computations, we change Bn−1 into z−1Bn−1. The given data
for D(e0) induces a formula z d

dz
+ A for D on the basis B0, . . . , Bn−1.

It is seen that the matrix A has at most singularities at z = 0 and
z = ∞ (in fact poles of order at most 1). The characteristic polynomial
of A is seen to have the form T n+pn−1T

n−1+· · ·+p1T+p0−(αz−1+βz)
with all entries p0, . . . , pn−1, α, β are in C[a0, b0, c0, . . . , bn−1, cn−1]. In
particular, there are explicit expressions 6= 0 for α and β. In the family
given by A we require that α and β are invertible. Indeed, this implies
that z = 0 and z = ∞ are totally ramified and have Katz invariant 1

n

for the operator z d
dz

+ A.

The resulting affine family of operators z d
dz

+ A is parametrized by

the spectrum of C[a0, b0, . . . , cn−1,
1
α
, 1
β
]. Next, we make the following

restrictions and normalizations. We require that A has trace zero. This
is equivalent to giving b0 the value 3−n

2n
. The variable z is scaled such

that α = 1 and we write t for β. The next step is to divide by the
action, by conjugation, of the group of the (constant) diagonal matri-
ces on the differential operator z d

dz
+ A. In examples this is done by

replacing (n − 1) suitable entries of A by 1 (for example, resulting in
a1 = 1, a2 = · · · = an−1 = 0). One sees that the dimension of the final
family (not counting t) is 3n− 1− 2− (n− 1) = 2n− 2 (−1 for b0 and
−2 for α, β and −(n− 1) for conjugation). This is in accordance with
dimRn = 2(n− 1).

We do not attempt to describe the full moduli space Mn, but claim
that the constructed family D = z d

dz
+ A describes an affine open

subset. The operator E := d
dt
+B such that {D,E} forms a Lax pair is

also considered as σ-equivariant operator on W and is determined by
E(e0). One computes E(e0) = z1/n

∑n−1
j=0 cjej , under the assumption

that a0 = 1, a1 = · · · = an−1 = 0. Below, the above construction is
made explicit for n = 3, extended to n = 4 and to general n ≥ 3. For
n = 2, it is compared to the classical formula.

12.2.1. Case n = 3. The matrix of D w.r.t. the basis B0, B1, z
−1B2 is




b0 + b1 + b2 a0 + a1 + a2 c0 + c1 + c2
c0 + c1ω

2 + c2ω
1
3 + b0 + b1ω

2 + b2ω z−1(a0 + a1ω
2 + a2ω)

a0 + a1ω + a2ω
2 z(c0 + c1ω + c2ω

2) −1/3 + b0 + b1ω + b2ω
2




with α = (a0 + a1 + a2)(a0 + a1ω + a2ω
2)(a0 + a1ω

2 + a2ω) and

β = (c0 + c1 + c2)(c0 + c1ω + c2ω
2)(c0 + c1ω

2 + c2ω).
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Normalization: (a0+a1+a2) = (a0+a1ω+a2ω
2) = (a0+a1ω

2+a2ω) = 1
(thus a0 = 1, a1 = a2 = 0), b0 = 0 and β = t. This produces

z
d

dz
+




d0 1 f0
f1 d1

1
z

1 f2z d2


 with f0f1f2 = t and d0 + d1 + d2 = 0.

It is completed to a Lax pair by t d
dt
+




0 0 f0
f1 0 0
0 f2z 0


. The Painlevé

type equations are

t
f ′
0

f0
= d0 − d2, t

f ′
1

f1
= d1 − d0, t

f ′
2

f2
= d2 − d1 + 1,

td′0 = f1 − f0, td′1 = f2 − f1, td′2 = f0 − f2.

The system of equations has symmetries ρ and σ defined by

ρ : f0, f1, f2 7→ f1, f2, f0 and d0, d1, d2 7→ d1 − 1/3, d2 + 2/3, d0 − 1/3,

σ : f0, f1, f2 7→ f1, f0, f2 and d0, d1, d2 7→ −d0,−d2,−d1,

and generating D3 = S3.
The above formulas are very similar to the ones of Kawakami [K3,

p. 35]. In the latter the trace of the operator is +1 instead of 0 and
the entries of the matrix are written in terms of canonical variables
p1, p2, q1, q2 for a certain Hamiltonian.

One substitutes F = f0, G = f1 and obtains the equivalent system

F ′′ =
(F ′)2

F
− F ′

t
+

FG− 2F 2

t2
+

1

tG
,

G′′ =
(G′)2

G
− G′

t
+

FG− 2G2

t2
+

1

tF
.

For a solution (f0, f1, f2, d0, d1, d2), invariant under the symmetry
f0 ↔ f1, one has F = G and the resulting equation is close to P3(D8),
namely

F ′′ =
(F ′)2

F
− F ′

t
+

−F 2

t2
+

1

tF
.

The invariant solutions under D3 = S3 are F = G = ζt1/3 with ζ3 = 1.

A computation of the infinitesimal symmetries at the invariant solu-
tion f0 = f1 = f2 = t1/3 produces ugly formulas.
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12.2.2. The general case. We make the following normalization:
D(e0) = (z−1/n+b0+c0z

1/n)e0+
∑n−1

j=1 (bj+cjz
1/n)en−1, b0 =

3−n
2n

, β = t

and E(e0) = z1/n
∑n−1

j=0 cjej and basis B0, . . . , Bn−2, z
−1Bn−1.

For general n ≥ 3, the formulas for the Lax pair are:

z
d

dz
+

















d0 1 0 . 0 f0
f1 d1 1 . 0 0
0 f2 d2 . 0 0
. . . . 1 .
0 . . fn−2dn−2

1
z

1 0 . 0 fn−1z dn−1

















, t
d

dt
+

















0 0 0 . 0 f0
f1 0 0 . 0 0
0 f2 0 . 0 0
. . . . 0 .
0 . . fn−2 0 0
0 0 . 0 fn−1z 0

















with
∑

dj = 0,
∏

fj = t. The Painlevé type equations are

t
f ′
0

f0
= d0 − dn−1, t

f ′
1

f1
= d1 − d0, · · · , t

f ′
n−1

fn−1
= dn−1 − dn−2 + 1,

td′0 = f1 − f0, td′1 = f2 − f1, · · · · · · , td′n−1 = f0 − fn−1.

The symmetries observed for n = 3 generalize to n ≥ 3 as follows:

ρ :
(f0, f1, . . . , fn−1) 7→ (f1, f2, . . . , fn−1, f0),
(d0, d1, . . . , dn−1) 7→ (d1 − 1

n
, . . . , dn−2 − 1

n
, dn−1 +

n−1
n
, d0 − 1

n
)

and

σ : (f0, f1, . . . , fn−1) 7→ (fn−1, fn−2, . . . , f1, f0),

combined with σ(dj) = −dπ(j)+cj for a permutation π satisfying π2 = 1
and constants cj ∈ {− 1

n
, n−1

n
} such that

∑
cj = 0. These symmetries

generate the dihedral group Dn of order 2n.
Taking Dn-invariants f0 = . . . = fn−1 := t1/n and corresponding dj’s

produces algebraic solutions of the Painlevé type equations.

Case n = 4. For invariant solutions under f0 ↔ f1, f2 ↔ f3 one has

(f0, f1, f2, f4) = (f, f,
√
t

f
,
√
t

f
) and d0 = −1/8, d1 = tf

′

f
− 1/8, d2 = 3/8,

d3 = −tf
′

f
− 1/8 and the equation

f ′′ =
(f ′)2

f
− f ′

t
− f 2

t2
+

1

t3/2
.

This is again close to the equation for P3(D8). The D4-symmetric so-
lutions are f = f0 = f1 = f2 = f3 = ζt1/4 with ζ4 = 1.

Case n = 5. Consider solutions invariant under f0 ↔ f4, f1 ↔ f3.
Then (f0, f1, f2, f3, f4) = (f, g, t

f2g2
, g, f). Moreover,

(d0, d1, d2, d3, d4) = (t
f ′

f
−2

5
, t

f ′

f
+t

g′

g
−2

5
, −t

f ′

f
−t

g′

g
+
3

5
, t

f ′

f
+
3

5
,
−2

5
).
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The system of equations for f, g reads

f ′′ =
(f ′)2

f
− f ′

t
+

fg − f 2

t2
, g′′ =

(g′)2

g
− g′

t
+

fg − 2g2

t2
+

1

f 2gt
.

The D5-invariant solutions are f = g = ζt1/5 with ζ5 = 1.
The presented examples for small n suggest that subgroups of Dn pro-
duce interesting subsystems.

For completeness we consider also the case n = 2.

The Lax pair is z d
dz

+
(
d0

1
z
+f0

1+f1z d1

)
, t d

dt
+

(
0 f0
f1z 0

)
with f0f1 = t and

d0 + d1 = 0. The equations are

t
f ′
0

f0
= d1 − d0, t

f ′
1

f1
= d0 − d1 + 1, td′0 = f1 − f0, td′1 = f0 − f1.

One observes that q = f0 satisfies the classical equation for P3(D8),

namely q′′ = (q′)2

q
− q′

t
+ 2q2

t2
− 2

t
. There is a symmetry ρ, given by

f0, f1 7→ f1, f0 and d0, d1 7→ d1 − 1/2, d0 + 1/2.
The symmetry means that if q is a solution, then so is t

q
. Further

the invariant element r = q + t
q

satisfies the equation

r′′ =
r

r2 − 4t
(r′)2 − r2

t(r2 − 4t)
r′ +

2r4 − 16tr2 + tr + 32t2

t2(r2 − 4t)
.

The symmetric solutions are q = ±
√
t and r = ±2

√
t.

13. A companion of P1.

What we like to call the companion of P1 is the family M of con-
nections, given by the set of differential modules M over C(z) with
dimension 2, Λ2M is trivial, z = 0 is regular singular and the general-
ized eigenvalues at z = ∞ are ±w with w = z5/2 + t

2
z1/2. This is the

P1 case except for allowing a regular singularity at z = 0.

Description of R. The singular directions at z = ∞, lying in [0, 1) are
1
5
, 3
5

for the difference of eigenvalues w−(−w), and 0, 2
5
, 4
5

for (−w)−w.
Thus R ∼= A5. Let mon : R → SL2(C) denote the morphism which
sends the Stokes matrices to the monodromy matrix at z = 0.

The fibre of mon above
(
a b
c d

)
∈ SL2 is given by the monodromy

identity (
0 −1
1 0

)(
1 0
x5 1

)(
1 x4

0 1

)(
1 0
x3 1

)(
1 x2

0 1

)(
1 0
x1 1

)
=

(
a b
c d

)
.

One eliminates x1, x2 by x1 = −c(x3 + x5 + x3x4x5)− a(1 + x3x4) and
x2 = d(1+x4x5)+ bx4. Since ad− bc = 1 we are left with the equation
d(x3 + x5 + x3x4x5) + b(1 + x3x4) + 1 = 0.
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For d 6= 0, the fibre is as usual an affine cubic surface with three
lines at infinity. In fact this is the cubic surface “associated to” P1 (see
[vdP-Sa]).
For d = 0 the equation of the fibre reads x3x4 = −b−1−1 and x5 has no
relations. For b 6= −1 it is the surface C∗ ×C. In particular, R → SL2

is surjective. Furthermore, the parameter space P has dimension 1.

Description of M. Since the fibres of RH : M → R are parametrized
by t, one has dimM = 6. The isomorphy classes of the residue matrix
at z = 0 form the parameter space. It can be shown that the family

z
d

dz
+
(
0 1
0 0

)
z3 +

(
0 b2
1 0

)
z2 +

(
a1 b1
c1 −a1

)
z +

(
a0 b0
c0 −a0

)
,

with t = b1 − b22 + c0, is the universal family of connections M. We
eliminate b1 by b1 = t + b22 − c0. Furthermore, p0 := a20 + b0c0 is the
basic parameter.

For the Lax pair computation we suppose that the above operator

commutes with d
dt
+

(
y1 y2
y3 −y1

)
+ z

(
y4 y5
y6 −y4

)
and that

d(a20+b0c0)

dt
= 0. This

eliminates y1, . . . , y6 and produces the equations

a′0 = 2b2c0−b0, b
′
0 = −4a0b2, a

′
1 = −3b22+2c0−t, b′2 = −2a1, c

′
0 = 2a0.

For c0 = 0, and also for a fixed residue matrix (i.e., a′0 = b′0 = c′0 = 0),
one obtains the P1 equation. For c0 6= 0 one eliminates b0 = (p0−a20)/c0
and b′0 = (−2a0a

′
0c0− (p0−a20)c

′
0)/c

2
0. This results in the Painlevé type

vector field

a′0 = 2b2c0 −
p0 − a20

c0
, c′0 = 2a0, a′1 = −3b22 + 2c0 − t, b′2 = −2a1.

One eliminates a0, a1, and c0 in the above equations by:

a1 = −1
2
b′2, c0 = t

2
+ 3

2
b22 − 1

4
b′′2, a0 = 1

4
+ 3

2
b2b

′
2 − 1

8
b
(3)
2 . The remain-

ing equation produces the following fourth order explicit differential
equation for f := b2:

−2(6f2−f (2)+2t)f (4) = 288f5−240f3f (2)+192tf3−24ff (1)f (3)+32f(f (2))2−80tff (2)

+32ft2 + 24(f (1))2f (2) − 48(f (1))2 + 48ff (1) + (f (3))2 − 4f (3) + 64p0 + 4

with f = b2, f (j) := (
d

dt
)j(b2) for j = 1, 2, 3, 4.

We note that the denominator of the formula for f (4) is the equation
for P1. It seems probable that the field C(t)(b2,

d
dt
b2, (

d
dt
)2b2, (

d
dt
)3b2)

has, for generic p0, transcendence degree 4 over C(t). This would fit
with the observation that the fibres of R → P have dimension 4.
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Comments. There are two reasons why this “companion of P1” is not in
the classical list P1 − P6. The Painlevé type equations describe in fact
a vector field of rank 4 (written above as explicit differential equation
of order 4).

Secondly, the monodromic family is a subfamily of the natural mon-
odromic family with “two time variables” given by the data: z = 0 is
regular singular and z = ∞ is irregular singular with generalized eigen-
values ±(z5/2 + t1

2
z3/2 + t2

2
z1/2) with time variables t1, t2. We extend

our computations to this case.

Isomonodromy and Lax pairs for q = (z5/2 + t1
2
z3/2 + t2

2
z1/2).

As in the case q = z5/2 + t
2
z1/2 the familly of connections z d

dz
+ A can

be normalized to

z
d

dz
+

(
0 1
0 0

)
· z3+

(
0 b2
1 0

)
· z2+

(
a1 b1
c1 −a1

)
· z+

(
a0 b0
c0 −a0

)
,

where c0 = b22 − b2t1 +
1
4
t21 − b1 + t2 and c1 = −b2 + t1. The vari-

ables a0, a1, b0, b1, b2 are seen as functions of t1, t2. The Lax pairs are
expressed by [z d

dz
+ A, d

dti
+ Bi] = 0 for i = 1, 2 and Bi a matrix de-

pending on t1, t2, z and polynomial in z of degree ≤ 2. One obtains the
following system of closed one-forms for d(a0), · · · , d(b2)
d(a0) =

1

48
{16b42−16b32t1+4b2t

3
1−t41−48b1b

2
2+32b1b2t1−4b1t

2
1+32b22t2−16b2t1t2−16b0b2+

8b0t1+32b21−48b1t2+16t22}dt1+{−2b32+3b22t1−
3b2t

2
1

2
+
t31
4
+2b1b2−b1t1−2b2t2+t1t2+b0}dt2

d(a1) =
1

24
{−16b32+20b22t1−4b2t

2
1−t31+16b1b2−16b1t1−16b2t2+12t1t2+8b0}dt1

+{b22 − 2b2t1 + 3/4(t21) + 2b1 − t2}dt2

d(b0) =
1

6
{−4a0b

2
2+a0t

2
1+8a0b1−4a0t2−4a1b0}dt1+{(4b2−2t1)a0}dt2

d(b1) =
1

6
{−4a1b

2
2+a1t

2
1+4a0b2−2a0t1+4a1b1−4a1t2+2b2−t1}dt1+{4a1b2−2a1t1+2a0+1}dt2

d(b2) =
1

3
{−a1t1+2a0+2}dt1+2a1dt2.

Note that p0 := a20 + b0c0 satisfies d(p0) = 0 and p0 is a generating
parameter for this system.
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