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ABSTRACT

Reconstruction of the point spread function (PSF) plays an important role in many areas of astron-

omy, including photometry, astrometry, galaxy morphology, and shear measurement. The atmospheric

and instrumental effects are the two main contributors to the PSF, both of which may exhibit complex

spatial features. Current PSF reconstruction schemes typically rely on individual exposures, and its

ability of reproducing the complicated features of the PSF distribution is therefore limited by the

number of stars. Interestingly, in conventional methods, after stacking the model residuals of the PSF

ellipticities and (relative) sizes from a large number of exposures, one can often observe some stable

and nontrivial spatial patterns on the entire focal plane, which could be quite detrimental to, e.g.,

weak lensing measurements. These PSF residual patterns are caused by instrumental effects as they

consistently appear in different exposures. Taking this as an advantage, we propose a multi-layer PSF

reconstruction method to remove such PSF residuals, the second and third layers of which make use of

all available exposures together. We test our method on the i-band data of the second release of Hyper

Suprime-Cam. Our method successfully eliminates most of the PSF residuals. Using the Fourier Quad

shear measurement method, we further test the performance of the resulting PSF fields on shear re-

covery using the field distortion effect. The PSF residuals have strong correlations with the shear

residuals, and our new multi-layer PSF reconstruction method can remove most of such systematic

errors related to PSF, leading to much smaller shear biases.

Keywords: techniques: image processing – instrumentation: detectors – telescopes – astrometry –

(cosmology:) gravitational lensing

1. INTRODUCTION

The point spread function (PSF) measures the diffrac-

tion of light in optical systems, which makes point-like

sources appear extended. In astronomical images, the

PSF effect distorts the shape and size of all celestial

objects. For ground-based telescopes, the properties of

the PSF are mainly determined by the telescope optics

(Jarvis et al. 2008) as well as the atmospheric turbulence

(Roddier 1981; Fétick et al. 2018; Hébert et al. 2018; Xin

et al. 2018). A minor contributor to the PSF is the pix-

elation effect, resulting from the finite pixel size of the

CCD images (High et al. 2007; Zhang 2010; Kannawadi

et al. 2021; Shen et al. 2022; Hirata et al. 2024).
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PSF plays a particularly important role in weak lens-

ing studies, since it convolves the lensed galaxies and dis-

torts their shapes akin to the cosmic shear. This makes

the PSF effect the most important source of systematics

in shear measurements (Rhodes et al. 2007; Miller et al.

2013; Lu et al. 2017; Liu et al. 2023). To ensure the

reliability of the measurements, precise modeling of the

PSF is essential.

When modeling the PSF, it is convenient to describe it

as a combination of time-variant and time-invariant fea-

tures. Time-variant features vary from exposure to ex-

posure and are produced by the atmospheric turbulence

and some instrument-related issues such as misalign-

ments in the optical components of the telescope, me-

chanical deformations caused by gravitational or ther-

mal effects, tracking errors, or instrumental instabilities.

On the other hand, time-invariant features are quite sta-

ble from exposure to exposure. Optical designs, mechan-

ical elements of the telescope, as well as characteristics
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of the imaging sensor, focal length, or aperture size can

all induce time-invariant features on the PSF.

Multiple methods have been proposed to model the

PSF effect for shear measurement (Kaiser et al. 1995;

Luppino & Kaiser 1997; Hoekstra et al. 1998; Kaiser

2000; Bernstein & Armstrong 2014; Zhang et al. 2015;

Bernstein et al. 2016). With time-variant features com-

plicating the PSF modeling, most of these methods rely

solely on individual exposures to build the PSF model,

thus being limited by the number of available stars. An

effective way to deal with a limited number of stars is

to assume a specific functional form for the distribution

of the PSF, e.g., polynomial functions. Several methods

that follow this approach have been successful in cap-

turing most of the PSF features on the exposure level.

Other methods, based on Principal Component Analysis

(PCA) (Jarvis & Jain 2004) or machine learning (Herbel

et al. 2018; Jia et al. 2020), have also shown impressive

results in capturing the spatial features of the PSF. The

optimal PSF reconstruction method generally depends

on the particular shear measurement being considered,

and the particular dataset.

In current methods, however, when stacking the PSF

ellipticity residuals of the PSF models of many expo-

sures, some complex features appear (Bosch et al. 2017;

Jarvis et al. 2020; Zhang et al. 2022). These features

are time-invariant, and therefore related to instrumen-

tation. In this work, we present a novel PSF recon-

struction method that performs three interpolations in

a hierarchical manner, with the aim of modelling the

high-frequency yet stable spatial features of the PSF

distribution. Our method builds upon the PSF recon-

struction method of Liu et al. 2024 (in preparation),

constructing a model of the PSF power spectrum. We

apply our method to the i-band of HSC pDR2 data,

in which systematic PSF residuals have been previously

reported. Our method successfully removes most of the

systematic PSF residuals found in HSC DR2, signifi-

cantly improving the PSF model.

The structure of this paper is as follows. §2 intro-

duces the HSC dataset. The first layer of interpolation

is explained in §3. The second and third layers of in-

terpolation are described in §4, which also includes our

main results. We conclude in §5.

2. HSC DATASET

The Hyper Suprime-Cam Subaru Strategic Program

(HSC-SSP) project (Aihara et al. 2018; Miyazaki et al.

2018; Komiyama et al. 2018; Furusawa et al. 2018) is an

optical multi-layer imaging survey that covers approxi-

mately 1400 deg2 in five bands (g, r, i, z, y) in its Wide

layer (r ∼ 26). In addition, the survey includes two

Figure 1. Distribution of the PSF FWHM of the i-band of
HCS pDR2.

deeper layers, Deep and UltraDeep, covering 27 deg2

(r ∼ 27) and 3.5 deg2 (r ∼ 28), respectively. The

project utilizes the Hyper Suprime-Cam, a wide field

optical camera built on the 8.2m Subaru Telescope, and

aims to address some of the most important problems

in astrophysics and comsmology, with a focus on weak

gravitational lensing, galaxy evolution, supernovae, and

galactic structure. Their data is publicly available at

their official website1.

In this paper we use the i-band data of the second pub-

lic data release of the HSC (HSC pDR2; Aihara et al.

2019). HSC pDR2 covers an area of 300 square degrees

in the Wide layer, in all five bands. The data was col-

lected over 174 nights of observation, from March of

2014 to January of 2018. HSC pDR2 includes significant

improvements over the previous release (HSC pDR1),

which include improved background subtraction, PSF

modeling, and object detection procedures. However,

we only use the background-removed CCD images, per-

forming our own PSF reconstruction. The galaxies are

selected from the official HSC catalog (Aihara et al.

2019). Fig. 1 shows the distribution of the PSF full

width at half maximum (FWHM), in real space, for the

i band of HSC pDR2.

3. PSF RECONSTRUCTION

Our method builds upon the PSF reconstruction

method of Liu et al. 2024 (in preparation), which is part

of the Fourier Quad shear measurement pipeline (Zhang

et al. 2022). Fourier Quad utilizes the quadrupole mo-

ments of the power spectrum of galaxy images to mea-

sure the cosmic shear. In line with this approach, we

1 https://hsc-release.mtk.nao.ac.jp/
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Figure 2. Stacked ellipticity (e1, e2) and relative size residuals from all exposures of the i-band of HCS pDR2.

perform PSF interpolation directly on the power spec-

trum of the stars, building a model of the power spec-

trum of the PSF (PPS hereafter).

3.1. Star selection

Several techniques have been developed for star-

galaxy separation. Some methods rely on morpholog-

ical features (Slater et al. 2020) or color information of

the sources (Pollo et al. 2010). Moreover, modern ap-

proaches based on machine learning methods such as

decision trees (Vasconcellos et al. 2011) or deep convo-

lutional neural networks (Kim & Brunner 2017) have

shown promising results in star-galaxy separation.

In this work, we follow the following procedures to

select out bright stars for PSF reconstruction (Liu et al.

2024, in preparation):

1. For each exposure, we select sources with SNR ≥
100 to form our initial set of star candidates. The rest

of the steps only make use of their power spectra, which

are all normalized so that the power P (k⃗ = 0) is unity.

Note that in Fourier space, point sources should have

the most extended profiles. We therefore measure the

area of each candidate (defined as the number of pixels

above 0.02). The distribution of the area typically has a

Gaussian shape. We throw away those candidates that

are away from the peak of the distribution by more than

3σ to remove the outliers.

2. From the remaining star candidates, we form the

first star model (power spectrum) pixel-by-pixel. Each

pixel value is determined by sorting the corresponding

pixel values from the power of all candidates, and taking

the lower bound of the top 25%.

3. The similarity between the candidates and the star

model can be quantified by defining a χ2 as:

χ2 = 2

N∑
i=1

(
Ini − Imodel

i

)2
/

N∑
i=1

(
Ini + Imodel

i

)
(1)

in which Ini refers to the value of the ith pixel in the

power image of the nth candidate, and Imodel
i refers to

the corresponding pixel value of the model. N is the

total number of pixels involved, which are typically cho-

sen to be those located in the middle part of the stamp.

The distribution of the χ2 forms a Gaussian-like func-

tion, and we remove those candidates whose χ2 are more

than 3σ away from the peak of the distribution.

4. We build the new star model, this time as a func-

tion of location, by interpolating the pixel values of all

the remaining candidates with polynomial functions of

order nine. Note that if there are not enough candi-

dates left for the fitting, we simply stop processing the

exposure further. We again use eq.(1) to define the χ2

between each candidate and the star model at its loca-

tion. From the distribution of χ2, we again remove the

candidates that are more than 3σ away from the peak.

The surviving candidates are treated as stars for our

PSF reconstruction.

3.2. First layer of interpolation

Our first interpolation is a 2D polynomial fitting of

third order on the power spectrum of the stars on each

CCD image, following the procedure of Liu et al. 2024

(in preparation). To ensure the reliability of the PSF

model, we only include CCDs containing a minimum

of 20 stars. Each star power spectrum is centered on

a 48x48 stamp, and the interpolation is done pixel-by-

pixel.

To evaluate the quality of the interpolation, we cal-

culate the PPS residuals, represented as the ellipticity

and relative size residuals at the positions of the stars.

The ellipticity components, e1 and e2, and the size are

defined based on the quadrupole moments, Qij , as:
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e1 =
Q20 −Q02

Q20 +Q02

e2 =
2Q11

Q20 +Q02

size =
Q20 +Q02

Q00
,

(2)

where

Qij =
∑

P (k)>P0

P (k)kixk
j
y. (3)

We only include pixels above P0 = 0.02 ·P (k = 0) in the

calculation.

Ellipticity residuals are calculated as the difference be-

tween the ellipticities of the original (e1,true, e2,true)

and the predicted (e1,pred, e2,pred) stamps, while the

relative size residuals are calculated as (sizetrue −
sizepred)/sizetrue. Fig. 2 shows the stacked ellipticity

and relative size residuals including all exposures. While

the residuals are very small for most part of the expo-

sure, we find some remaining systematic residuals near

the boundaries, which are not visible on single expo-

sures but become prominent after stacking a large num-

ber of them. Note that similar PSF residual patterns

are also observed with the official HSC pipeline (Bosch

et al. 2017), as well as in the DES data (Jarvis et al.

2020) and the DECaLS data (Zhang et al. 2022). In the

next layer of interpolation, we build a model for these

systematic PSF residuals.

4. IMPROVED PSF RECONSTRUCTION

The systematic PPS residuals observed in fig. 2 are re-

lated to instrumental effects rather than the atmospheric

turbulence. Given the strong spatial and temporal de-

pendencies of the atmospheric turbulence, it is unlikely

to produce any persistent features on the PSF residuals.

In the following we present our second layer of interpo-

lation, which builds a model for the systematic features

of the PPS residuals. Unlike in the first interpolation,

the features that we want to model are systematic, com-

mon to all exposures. Therefore, instead of performing

an interpolation on individual chips, we collect the PPS

residual stamps from all exposures and place them into

a single exposure. We then perform a single interpo-

lation on each CCD of that exposure. This procedure

significantly increases the amount of available data for

interpolation.

To collect the PPS residuals from all exposures and

place them into a single exposure, we must first take

into account the different PSF sizes in different expo-

sures (fig. 1). We rescale the PPS residual stamps to

a common size, with the re-scaling factor determined

as the mean PSF size of the exposure. It is important

to emphasize that the above procedure of rescaling the

PSF stamps from different exposures and place them

into a single exposure is only beneficial when modelling

systematic features, common to all exposures. In our

first interpolation, the main contributor to the PSF was

the atmospheric turbulence, which strongly varies from

exposure to exposure, hence the interpolation was per-

formed on individual exposures.

4.1. Rescaling of the PPS residuals

We rescale each PPS residual to a reference PSF

FWHM of 1 arcsec in real space. For each PPS residual

stamp, we calculate the rescaling factor s as the mean

PSF FWHM size, in real space, of all stars in the same

CCD in unit of arcsec. To build the rescaled PPS resid-

ual stamp, we project the coordinates (u, v) of each pixel

back to the original stamp, as (u ·s, v ·s). In most cases,

the projected coordinates (u ·s, v ·s) lies within four pix-

els of the original stamp. The value of the (u, v) coor-

dinate in the rescaled stamp is calculated as a weighted

average of those four neighboring pixels in the original

stamp, with the weights determined by the inverse of

the pixel distances to (u · s, v · s).

4.2. Principal Component Analysis (PCA) of the PPS

residuals

Once the PPS residual stamps have been rescaled, we

place them into a single exposure, and apply principal

component analysis to the stamps on each CCD. Princi-

pal component analysis (PCA; Shlens 2014) is a widely

used method for dimensionality reduction in data analy-

sis. It transforms an N-dimensional system into a lower

dimensional representation, characterized by Principal

Components, or PCs. These PCs form the basis of the

new space, representing the main features of the data.

They are orthogonal to each other, which helps eliminate

the correlation between variables, making PCA partic-

ularly useful for large datasets, where numerous corre-

lated variables make data interpretation difficult. The

main motivation for applying PCA to the PPS residuals

is to capture the main features of the data, eliminating

unnecessary information or noise. Additionally, dimen-

sionality reduction drastically decreases the computa-

tional time, since instead of performing the interpola-

tion pixel-by-pixel, now we perform an interpolation for

each principal component.

We choose 100 as the number of principal components,

resulting in each stamp being represented by the 100
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Figure 3. First 30 principal components of the CCD number 50, located in the central region of the exposure.

Figure 4. First 30 principal components of the CCD number 53, located in the boundary of the exposure.

coefficients to the PCs. Fig. 3 and fig. 4 show the first

30 principal components of the CCDs number 50 and 53,

respectively (Aihara et al. 2018). The CCD number 50

is located in the central region of the exposure, whereas

the CCD number 53 is located in the boundary. We

observe that their first four principal components are

almost identical, diverging from the fifth, showing the

different features of the PPS residuals in the two regions.

4.3. Reconstruction of the PPS residuals

We build a model for each principal component coef-

ficient at the CCD level by interpolating the PC co-

efficients of the PPS residuals within that CCD. We

test two different interpolation methods, polynomial and

random forest, and compare their performance.

4.3.1. Polynomial

The features of the PPS residuals are particularly

complex near the boundaries of the exposure, thus a

single interpolation on a CCD level is unlikely to fully

capture them. Since the amount of data per CCD is

now very large, we further divide each CCD into four

equal parts (2 × 2 in the CCD plane), and fit a poly-

nomial of order six to the PC coefficients of the PPS

residuals within each part. The predicted PPS residual

stamp (48x48) at the position of each star is constructed

as the sum of the PCs, weighted by the predicted PC

coefficients. Finally, we rescale the current PPS residu-

als model back to the original PSF size at each position.

We follow the same procedure as §4.1, with the scaling

factor being the inverse of s.

The improved PPS model is built by adding the PPS

residuals model to the original PPS model from the first

interpolation. Fig. 5 shows the new ellipticity and rel-

ative size residuals, calculated at the position of the

stars, as the difference between the ellipticity compo-

nents/relative size of the true star and the new PPS

model. We observe a significant improvement, with the

systematic PPS residuals vanishing almost completely.

4.3.2. Random Forest
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Figure 5. Stacked ellipticity (e1, e2) and relative size residuals of all exposures of the i-band of HSC pDR2, after the second
interpolation, for the case of a polynomial fitting of order 6 as our second interpolation.

Figure 6. Stacked ellipticity (e1, e2) and relative size residuals of all exposures of the i-band of HSC pDR2, after the second
interpolation, for the case of random forest as our second interpolation.

In this section we follow the same procedure as in

§4.3.1, but using a machine learning algorithm called

random forest to interpolate the principal component

coefficients of the PPS residuals. Random Forest (Ho

1995; Breiman 2001) is a widely used machine learning

algorithm, applicable to both classification and regres-

sion problems. It is an ensemble method that combines

the predictions of multiple models, called decision trees,

to infer a final prediction. Each decision tree is built

on a randomly selected subset of the data, and the out-

put of the random forest is the average output of all

the decision trees. This significantly reduces the risk of

overfitting.

Each decision tree is built through a series of binary

splits of the data, starting from the root node. At first,

two subnodes of the root node are created, based on

a splitting condition. Following the same procedure,

each of the subnodes is further divided into two new

subnodes, based on new splitting conditions, and so on,

building the tree. When a stopping condition is met, we

stop splitting that node.

In our case, each decision tree performs a regression

on a randomly selected subset of our data, where each

datapoint is described by the coordinates (x, y) on the

CCD, and the principal component coefficient value, z.

Starting from the root node, we perform the first split of

the data. The algorithm splits the data into two groups

or subnodes (A and B), based on a condition—either

on x or y—that better splits the data according to the

values of z. It is important to highlight that the al-

gorithm sees x and y as distinct features of the data,

rather than as coordinates. As a result, each split is

based on a single feature, either x or y. To determine

the optimal splitting condition for each node, we use the

mean squared error (MSE), a widely adopted metric for

splitting in regression tasks. We define the MSE of each

possible split as:

MSE =
∑

(x,y)∈A

(z−zpred,A)
2+

∑
(x,y)∈B

(z−zpred,B)
2, (4)

where zpred,A and zpred,B are the predicted PC coeffi-

cients associated to each group, and it is the same for
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Figure 7. Field distortion test after first interpolation (blue curves), and after the second interpolation, for the case of
polynomial of order 6 (green curves) and random forest (yellow curves). Results are shown for g1 (left panel) and g2 (right
panel). Data points show 1− σ errorbars.

all elements in the group. The split with the lowest MSE

value is the optimal split.

We continue splitting each subnode (A and B), follow-

ing the same procedure as for the root node. We stop

splitting a node when it contains less than 500 data-

points. This stopping criterion is found empirically, as

further splitting the data results in overfitting.

A decision tree generates predictions for new coordi-

nates (x, y) by following the splitting conditions for each

node. Starting at the root node and moving down the

tree, the new data reaches a leaf node, i.e., a node with-

out subnodes. The predicted PC coefficient for the new

coordinates is the value associated to that leaf node,

zpred.

As in §4.3.1, we divide each CCD into four parts (2×2

in the CCD plane), and build models for the PC coeffi-

cients of the PPS residual stamps within each part. We

build 100 decision trees for each principal component

coefficient, and determine the predicted PC coefficient

at each CCD position, zpred, as the average predictions

of all decision trees. We build the PPS residual model

as the weighted sum of the principal components, with

the weights given by the PC coefficients predicted by

random forest, zpred. To obtain the final PPS residual

model at each CCD position, we rescale the PPS resid-

ual model back to the PSF size of each exposure. Fig. 6

shows the ellipticity and relative size residuals of our

improved PPS model, calculated as the sum of the PPS

model from the first interpolation and the PPS residual

model. As in the polynomial case, we obtain very small

PPS residuals, removing almost completely the system-

atic PPS residuals of fig. 2. Although polynomial and

random forest obtain comparable results, the PPS resid-

uals of random forest are slightly smaller. However, this

does not necessarily mean that random forest is going to

be more accurate in making predictions at the position

of galaxies. As a non-parametric algorithm, random for-

est could in principle capture more complex features on

the data. However, they are also more prone to overfit-

ting. To evaluate the predictions at galaxy positions of

our new PPS models, we use the field distortion test.

4.4. Field distortion test

The field distortion (FD; Zhang et al. 2019) is an opti-

cal aberration characterized by the deviation from global

rectilinear projection. It induces a distortion in the

shape of galaxies in a similar way as the cosmic shear,

which can be directly derived from astrometry parame-

ters. Zhang et al. (2019) proposed a method to use the

field distortion to evaluate the accuracy of shear recov-

ery directly on real galaxies, by comparing the measured

field distortion induced shear (FDS) and the true field

distortion inferred from astrometry. This is known as

the field distortion test. We refer to Zhang et al. (2019)

for a derivation of the FDS equations.

We use the FD test to evaluate the performance of our

PSF model on real galaxies, and compare the results of

polynomial and random forest. We evaluate the true

FDS, g1(FD) and g2(FD), against the FDS recovered

from galaxies, g1(gal) and g2(gal).

Fig. 7 compares the FD test results for SNRF ≥ 4 (Li

& Zhang 2021), after the first and second interpolation.

Note that the FDS signals are removed from the galax-

ies. The x-axis represents the true FD signal and the

y-axis the difference between the recovered FD signal

from astrometry and the true one. The results after the

first interpolation clearly show the imprints of the PPS
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residuals of fig. 2, and suggest that all galaxies with a

FD signal of |g1,2(FD)| > 0.02 should be removed from

the shear catalogs, as their PSF models are not reliable.

We find a significant improvement after the second in-

terpolation, particularly in the |g1,2(FD)| > 0.02 range.

This improvement allows the shear catalog to include

a much larger number of galaxies, thus enhancing its

statistical power.

Fig. 7 shows that although random forest obtained

slightly smaller PPS residuals compared to the polyno-

mial case, both methods perform equally well in pre-

dicting the PPS model at galaxy positions. This results

demonstrate the efficacy of the FD test in evaluating

the PSF reconstruction accuracy directly on galaxy po-

sitions.

4.5. Further improvements

Figure 8. Field distortion signals (g1, and g2, top panels)
and smoothed PPS residuals (e1, and e2, bottom panels).

After smoothing the PPS residuals shown fig.5, we

find an interesting phenomenon: the PPS residuals show

a very small but systematic slope, similar to that shown

by the field distortion induced shear (FDS). Fig.8 dis-

plays the FDS (g1 and g2), and the ellipticity residuals

(e1 and e2), which show a clear correlation. This cor-

relation was not observed earlier mainly because this

effect is too small and it was covered by the noisy PPS

residuals signal.

We perform a third interpolation that aims to correct

for this correlation. As we observe in fig.8, the system-

atic PPS residual is now global, thus we perform a single

interpolation on the scale of the whole exposure.

As in the second layer of interpolation, we first rescale

the PPS residual stamps—obtained after the second in-

terpolation—to a reference PSF FWHM of 1 arcsec, in

real space. We place them into a single exposure and

apply principal component analysis (§4.2) to the PPS

residual stamps in entire exposure. We use 100 princi-

pal components in our analysis. To find this number, we

evaluate the quality of our PPS model for different num-

ber of PCs, using the field distortion test. Fig. 9 shows

the correlation between the PPS residuals (e1 and e2)

and the FD signal (g1 and g2) for different number of

PCs (10, 20, 30, 50, and 100). From 10 to 50 PCs,

we observe an clear improvement as the number of PCs

increase, with the results stabilizing after 50 PCs, with-

out a noticeable improvement. Based on these results,

we conclude that a minimum of 50 PCs is necessary to

capture all the features of the PPS residuals. However,

it is important to note that these results might vary

depending on the specific dataset, thus we recommend

maintaining the number of PCs above 50, ideally 100,

to ensure optimal performance.

Using all available data, each set of PC coefficients is

fit to a polynomial of third order, building a model for

the PC coefficient. These models are used to predict the

PC coefficients at different positions on the exposure.

Next, a model for the PPS residuals is built for each

coordinate on the exposure as a weight sum of the PCs,

weighted by the predicted PC coefficient at that posi-

tion. Lastly, we rescale the PPS residual model back

to its original PSF size, as in §4.3. This PPS residu-

als model is added to the PPS model after the second

interpolation, building our final PPS model.

Fig. 10 compares the PPS residuals with the field

distortion shears after the second and third interpola-
tions. Although we observe a slight improvement after

the third interpolation, this is not quite significant. We

have explicitly tested various polynomial orders for our

third interpolation, ranging from 2 to 6. The third or-

der demonstrated the best performance. In addition,

we have also tested our interpolation using random for-

est, but in this case it performs significantly worse than

polynomial, likely due to overfitting.

We summarize all the steps of our PSF reconstruction

scheme in a flowchart shown in fig. 11.

5. CONCLUSION

Point spread function (PSF) reconstruction is a crucial

step towards accurate shear measurements, as it directly

affects the observed galaxy morphology. Although cur-

rent PSF reconstruction methods can capture most of
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Figure 9. PPS residuals versus field distortion signal at the position of the stars. Different curves represent different number
of PCs. The left panel shows the results for e1 vs g1 and the right panel shows the results for e2 vs g2.

Figure 10. PPS residuals versus field distortion signal at the
position of the stars. We compare the results after the second
interpolation (blue curves) and after the third interpolation
(red curves). The top panel shows the results for e1 vs g1
and the bottom panel shows the results for e2 vs g2.

the PSF features, there are often some PSF residuals

remaining that limit the accuracy of, e.g., shear mea-

surements. It is therefore essential to develop new tech-

niques that can further improve current PSF reconstruc-

tion methods. In this work we introduce a novel PSF

reconstruction method composed by three layers of in-

terpolation, following a hierarchical scheme. Using data

from the second data release of the Hyper Suprime-Cam

(HSC DR2) as an example, our method significantly re-

duces the systematic PSF residuals, improving the PSF

model.

The first layer of interpolation (§3.2) is a 2D polyno-

mial fitting of third order to the power spectrum of the

stars, pixel-by-pixel, on each CCD separately. This in-

terpolation captures most of the spatial features of the

PSF, building our initial PSF model.

The second layer of interpolation, described in §4, is
the most important and novel part of this work. In this

layer we model the systematic PSF residuals remaining

after the first interpolation, using the data of all the

exposures simultaneously. Note that to do so, we need

to first uniform the image sizes of the PSF residuals.

We apply PCA to the PSF residuals and build a model

for each principal component coefficient. We then build

the PSF residual model as a weighted sum of the prin-

cipal components, with the weights being the predicted

PC coefficients. To make corrections on the PSF model,

we rescale the PSF residuals model back to the origi-

nal PSF size of each exposure and add it to the original

PSF model. Fig. 5 and fig. 6 show the PSF residuals

of our improved PSF model, for polynomial and ran-

dom forest interpolations, respectively. In both cases

our method successfully removes most of the system-

atic features of the PSF residuals. In addition, we test

our model directly on real galaxies, using the field dis-

tortion test (§4.4). We obtain significant improvements

compared to the results of the first interpolation. Fig. 7

shows the field distortion test results for the cases of

polynomial and random forest interpolations. Both in-

terpolations have comparable performances, leading to

very small shear biases.

In §4.5 we study a correlation between the PSF resid-

uals and the field distortion signal, which is found after
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Figure 11. Structure of our PSF reconstruction method, including three layers of interpolation.

smoothing the PPS residuals after the second interpo-

lation (see fig.8). In this case, the systematic features

are global, hence we perform a single interpolation on

the exposure level, making use of all available exposures

together. As in the second interpolation, we first rescale

the PSF residuals to a common size. Then, we apply

PCA to the entire data, and build a model for each PC

coefficient. Our new PSF residuals model is built as

a weighted sum of the principal components, with the

weights given by the predicted PC coefficient at each

position on the CCD. Lastly, we rescale the PSF resid-

uals model back to the original PSF size of each expo-

sure, and add it to the PSF model. Fig.10 presents the

PPS residuals versus the field distortion shears, showing

a small improvement after our third interpolation, al-

though not quite significant. Nevertheless, this effect is

minor and does not significantly impact the PSF model.

Overall, our model introduces a way to model the sys-

tematic PSF residuals, successfully removing most of the

systematic PSF residuals in HSC DR2. In the current

framework, our machine learning approach (random for-

est) performs similarly to polynomial, in the second in-

terpolation. More exotic machine and deep learning al-

gorithms may further improve the interpolation, reduc-

ing the PSF residuals.

In conclusion, our method aims to be a stepping stone

towards building better PSF models, reducing the sys-

tematic biases induced by the PSF and helping produce

more accurate and reliable shear catalogs, which are es-

sential to the understanding of the distribution of dark

matter, galaxy evolution, and to constrain cosmological

parameters.
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