
Optimal Experimental Design for Large-Scale Inverse

Problems via Multi-PDE-constrained Optimization

Andrea Petrocchia,∗, Matthias K. Scharrerb, Franz Pichlerb, Stefan
Volkweina

aUniversity of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany
bVirtual Vehicle Research GmbH, Inffeldgasse 21a, 8010, Graz, Austria

Abstract

Accurate parameter dependent electro-chemical numerical models for lithium-
ion batteries are essential in industrial application. The exact parameters of
each battery cell are unknown and a process of estimation is necessary to
infer them. The parameter estimation generates an accurate model able to
reproduce real cell data. The field of optimal input/experimental design deals
with creating the experimental settings facilitating the estimation problem.
Here we apply two different input design algorithms that aim at maximizing
the observability of the true, unknown parameters: in the first algorithm, we
design the applied current and the starting voltage. This lets the algorithm
collect information on different states of charge, but requires long experi-
mental times (60 000 s). In the second algorithm, we generate a continuous
current, composed of concatenated optimal intervals. In this case, the exper-
imental time is shorter (7000 s) and numerical experiments with virtual data
give an even better accuracy results, but experiments with real battery data
reveal that the accuracy could decrease hundredfold. As the design algo-
rithms are built independent of the model, the same results and motivation
are applicable to more complex battery cell models and, moreover, to other
applications.
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1. Introduction

Mobile appliances and vehicles containing lithium-ion batteries have be-
come ubiquitous over the recent decade. It is thus paramount to model and
simulate lithium-ion cells efficiently and accurately. High accuracy in sim-
ulation requires the internal states of a cell to be known. These internal
states may include a continuum of physical quantities, e.g., potentials, con-
centrations and temperature, i.e., a virtually infinite number of individual
values. Very few quantities may actually be measured non-intrusively, e.g.,
cell potential and temperature on the outside.

Typical high-fidelity simulation models are based on the equations de-
scribed by Doyle-Fuller-Newman (DFN) model in Newman and Tiedemann
(1993); Newman and Thomas-Alyea (2004). The DFN model is a homoge-
nized system of PDEs, that typically comprise of more than 50 parameters,
a vast majority of which cannot be determined experimentally.

This model may be simplified further to a Single Particle Model (SPM)
by neglecting spatially resolved effects, e.g., concentration differences among
particles of the same electrode. Although it is known to result in less accuracy
in general, it is still possible to achieve very high model accuracy by taking the
SPM’s limitations into account, e.g., currents below 1 C, i.e., the equivalent
of a full discharge in more than 1 hour, as described in Santhanagopalan
et al. (2006); Ning and Popov (2004).

The parameter estimation for lithium-ion battery models is usually ex-
tremely time consuming. One needs very long input currents and optimiza-
tion time; for example, in Reddy et al. (2019), in order to approximate 44
battery parameters an input current longer than 200 000 s (approximately
55 hours) is used, and even the optimization method lasts for several hours.
The estimation process is based on a fitting argument: chosen a certain input
current, we observe the output voltage of the battery cell. The parameter
estimation is then an optimization problem based on minimizing the discrep-
ancy between the mathematical model and the real experimental response of
the battery.

Treating non-convex optimization problems, it is possible to converge to
a local minimum, possibly far from the true hidden parameter. For many op-
timization problems this can depend on the user-defined input, whose choice
change drastically the results of the parameter estimation.
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In the parameter estimation framework the input current is arbitrarily
chosen and, as observed in many works (e.g., López et al. (2016)), the cur-
rent impacts strongly on the identification of some of the parameters. For
example, in Liu et al. (2016) an optimized battery cycling is linked to an im-
proved parameter identifiability and therefore to robust battery health and
experiment safety conditions.

The field of optimal design of experiment can help define, modify and im-
prove the battery modeling framework. In the last decades, the literature con-
cerning design of experiment has been extensive; we recommend some work
about classic design of experiment in Goodwin and Payne (1977); Pázman
(1986); Rafaj lowicz (1986); Pukelsheim (2006); Atkinson et al. (2007); Pron-
zato and Pázman (2013). Different techniques of design of experiment have
been used for building new battery models, or manufacturing optimized lay-
outs in order to improve conditions such as ageing, thermal design and charg-
ing properties; see, e.g., Franceschini and Macchietto (2008); Román-Ramı́rez
and Marco (2022).

The focus of this work focuses on the design of optimized inputs in the
context of parameter estimation; see, e.g., Mehra (1974) for a survey on
optimal input design for parameter estimation in dynamic systems. The
optimal input design is strictly related to the optimal design of experiment,
and the main purpose of such techniques in the framework of estimation is
to improve the observability of the system.

It is well known that the many parameters in electrochemical lithium-ion
battery models have different magnitude of observability – and hence of iden-
tifiability. Some parameters are for example more sensitive to extreme states
of charge, and some are more sensitive to fast changes of applied current
– the so-called high frequency dynamics. Standard methods of experimental
design analyze the sensitivities of the parameters, namely measuring how the
single parameters impact the observable quantities. In Schmidt et al. (2010)
the parameters of a modified single-particle model are divided using a group-
ing algorithm and it is suggested that using experimental design methods it
would be sensible to generate targeted data for the different groups.

In Park et al. (2018) an optimized excitation input for a parameter esti-
mation problem is generated from a collection of predefined inputs. On the
other hand, works that do not define a-priori a collection of inputs include
Pozzi et al. (2018) and Pozzi et al. (2020), where the input design of experi-
ment for parameter identification problem is analyzed for both an isothermal
and not single particle models. In particular, in Pozzi et al. (2020) global
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sensitivities are analyzed in a more rigorous approach, and a more precise
parameter estimation is achieved.

In this work we start with an adaptive algorithm that, starting from some
initial guesses for the parameter µ0 and sequentially generate new input
arrays u[n] at each iteration n > 0. Each of these inputs is designed in
order to maximize the observability of the current parameter, and with it
we generate data and optimize the parameter µn; the inputs are chosen in
order to improve or facilitate the parameter optimization and the convergence
to the unknown underlying parameter µ∗, by collecting different pieces of
information. Hence, the result of the input design algorithm is not intended
to be a single “optimal” input, but rather a collection of inputs that collects
the most information. In a later variation of the input design algorithm, we
also try to optimize the experiment resources, such as minimizing the length
of the excitation input. In this framework we defined optimized current sub-
intervals, with ideas similar to the settings in Pozzi et al. (2018).

To quantify the information of a parameter µ carried by the current
experiment, an information matrix is used, defined by using the so-called
sensitivities, which measures how the output is sensitive to change in the
model parameters. This information matrix resembles the Fisher informa-
tion matrix, a common used statistical object and known lower bound to
the covariance matrix generated by the parameter estimation. Another in-
terpretation of the Fisher information matrix is mentioned, among others, in
Uciński (2005), where it is seen as an approximation of the Hessian of the
least-squares problem given by the parameter estimation problem. Hence,
improving the well-conditioning of the approximated information matrix can
also help in making the cost function more convex around the unknown pa-
rameter – especially useful given the general non-convexity of the estimation
problem.

In the standard battery cell parameter estimation applied currents are
many hours long, in order to observe the battery as long as possible as collect
enough information to infer the tens of parameters. Our goal is to create a
collection of input current profiles much shorter than these, lasting just a few
minutes, to infer 9 of the most observable parameters. One reason to treat
the result of the design as a collection of inputs rather than a single “optimal”
input is that in such a complex setting, we cannot expect to maximize the
observability of all the hidden parameters with just one such short inputs,
and thus we hope to capture the different information with different settings
– or inputs.
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2. Methods

This section has the following structure: we begin in Section 2.1 with the
description of the numerical model. Then, we proceed to discuss the input
design algorithm in Section 2.2, followed by the discretization of the design
optimization and parameter estimation problems in Sections 2.3 and 2.4.
In Section 2.5 we propose a modification of the design in order to improve
a weakness of the previous framework and cut the experimental time. We
consider the analysis of real battery data in Section 2.6 in order to study the
quality of the generated optimal design.

2.1. The numerical model

The numerical model used in this work is based on the assumption that
an electrode may be fully represented by one spherical symmetric particle –
hence it is referred to as SPM. In each particle per electrode i ∈ {A,C},
with A and C marking cathode and anode, respectively, the scaled lithium
concentration ξi ∈ [0, 1] along the respective radius (r ∈ [0, Ri]) for any time
t ∈ [0, tf ] (tf > 0) is governed by the system of equations

ξ̇i(t, r) − 1

r2
∂r
(
r2Di∂rξi(t, r)

)
= 0, (t, r) ∈ (0, tf)×(0, Ri), (1)

where Di > 0 is each particle’s scaled diffusion constant. The spheres’ sym-
metry is exploited by setting the natural center boundary condition at ri = 0
to ∂rξi(t, 0) = 0. The boundary condition at the particles’ outer border Ri

is modeled by

−Di∂rξi(t, Ri) =
1

ρicm,i

ji(ξi(t, Ri), ui(t)), t ∈ (0, tf), (2)

where ρicm,i is the scaling constant of ξi(t, r). The connection between mass
transport and the electric domain is modeled in (2) by the Butler-Volmer
expression

ji(ξi(t, Ri), ui(t)) = j0i (ξi(t, Ri)) sinh
(

F
Rϑ

(ui(t) −Oi(ξi(t, Ri))
)
, (3)

where R is the universal gas constant and ϑ is the temperature. As the SPM
formulation is expressed mainly by the open-circuit potentials Oi(ξi(t, Ri)) of
the two electrodes, these are represented by a Redlich-Kister sum as derived
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in Karthikeyan et al. (2008)

Oi(ξi(t, Ri)) = U0,i + Rϑ
F

ln
1 − ξi(t, Ri)

ξi(t, Ri)

+ Rϑ
F

ni∑
k=0

Ai,k

(
(2ξi(t, Ri) − 1)k+1 − 2ξi(t, Ri)k(1 − ξi(t, Ri))

(2ξi(t, Ri) − 1)k−1

)
,

(4)

where U0,i is the open-circuit potential offset for each electrode. Throughout
the rest of the paper, we fix U0,A = 0 and use U0 as a simplified substitute
for U0,C . The basic exchange current is modeled by

j0i (ξi(t, Ri)) = exp

(
log ki + F

Rϑ

(
(ξi(t, Ri) − .5)Oi(ξi(t, Ri))

−
∫ ξi(t,Ri)

0

Oi(x) dx
))

, t ∈ (0, tf),

(5)

where ki is the proportional reaction rate factor. For implementation, k̃i :=
log ki is used. The electric boundary condition is applied by the current
icell(t)

3mi

ρiRi

Fji(ξi(t, Ri), ui(t)) = −icell(t), (6)

where F is Faraday’s constant. The resulting cell voltage vcell is then defined
as

uC(t) + uA(t) + icell(t)RI = vcell(t), (7)

where RI is the total inner resistance.
Our work concerns the estimation of nine parameters of this model, se-

lected on the basis of their high impact on the model behavior – since, as
mentioned for the cases of Schmidt et al. (2010); Park et al. (2018), different
parameters are more or less identifiable.

The collection of considered parameters is depicted in Table 1, together
with lower and upper bounds. In particular, the diffusion coefficients DC , DA

appear in (1) as well as the initial state of charge of the anode ξA – since ξC
can be recovered algebraically from a given cell voltage v|t=0. The total inner
resistance RI appears in the voltage equation (7), while the masses mC ,mA
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Parameter Meaning Lower bound Upper bound

DC Cathode diffusion coefficient 0.0001 0.01
DA Anode diffusion coefficient 0.0001 0.01
ξA Anode initial state of charge 0.007 0.2
RI Inner resistance 0.003 0.07
mC Cathode active mass 0.01 0.052
mA Anode active mass 0.006 0.034

k̃C Cathode reaction rate -20 -1

k̃A Anode reaction rate -23 10
U0 Cathode 0th RK parameter 3 4

Table 1: Unscaled parameter names and bounds.

are involved in the current equation (6). The reaction rate logarithms k̃C , k̃A
are relevant in the exchange current formula (5) and, finally, the first Redlich-
Kister term U0 is considered, while all the other model parameters are set to
experimental acceptable standards.

As these values have different cardinalities, we apply the following scal-
ings:

µ1 := log10

(
DC

DL
C

)
, µ2 := log10

(
DA

DL
A

)
, µ3 :=

ξA
(ξLA + ξUA)/2

,

µ4 :=
RI

(RL
I + RU

I )/2
, µ5 :=

mC

(mL
C + mU

C)/2
, µ6 :=

mA

(mL
A + mU

A)/2
,

µ7 := k̃C − (k̃L
C + k̃U

A)/2, µ8 := k̃A − k̃C , µ9 :=
U0

(UL
0 + UU

0 )/2
.

Finally, we report the scaled parameter bounds in Table 2.

2.2. The input design algorithm

From now on, we use the battery model as a black box system that takes a
model parameter vector µ ∈ Rd and a current density function i : [0, tf ] → R
input variables, whereas the voltage vµ,i : [0, tf ] → R is the output variable.

We use an adaptive algorithm that starts from an arbitrary parameter
µ0 and, for n ≥ 1 (called design iteration), the algorithm iterates on three
phases:

• In the first phase we generate a new current function i[n].
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µL µU

0 2
0 2

0.0676328502415459 1.93236714975845
0.0821917808219178 1.91780821917808
0.32258064516129 1.67741935483871

0.3 1.7
-9.5 9.5
-3 11

0.857142857142857 1.14285714285714

Table 2: Bounds for the scaled parameters

• In the second phase we read and store some data w[n] derived by using
the current i[n].

• The last phase is the parameter optimization/estimation using previous
data {w[1], . . . , w[n]}, with which we obtain the parameter µn, approx-
imation of the true hidden parameter µ∗.

There are different ways of ending this algorithm. One possible way is to
stop the algorithm as soon as the last generated current function is sufficiently
close to one of the already computed currents i[k], k = 1, . . . , n − 1, in our
collection. Therefore, we use the stopping criterion

min
i∈{i[1],...,i[n−1]}

∥i[n] − i∥L2(0,tf) < ε (8)

with a properly chosen tolerance ε > 0. However, a known limitation is that
we have no guarantee of convergence. This fact can potentially generate an
infinite number of current inputs. In the cases, where we have used this
criterion, we have also set a maximum number of iterations as a safeguard.
An alternative termination is to fix a priori a determinate number of inputs
and forcing the algorithm to generate inputs sufficiently far from each other,
by penalizing the closeness between them. We will later describe in detail
this forced generation of inputs.

Next, we introduce a so-called symmetric information matrix in order to
quantify the uncertainty produced by a certain input i. As in Atkinson et al.
(2007), we define the information matrix M ∈ Rd×d by using the sensitivity
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variables, described in details in the next subsection. Then, the uncertainty
given by an information matrix is defined as the inverse by applying the D-
optimal design, or D-criterion (see, e.g., Goodwin and Payne (1977); Atkinson
et al. (2007)), i.e.,

ϕ(M) := − log (det (M)) ,

which is equivalent to minimizing the generalized variance of the parameters
– as discussed, e.g., in Atkinson et al. (2007). We can also define the uncer-
tainty function by using the eigenvalues of M – especially convenient when
the dimension d is high and evaluating the determinant gets computationally
expensive. Indeed, if Λ := {λ1, . . . , λd} is the spectrum of M, then

ϕ(M) := log

∏
λj∈Λ

1

λj

 .

Observe that we can also interpret this criterion as minimization of the vol-
ume of the confidence ellipsoid for the parameters.

2.3. Approximation of the uncertainty measure

We fix the time step to δ = 0.1 seconds, so that we have K = 600
time steps in an interval of 60 s. Time steps tk := kδ for k = 0, . . . , K
are discretized uniformly, and all current functions will be discretized as
step function evaluated on such time steps, so that the current information
information is compressed into the input array u – or, simply, input. Given
nu ∈ N+ and τu := tf/nu, the array

u := [u1, . . . , unu , v0] ∈ Rnu+1 (9)

corresponds to the current function

iu(t) :=


u1 for 0 ≤ t < τu,

u2 for τu ≤ t < 2τu,

...

unu for (nu − 1)τu ≤ t ≤ tf ,

and the last component, v0, is the initial voltage of the battery, which is
required by the numerical model. With vµ,u : [0, tf ] → R we indicate the
output voltage given the parameter µ and input array u (hence given current
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iu and initial voltage v0). We seldom use its discretization vµ,u evaluated on
the time steps {tk}Kk=0.

The sensitivity variables (or, simply, sensitivities) are usually evaluated
by solving the so-called sensitivity equations. However, in a black-box model
they can only be approximated by using finite differences. For 1 ≤ j ≤ d,
the j-th discretized sensitivity sj = sjµ,u ∈ RK+1 is defined as

sjµ,u :=
vµ+νej ,u − vµ,u

ν
≈ d

dµj

vµ,u,

where ej is the j-th Euclidean basis element, and ν := 10−3. Let us mention
that the approximation of the sensitivities can be improved by using other
(and more accurate) methods to evaluate the partial derivatives, such as
automatic differentiation (see, e.g., Rall (1981)).

Then, the information matrix M = Mu
µ, evaluated at some parameter µ

and input array u, is defined as

(M)j,l :=
K−1∑
k=0

sjkslk + sjk+1s
l
k+1

2
(tk+1 − tk), 1 ≤ j, l ≤ d,

namely, as the approximation of the L2 inner product ⟨sj, sl⟩L2(0,tf) via the
trapezoidal rule, where the sensitivities are evaluated at the parameter µ and
the current iu.

As we want to maximize the total information coming from a collection
of inputs, we modify the information matrix of each design iteration. In
particular, we simply sum the information matrices, thus at design iteration
n we define the optimal design function

Φ(u) := − log10

(
det

( n−1∑
m=1

M
[m]

µn−1 + Mu
µn−1

))
+ γ ∥u∥22,

where M[m], m = 1, . . . , n− 1, denotes the information matrix corresponding
to input array u[m], γ := 10−4 accompanies a regularization term and ∥ · ∥p
indicates the ℓp-norm for 1 ≤ p ≤ ∞.

Hence, to find a new input array we solve the optimization problem

min
u∈Rnu+1

Φ(u) subject to umin ≤ u ≤ umax, (10)
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where umin and umax are the bounds in Rnu+1 chosen as

− 8.8 =: umin
j ≤ uj ≤ umax

j := 8.8, j = 1, . . . , nu,

3.3 =: umin
nu+1 ≤ v0 ≤ umax

nu+1 := 4.1.

in our experiments, where the unit of current is A and the unit of the initial
voltage is V.

The optimization problem (10) is solved numerically using the routine
fmin l bfgs b from the scipy Python library; see, e.g., Virtanen et al.
(2020).

As mentioned earlier, when we want the algorithm to generate a fixed
number of inputs, we need to make them distinct, since there is no infor-
mation gain when the input generated is equal to one we already have. We
therefore define an alternative (nonsmooth) optimization function that en-
forces the new inputs to be sufficiently far from each other

Φ̂(u) := Φ(u) +
∑

u[n] previous
controls

1

1 + 100 ∥u − u[n]∥∞
. (11)

The penalizing function, as well as the scalar 100 have been chosen in an
intuitive way in order to guarantee that we stop our algorithm provided our
current control is sufficiently far from the already computed controls, but
also not to modify the initial optimization problem too strongly.

2.4. Parameter estimation

Assuming now that the input vector u (hence the current i) is fixed, we
want to find the parameter vector µ minimizing the discrepancy between our
parametrized model and data coming from the real application. We assume,
for the moment, that the data is given by the voltage corresponding to some
unknown parameter µ∗, evaluated on the time array t, i.e.,

wu = vµ∗,u : [0, tf ] → R,

and its discretization is indicated as wu := vµ∗,u ∈ RK+1. This means that
we consider noiseless virtual data.

For the numerical optimization we use a least squares method (from
scipy.optimize, see Branch et al. (1999)) to fit vµ,u to wu. In particular,
we minimize the relative error eu(µ) := (vµ,u − wu)/wu (where the division
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is intended component-wise) by in particular solving

min
µ∈Pad

J(µ) :=
1

2

∥∥∥∥vµ,u − wu

wu

∥∥∥∥2
2

, (12)

where Pad ⊂ Rd is the closed, convex set of admissible parameters – in our
case the box-constrained set defined by µL ≤ µ ≤ µU in Table 2.

In the framework of multiple data, we can simply merge information
by stacking the data vectors together. In particular, given u[1], . . . , u[n] in-
put arrays generated by the algorithm, and w[1], . . . ,w[n] associated data
vectors (with w[n] := wu[n] = vµ∗,u[n]), then we want to fit vµ,u[1] to w[1]

and so on. We concatenate all vectors of relative error into one vector
[eu[1](µ), . . . , eu[n](µ)] ∈ Rn(K+1) and we minimize its ℓ2-norm. The parame-
ter generated at OID iteration n is then the optimizer µn. We mention that
in order to optimize computing time, we evaluate voltage vectors in a parallel
way for all different current inputs.

We later explore the effect of the input design on the parameter optimiza-
tion problem by analyzing the Hessian matrix H of the least-squares function
J defined in (12), evaluated in the optimum µ∗. In particular, we analyze
the value

β := λmax(H)/λmin(H), (13)

i.e., the conditioning number of the Hessian, where at iteration n this value
will be indicated as βn – as the Hessian matrix changes at each OID iteration
n. When this value decreases, the smallest eigenvalue is growing because in
this construction the biggest eigenvalue cannot decrease, hence indicating
positivity of the Hessian and convexity of the optimization problem. Let us
comment on the fact that we cannot use the term β in the definition of the
optimal input design optimization problem, since this quantity depends on
knowing the hidden parameter µ∗. Nonetheless, we hope to minimize this
value indirectly.

2.5. Another design framework

Generating ten different short inputs sounds like a good idea if we want to
look at the behavior of a battery cell in all different states of charge: starting
from different initial voltages serves exactly this purpose. But there might
be a problem in the actual use of these different current profiles, since we
cannot evaluate all inputs at the same time in a parallel way – as we do in the
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numerical model. On the contrary, before and after every input we need a
phase of preparation to bring the battery cell at the right initial voltage, and
a long phase of rest to let the internal electro-chemical dynamics stabilize.
For this reason, even if ten different inputs of 60 s each together sum up to
600 s, actually setting up and running the experiment can take more than
60 000 s.

Hence, we have modified the design framework and structure in order to
avoid this problem. The idea is to generate a sequence of new input intervals
successively, rather than to use them as entirely different current profiles. As
a consequence, we may not choose the initial voltage of each interval, because
this will be given by the ending voltage of the previous interval. Rather, we
may only choose the initial voltage, namely the starting voltage of the first
interval; this is chosen as 3.9 V, equivalent to appr. 75 % SOC.

We also realize that we need a resting interval in order to capture the long-
term dynamics. Hence, our input is translated into six “jumps” of a 120 s
high-frequency time interval followed by a 600 s resting phase. An example
of the first input with arbitrary jumps is plotted in Figure 1. This time
we are not arbitrarily choosing the first input u[1] = (u

[1]
1 , . . . , u

[1]
6 ), but it is

found in the first step of the OID algorithm. In the following iterations, we
find input array u[n] by optimizing the uncertainty of the full-concatenated
current input, i.e., we add the new input to the old one and hence consider
only one longer input. See Figure 1 for a visual explanation.

2.6. Analysis on real battery data

While we evaluate these optimal inputs using virtual data wu = vµ∗,u

in the algorithm, we want to check how beneficial they are in a real-world
parameter estimation problem. To this end, we have run experiments on a
real battery cell and collected the measurement data. The measured voltage
data obtained through cycling two Molicel INR21700-P45B commercial cells
is used in this work. For a given starting voltage, the cell is first fully charged
at a constant current of 4.5 A and then, at reaching the top voltage of 4.2 V,
switch to constant voltage mode until the magnitude of the current tapered
down below 0.05 A. After a resting period of 600 s, the cell is discharged
at 4.5 A to the given voltage followed again by a constant voltage step until
0.05 A is underrun. Then, the designed current profile is applied in a “current
simulation” step. All tests were carried out using an Arbin LBT21084HC
battery testing system and a Memmert incubator with Peltier cooling (model
IPP600) for maintaining the temperature at (25±2) ◦C by forced air cooling.
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Figure 1: Visual arbitrary example of the concatenated-inputs setting. Above: initial
current function, where the input variables define the 6 jumps and a successive rest phase
is imposed. Below: once the first current function is fixed, the next input array u[2] is
optimized by optimizing the concatenated current function i[2].

We want to use these real-world data to measure the effect of the op-
timal input design on the parameter estimation. This data also includes
preparation steps at the beginning and the resting phase at the beginning,
and depending on the test we will use information coming from the extra
phases or not. Furthermore, the time stepping was chosen depending on the
situation, varying between a minimum of 0.0002 s (used in high-frequency
dynamics) and a maximum of 1.0 s (used in the resting phases).

3. Results and Discussion

3.1. First input design: collection of inputs

We have applied the input design algorithm with piecewise constant in-
puts consisting of 24 jumps, therefore each continuous sub-interval is 2.5 s
long and the input dimension is 25. We furthermore set the maximum num-
ber of inputs to 10 and arbitrarily fix the first input as

u[1] := [−1,+1,−1,+1, . . . ,−1,+1, 3.7] ∈ R25. (14)
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This corresponds to a quickly alternating input applied to a roughly mid-
charge battery. The generated inputs are plotted in Figure 2.
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Figure 2: Input functions i[n], n = 1, . . . , 10 generated by the algorithm. In the lower left
corner the initial voltages v0 are indicated.

Notice how some of the inputs look very similar, but the penalization
function introduced in (11) guarantees that we do not use the exact same
input array more than once.

In order to analyze the effect of the input design algorithm, in Figure 3
we plot the change in different quantities, such as the design algorithm the
uncertainty function Φ̂, the parameter optimization cost J , the relative er-
ror erel(µn) := ∥µ∗ − µn∥2/∥µ∗∥2 and the sequence βn defined in (13). In
the same plot, in the lower area we plot a qualitative analysis of the input
design, where we compare the results of 100 parameter optimizations with
randomized initial parameter at the beginning and at the end of the algo-
rithm, i.e., comparing the information before (in dark colored bars) and after
(in light colored bars). Firstly, we can comment on the properties of the ini-
tial input u[1] defined in (14): while it looks like the error J is already low
(1.77·10−10) at the initial parameter, the relative error of the parameter reads
in fact 2.22. Namely, the initial input holds little information and it does
not provide data such that the parameter optimization approximates µ∗. We
can observe this in the bar plot, too: the blue bars do not approximate the
parameter indicated with the red cross most of the time.
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Figure 3: Top, blue: information corresponding to each design iteration n. First line:
uncertainty function and cost evaluated in the optimal parameter. Second line: Euclidean
norm of the error between the optimal parameter and the true parameter and value βn

given in (13). Bottom: qualitative statistical study for the input design algorithm. Dark
bars (blue) show the results of 100 parameter estimations using only the input given by
u[1]. Light bars (orange) show the results using the optimal collection of inputs. The red
crosses mark the hidden parameters.
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During the design algorithm the uncertainty function, the parameter opti-
mization cost and the relative error do not decrease monotonously. The OID
algorithm converges to the true parameter after some preliminary steps, in
particular reaching the neighborhood of µ∗ in the fourth iteration. This
could be explained by the behavior of the sequence βn, which decreases
monotonously, reaching a plateau after four iterations, when the algorithm
finds the hidden parameter with a relative error of approximately 3.73 ·10−10.

In the bar plots of Figure 3 we can observe that the input design im-
proves the parameter estimation significantly: with a non-informative input
(dark bars), the parameter estimation fails almost every time, while using
the collection of selected inputs (light bars) the convergence to the hidden
parameter (the red cross) improves greatly.

Although the converge to the optimal parameter does not happen always,
the optimization results cluster around the optimal parameters. Overall, we
can see a degree of bias in the bar plots of Figure 3 – namely, we can guess
the hidden parameter in an easier way. However, this framework might find
in its applicability some unexpected counter-effects, which we discuss in the
next section.

3.2. Second input design: concatenated input

In this setting we generate 9 inputs, each lasting 120 s: therefore, concate-
nating the respective jumps and rest phases together we reach an “optimal”
input lasting 6480 s, i.e. 108 minutes. This optimal current i[9] generated by
the algorithm is plotted in Figure 4 together with the corresponding output
voltage vµ∗,u[9] produced from the battery cell model using such input. Fur-
ther information for each OID iteration are also plotted in Figure 4. In this
case we can observe a non monotone decrease of the quantity βn, but still a
good convergence of the parameter optimization in later iterations, reaching
a relative parameter error of 9.74 · 10−12.

Similar to what we did previously, in the bottom part of Figure 4 we plot
the result of 100 separate executions of the parameter optimization in order
to show the estimation error for randomized initial parameters. We observe
an overall better consistence and accuracy in the convergence to the true
parameter; considering the fact that we the overall experiment time will be
reduced at least 4 times, as shown in the next section, we regard this as a
great improvement of the input design presented in the previous section.
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Figure 4: Top left, in black: optimal input generated by the algorithm and corresponding
output voltage generated by the battery cell model. Top right, in blue: plots of different
quantities at OID iteration n. Bottom bar plots: qualitative statistical results of the
optimal parameter of 100 parameter estimations. The red crosses mark the true parameters
µ∗.

3.3. Real battery data

We consider four different situations, depending on two different factors:
whether we use the collection of inputs derived in Section 3.1 or the concate-
nated input derived in Section 3.2, and whether we consider the additional
data provided by the preparation and resting phases, or not. These choices
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are summarized in Table 3, and some of the results given in each test are
summarized in Table 4.

Cut data: Full data:
only impulses impulses + rest phases

Collection of inputs Test 1 Test 2
Concatenated input Test 3 Test 4

Table 3: Considered tests for the analysis of real data.

TESTS
1 2 3 4

Experiment time (s) 600 63,362 6,480 14,199
Data points 20,350 83,160 216,002 223,727

Optimization time (s) 800 154 550 450

Table 4: First line: total input time tf ; second line: number of data points; third line:
average time for the parameter optimization.

In each of these situations we run 100 parameter optimizations in order
to infer the unknown battery cell parameters. We analyze the quality of
the estimation using a bar plot, and we try to infer the true parameter by
proposing an optimal parameter. Since this is unknown, we finally perform
a qualitative error analysis on the proposed parameters given in each test.

In particular, we will propose three parameters µopt,2, µopt,3 and µopt,4

inferred from test 2, 3 and 4, respectively. For each of these parameters we
plot the output voltage produced by the numerical model vµ,u(t), as well as
the relative error given by the discrepancy with the real battery data w(t),
namely

e
rel,[n]

µopt,k(t) := (w[n](t) − vµopt,k,u[n](t))/w[n](t) for n = 2, 3, 4 and k = 2, 3, 4.

The results are shown in the upcoming figures.

Test 1

By counting only the 10 one-minute intervals, we get a relatively small
experiment time and number of data points. Although the optimization
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is longer than in other cases, we cannot identify the unknown parameters
with confidence. Even if we are using the same input collections as the
results shown in Figure 3, the bar plots shown in Figure 5 look much worse.
Therefore, in this case we conclude that this input design is not successful,
as we derive no hint about where the hidden parameters might be.
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Figure 5: Results for Test 1. Bar plots of qualitative analysis of 100 parameter estimations
starting from randomized initial guess.

Test 2

Since the production of the data necessary for Test 1 produces, by default,
the data used in Test 2, this test is necessarily more informative and hence the
estimation of the true parameter is more successful. However, the experiment
lasts for over 17 hours, with an average optimization time of about two and
a half minutes. As shown in Figure 6, we can identify a candidate µopt,2,
indicated with the blue mark.

The analysis of the model error given by the proposed parameter confirms
the quality of such parameter: for the inputs u[2] and u[3] the relative error
oscillates in the order of 10−3, while for the input u[4] the order of the relative
error is 10−2. The numerical model tuned with such parameter is therefore
an accurate simulator of the battery cell taken into consideration.
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Figure 6: Results for Test 2. Top: bar plots of qualitative analysis of 100 parameter
estimations starting from randomized initial guess; the blue cross finds the proposed pa-
rameter µopt,2; bottom: data, output and error generated by the proposed parameter.

Test 3

By construction, the time of the generated experiment is 108 minutes,
and the optimization over 216,002 points takes in average several minutes.
However, we can see that in this case the estimations gravitate around differ-
ent local minima. With µopt,3 we have indicated the most common optimizer,
indicated in Figure 7 with the blue mark.
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This parameter produces accurate results for the data w[3], but accu-
mulates a too high error in the higher voltage changes occurring in data
observations w[2] and w[4], hence not capturing very well the full range of
battery cell dynamics.
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Figure 7: Results for Test 3. Top: bar plots of qualitative analysis of 100 parameter
estimations starting from randomized initial guess; the blue cross finds the proposed pa-
rameter µopt,3; bottom: data, output and error generated by the proposed parameter.
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Test 4

As mentioned already, Test 4 is obtained by using the data of Test 3
together with the measurements available in the preparation and rest phases.
The candidate parameter is definitely more concentrated around a single
parameter µopt,4, plotted in Figure 8 with the blue cross. Counter-intuitively,
the optimization over a larger set of data produces in this case a faster
convergence in the parameter optimization. We interpret this effect as a
result of the well-posedness of the Hessian matrix and the convexity of the
parameter optimization.

We can see the results in Figure 8. The proposed parameter µopt,4 holds
good approximation of the 3 sets of data, comparable to the one given by
parameter µopt,2. The construction introduced in Section 2.5 leads to major
time cuts with the only impact being the optimization time, which averages
to about 154 s for Test 2 and 450 s for Test 4, since the number of data points
has almost tripled.

Comments on the accuracy of the optimizers

At a first glance, it seems that we cannot find a parameter to perfectly
replicate the data. This might depend on a number of factors. The first
justification comes from the fact that we are working with a simplified nu-
merical model with a reduced number of active, unknown parameters, and
therefore the approximation of a real battery cell data is indeed impossible.
We can also imagine that adjusting a number of parameters which now are
fixed – for example, the RK parameters – we can fit better to the data.

On the bright side, we can make considerations about the merit of the
input design. It has in fact improved robustness the parameter estimation,
because it has made it harder, i.e., it happens more rarely, to fall in other
local optima. While it is possible that a better fitting parameter is hiding in
another local optimum, it is highly unlikely.

It looks like the parameter inferred from Test 2, i.e., the longest experi-
ment, is the one better approximating the data. Test 4, which is over 4 times
shorter also produces a parameter that approximates well the real data dy-
namics. As usual, using more expensive experiments produces data of better
quality, while using shorter experiments might save time by sacrificing some
of the accuracy. We believe the main advantage of using the input design
algorithm is the enforcement of the well-posedness of the Hessian matrix cor-
responding to the parameter optimization problem. The short optimization
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Figure 8: Results for Test 4. Top: bar plots of qualitative analysis of 100 parameter
estimations starting from randomized initial guess; the blue cross finds the proposed pa-
rameter µopt,4; bottom: data, output and error generated by the proposed parameter.

times might be the best experimental benefit, as many optimization methods
work very well with convex problems.

The input design might be even more effective when applied to more com-
plex battery models, as it could be able to accurately represent the battery
cell in all conditions: it can indeed happen that our single particle model fails
at reproducing real battery cells in the settings chosen by the input design
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where valuable information lies, for example, for very high or very low states
of charge.

We can, of course, also argue that the parameter estimation has failed
because the input design was badly set up. We have selected inputs with
very restricted shapes and lengths in an arbitrary and intuitive way. For
example, with longer current jumps, or longer pauses, or in general longer
experiment, the input design could have found the optimal parameter repro-
ducing the data. Of course, the possibilities of generalization are endless,
and we encourage future works to obtain better results.

4. Conclusions

In this work we have applied an algorithm for the optimal input design
for the parameter estimation of a lithium-ion battery model. After introduc-
ing the numerical model, we have described a general iterative input design
algorithm, where inputs are chosen in order to maximize the observability
of the parameters, quantified using an approximated Fisher information ma-
trix. By discretizing the information matrix we then define the input design
problem as a finite dimensional optimization problem.

At first, we generate a collection of different input functions in order
to maximize the overall observation, i.e., the collective information. The
data given by this collection of input is indeed effective for the parameter
estimation, and we show the effect of the input design on the convexity of
the optimization problem. However, in the lab experiments, the use of the
optimal inputs results in extremely long experiment times, since before and
after each input some extra time needs to be taken into account, either for a
resting phase or for taking the battery to a certain state of charge.

For this reason, a second input design algorithm is used, where a contin-
uous, longer input is obtained by concatenation of optimal sub-intervals. In
this way, the problem of resting and state of charge preparation is avoided –
or at least done only once – and the overall experiment is shorter.

We derive four tests to interpret the effect of the input design and the
accuracy of the parameter estimation using real battery data. In three out of
four tests the input design can indeed make the parameter estimation easier,
in the way that it makes us aware of a common local optimum, which we
propose as the approximator of the unknown parameter.

Although we infer different parameters with different discrepancy between
the numerical output and the real battery voltage, we observe how the in-
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put design was able to iteratively generate a current profile facilitating the
parameter estimation, both in accuracy and in optimization time.

As mentioned, we believe that the advantage of the input design algo-
rithms would be more evident in more complex battery cell models, where
all the electro-chemical dynamics are reproduced and the data can be com-
pletely reproduced by the numerical model. In a wider scope, the techniques
of optimal input/experimental design propose a goal-oriented way of defining
experiment inputs and settings. Such designs might be built to guarantee
several mathematical properties and rigor. The management of resources,
such as time or energy, could be imposed a-priori in the design of the exper-
iments in order to prevent waste.
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