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Abstract

Proteins are essential to life’s processes, un-
derpinning evolution and diversity. Advances
in sequencing technology have revealed mil-
lions of proteins, underscoring the need for
sophisticated pre-trained protein models for bi-
ological analysis and Al development. Face-
book’s ESM2, the most advanced protein lan-
guage model to date, leverages a masked pre-
diction task for unsupervised learning, craft-
ing amino acid representations with notable
biochemical accuracy. Yet, it lacks in de-
livering functional protein insights, signaling
an opportunity for enhancing representation
quality.Our study addresses this gap by in-
corporating protein family classification into
ESM2’s training.This approach, augmented
with Community Propagation-Based Cluster-
ing Algorithm, improves global protein repre-
sentations, while a contextual prediction task
fine-tunes local amino acid accuracy. Sig-
nificantly, our model achieved state-of-the-
art results in several downstream experiments,
demonstrating the power of combining global
and local methodologies to substantially boost
protein representation quality.

1 Introduction

Proteins are involved in almost all the life activities
of organisms, and the study of their sequences,
structures, characteristics, and roles is a major
area of research in the life sciences in the post-
genomic era (Papin et al., 2003).A protein sequence
can be thought of as a string of amino acid let-
ters. The residues, structural domains, and families
of amino acids that make up a protein resemble
words, phrases, and sentences in human language.
Therefore, machine learning methods developed
for natural language and other sequences are well
suited to the task of predicting proteins (Ofer et al.,
2021).Most sequence-based language models [e.g.,
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BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019), ELECTRA (Clark et al., 2020)] are de-
signed to process natural language (with a bias
towards English).Considering the notable paral-
lels between protein sequences and the structure of
natural language, employing natural language pro-
cessing (Chowdhary and Chowdhary, 2020) (NLP)
techniques to analyze protein sequences emerges
as a logical approach.

Currently, ESM-2 (Lin et al., 2022), developed
by Facebook, is recognized as the most extensive
protein sequence language model to date, featuring
a sophisticated architecture with 48 layers and over
15 billion parameters. This groundbreaking model
is trained on an expansive dataset comprising up
to 250 million protein sequences sourced from
Uniparc (Leinonen et al., 2004), which encom-
passes 86 billion amino acids (Ng and Henikoff,
2006). The dataset’s vast scale mirrors the exten-
sive text corpora used in developing large-scale
neural networks for natural language processing,
highlighting the model’s unmatched breadth and
depth. Leveraging this comprehensive base, ESM-
Fold emerges as an innovative 3D protein struc-
ture prediction tool, leveraging ESM-2’s insights
with just a single sequence input to significantly
speed up predictions. In cases where it deeply
understands sequences, ESMFold achieves atomic-
level accuracy, matching or even surpassing leading
models like AlphaFold2 (Jumper et al., 2021) and
RoseTTAFold (Baek et al., 2021). This efficiency
in generating swift, precise predictions from single
inputs showcases that a more profound grasp of se-
quences leads to a better understanding of protein
structures.

Challenges accompany ESM-2 and its deriva-
tives like ESMFold, primarily in their reliance
on statistical analysis of amino acid compositions
to generate amino acid representations. This ap-
proach, focused on predicting missing amino acids
within contexts, proves adequate for classifying



protein families and identifying remote homolo-
gies but falls short in capturing the full functional
complexity of proteins. Consequently, the unsu-
pervised training method yields protein represen-
tations that lack interpretability, underscoring the
insufficiency of statistical properties alone to fully
elucidate protein functions. Moreover, since the
computational complexity is the square of the se-
quence length and the length of protein sequences
is much larger than the text length, and since ESM?2
and ESMFold require a large amount of compu-
tational resources, the large number of parame-
ters, and the complexity of the computation pose
obstacles for researchers who do not have high-
performance computing facilities. Additionally,
while ESMFold offers promising capabilities in
predicting protein structures from single sequences,
it struggles with proteins exhibiting complex fold-
ing patterns or those necessitating interactions with
other molecules for accurate structural and func-
tional modeling, indicating the potential need for
integrating additional sequence or molecular infor-
mation for more precise predictions.
In general, our contributions are of three-folds:

* We have fused graph pre-training with masked
language modeling to refine the ESM2
model, achieving unparalleled performance
in protein-centric tasks beyond ESM2.

* Our proposed Community Propagation-Based
Clustering Algorithm is a novel, resource-
efficient training method for graph neural net-
works.

* We provide a detailed demonstration of the
role of the graph network asynchronous in-
formation propagation algorithm in the pre-
training tasks of protein sequences.

2 Related Work
2.1 Protein Large Language Models

The technology of language models is currently
very popular and being explored for application
across a variety of professional domains, including
healthcare (Bao et al., 2023), finance (Chen et al.,
2023a), industry (Gu et al., 2024), education (Dan
et al., 2023), and the judiciary (Yue et al., 2023).
In the healthcare sector, there is a particular focus
on Al-based intelligent diagnostics (Zhong et al.,
2022; Chen et al., 2023a,b; Fan et al., 2024), with
primary modalities including text, medical imaging,
and medical examinations (Gu et al., 2020). As

research delves deeper, it has become evident that
understanding the microscopic information, such as
genetics and proteins, is crucial for gaining a more
profound comprehension of disease processes.
Proteins, with their sequences of amino acids,
exhibit a remarkable resemblance to natural lan-
guage, where residues and structural domains can
be likened to letters and words. This similarity
has sparked interest in developing Al methodolo-
gies tailored for protein analysis. By leveraging
the parallels between the intricate ’language’ of
proteins and human language, researchers are now
turning their attention to Al-driven approaches to
better understand and predict protein sequences,
which are fundamental to the mechanisms of life.
The development of specialized Protein Large
Language Models (Prot-LLMs) has significantly
advanced with models categorized into encoder-
only, decoder-only, and encoder-decoder archi-
tectures, each tailored for different protein re-
search applications. Encoder-only models are op-
timized for predicting protein functions or prop-
erties, while decoder-only models focus on pro-
tein sequence generation. Central to encoder-
only Prot-LLMs is the Transformer encoder ar-
chitecture, which efficiently translates protein se-
quences into concise vector representations, cru-
cial for identifying unique protein patterns. Promi-
nent pre-trained protein sequence encoders include
ProteinBert (Brandes et al., 2022), ProtTrans (EI-
naggar et al.,, 2021), PMLM (He et al., 2021),
ProtFlash (Wang et al., 2023a), ProtNPT (Notin
et al., 2023), ESM1b (Rives et al., 2021), ESM-
1v (Meier et al., 2021), and ESM-2 (Lin et al.,
2022). The integration of techniques such as Multi-
ple Sequence Alignment (MSA) with ESM-MSA-
1b (MSA Transformer) (Rao et al., 2021) has been
instrumental in breakthroughs like AlphaFold2 and
AlphaMissence (Cheng et al., 2023).Incorporat-
ing 3D structural information has marked a sig-
nificant progression, exemplified by models like
ESM-GearNet (Zhang et al., 2023), SaProt (Su
et al., 2023), LM-GVP (Wang et al., 2022c), and
PromptProtein (Wang et al., 2022b), indicating a
shift towards structure-aware pretraining to refine
protein representation. Efforts to enhance encoder
architectures and training methodologies include
self-supervised learning through masked language
modeling (MLM) tasks, effectively reconstructing
corrupted tokens from contextual cues, with the
ESM series leveraging the Transformer encoder ar-
chitecture, akin to BERT and RoBERTa (Liu et al.,
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Figure 1: The overview of our work.

2019), to predict protein structure and function.

2.2 Advancements in ESM Models

The field of protein prediction has witnessed trans-
formative advancements through the evolution of
Evolutionary Scale Modeling (ESM). A significant
leap forward was achieved with the adaptation of
the ESM1b model, which now provides highly ac-
curate variant effect predictions for an extensive
array of over 40,000 protein isoforms, markedly
surpassing the capabilities of conventional method-
ologies. The introduction of the ESM-2 model
represents another milestone, featuring an expo-
nential increase in model parameters from 8 mil-
lion to an impressive 15 billion. This upscaling
has been instrumental in achieving unprecedented
accuracy in protein structure prediction, demon-
strating the critical role of model complexity in
computational protein analysis. Furthermore, the
application of ESM models in specialized tasks,
such as MHC peptide binding prediction (Hashemi
et al., 2023) and single-sequence protein structure
prediction (Wang et al., 2022a), showcases the mod-
els’ adaptability and effectiveness across diverse
research applications. The release of cutting-edge
pre-trained models and codes (Facebook Research,
2024) specifically designed for protein design, cou-
pled with the recent updates to the ESM Metage-
nomic Atlas, underscores the continuous efforts
toward refining the predictive accuracy and util-
ity of ESM models. Moreover, the integration of

LR-ESM in the NetGO 3.0 (Wang et al., 2023b)
framework for advanced large-scale functional pre-
diction exemplifies the broadening scope of ESM
models in providing critical insights into the vast
expanse of uncharacterized proteins. Collectively,
these advancements not only enhance our under-
standing of protein functions and interactions but
also pave the way for novel discoveries in protein
science.

3 Method

The masking language task is crucial for the model
to discern each amino acid’s biochemical traits,
while Community Propagation-Based Clustering
connects these sequences to the protein’s struc-
ture and function based on the statistical nature
of amino acids. The masked language model de-
ciphers semantics at the residue level, and the
clustering approach interprets the entire protein
sequence. Together, they meld local and global in-
sights, greatly enhancing protein representation and
capturing the intricate relationship between a pro-
tein’s structure, function, and statistics. Community
Propagation-Based Clustering Algorithms, inspired
by hierarchical clustering, enable nuanced classifi-
cation of proteins into detailed families or broader
superfamilies, establishing hierarchical relation-
ships. This mimics the organization of commu-
nities and towns, where synchronizing tasks among
members—akin to information exchange within a
network—is managed through regular updates to



a central system. This model of synchronization
is analogous to the information propagation on a
graph, streamlining the integration and coordina-
tion of work progress.

3.1 Community Propagation-Based
Clustering

Family A
Family Family B
codebook Famiy.C

SuperFamily a
SuperFamily b
SuperFamily ¢

SuperFamily
codebook

Figure 2: Direction of information flow for Community
Propagation-Based Clustering Algorithm

In Figure 2, P1 and P2 are two proteins in fam-
ily A, and P3 and P4 are two proteins in family
B. Together they belong to a superfamily. The
black realisation arrows represent the information
exchange between the protein nodes and the fam-
ily nodes they belong to, and this exchange should
be executed immediately along with the update
of the protein nodes. The red dotted line repre-
sents the information exchange between the family
node and the superfamily node, which should be
time-delayed, i.e., when the update on the family
accumulates a certain number of steps before it is
performed.

What needs to be considered in the Community
Propagation-Based Clustering Algorithm is how
to design the initial representation of each node
and how information is propagated between nodes.
For the initial representation of a protein node, this
paper uses the average pooling of the protein rep-
resentation model for the representation of each
amino acid residue output as the initial representa-
tion of the protein node:

N‘H

l
Z @)

where [ represents the input sequence length and
H; represents the representation vector of the :th
amino acid in the last layer of the protein repre-
sentation model. In this paper, we use randomly
initialised vectors F € R? and SF € R? as the
initial representations of family and superfamily
nodes, respectively.

In this paper, link prediction is used as the infor-
mation propagation algorithm. Specifically, for the
input protein representation {P;, Ps, ..., Py}, N
being the batch size, and the corresponding family
node representation { 1, F5, ..., Fiy } and the super-
family node representation {SFy, SF,...,SFn}.
The score function S (F;, Fj) is used to evaluate
the likelihood of establishing a link between pro-
tein node 7 and protein family node j. The score
function Sgp(P;, SF}) is used to evaluate the pos-
sibility of establishing links between protein nodes
and superfamily nodes, and in practice this paper
adopts the vector inner product as the score func-
tion. It should be ensured that the distribution of
the output of the score function conforms to the
distribution of the actual graph.

In this paper, Softmax is used to measure the
distribution of the score function. Specific:

N

1
['family = N Z —logSm(SF(B, F’L))? (2)
=1
1 N
Esuperfamily = N Z _10g Sm(SSF(Pi7 SFl))a
i=1

3)
where Softmax () measures the distribution of sam-
ples in a batch. The loss representation of the final
Community Propagation-Based Clustering Algo-
rithm is:

Ecommu = w£family + (1 - w)ﬁsuperfamilya (4)
where w represents the weight magnitude of the
two losses. The Community Propagation-Based
Clustering Algorithm proposed in this paper ad-
dresses how data with multiple category labels can
be incorporated into a pre-trained language model
by means of graph pre-training. Although the ex-
ternal manifestation of the algorithm is the prop-
agation of information on a graph, it essentially
addresses the problem of hierarchical clustering of
data from different categories.

Clustering algorithms, such as hierarchical clus-
tering (Murtagh and Contreras, 2012) and k-means
clustering (Hartigan and Wong, 1979), segment
data into classes based on feature similarity, aim-
ing to maximize intra-class similarity and mini-
mize inter-class similarity. In the realm of protein
families, this translates to grouping proteins into
superfamilies and families, where each family rep-
resents a fine-grained cluster and each superfamily



a coarse-grained one. This research treats each fam-
ily as a precise clustering focus, reflecting the need
for protein representations to encapsulate the fa-
milial information. Hence, we introduce the Com-
munity Propagation-Based Clustering Algorithm
for a supervised approach to clustering protein se-
quences, aligning the sequence representation with
its familial heritage.A detailed exposition on the
algorithm’s interpretability is provided in the ap-
pendixA.

3.2 Masked Language Modeling

Intertwined with clustering, the masked lan-
guage task equips the model to discern individ-
ual amino acid biochemical properties. The Com-
munity Propagation-Based Clustering Algorithm
then takes this a step further, forging connec-
tions between amino acid sequences and the pro-
tein’s structural and functional attributes. These
attributes are deeply linked to the statistical prop-
erties of amino acids. Together, these twin ob-
jectives—masking language tasks and community
propagation—create a synergy, reinforcing each
other to refine the protein representation quality. In
our methodology, we harness the BERT model’s
architecture, renowned for its multiple stacked
Transformer Blocks, as the encoder for protein se-
quences. To achieve our dual goals, we deploy two
distinct fully connected neural networks to project
the encoded protein vectors into separate represen-
tation spaces for the masked prediction task and the
Community Propagation-Based Clustering Algo-
rithm. Each Transformer Block in the BERT frame-
work features a multi-head self-attention mecha-
nism, recalculating token representations by consid-
ering contextual token relationships. Multi-heads
permit multiple attention computations, capturing
diverse sequence characteristics, followed by con-
catenation and mapping back to the original input
size through a perceptron. The forward propaga-
tion network—a classic two-layer fully connected
network—serves as an intermediary, transforming
representations between layers.

Each token vector encoded by the BERT model
will have its loss computed by the mask predic-
tion task and the Community Propagation-Based
Clustering Algorithm, respectively, in order to run
the stochastic gradient descent algorithm to update
all network parameters of the model. Specifically,
for the mask prediction task the loss function is

computed as:

Ly =Ear Y —logp(milzyn),  (5)
€M

For each sequence x = {x1,x9,...,2,}, a set of
tokens M to be masked is sampled, and the actual
amino acid at each position ¢ is replaced with the
mask symbol <mask>. For each masked position,
the loss function is set to the negative logarithmic
value of the probability of predicting the correct
amino acid w;, taking the sequence x /), as the
context of the protein sequence with the masked
portion removed. Intuitively, in order to predict
the masked position, the model must identify the
correlation between the masked site and the un-
masked portion of the sequence. The probability is
calculated as:

p(xilw/pr) = Softmax(Wayj - 23),  (6)

where W), € RV is the vocabulary prediction
matrix used to map the size of the representation
vector of each token to the size of the vocabulary
list, V' is the size of the vocabulary list, and Wy
stands for the vector of prediction matrices corre-
sponding to the j word (the correct word corre-
sponding to x;) in the vocabulary list.

For the Community Propagation-Based Cluster-
ing Algorithm this paper uses the link prediction
task as the goal, using the average of the token
representations at each location as the final repre-
sentation vector of the protein sequence i.e:

!
1
P= l;zh, (7)

where [ represents the input sequence length and
zy; represents the representation vector of the :th
amino acid output from the last layer of BERT.
In this paper, we use the randomly initialised vec-
tors I € R% and SF € RY as the initial repre-
sentations of family and superfamily nodes, re-
spectively. Assume that all protein sequences in-
volved in a single batch calculation are denoted
as {Py, Py, ..., Py}, N being the batch size, and
the corresponding family node representation for
each protein {Fy, Fs, ..., Fx} and the superfam-
ily node representation { SFy, SFb, ..., SFn}. The
score function S (P;, F;) is used to evaluate the
likelihood of establishing a link between protein
node ¢ and protein family node j. The score func-
tion Sgp (P;, F}j) is used to evaluate the possibility



of establishing links between protein family nodes
and superfamily nodes, and in practice this paper
adopts the vector inner product as the score func-
tion. It should be ensured that the distribution of
the score function output matches the distribution
of the actual graph.

The final model loss is the sum of the two opti-
misation objective losses:

Emodel = £MLM + Ecommu- (8)

The specifics concerning the masked language
model and the Community Propagation-Based
Clustering are elaborated in the appendixB.

4 Continue Training on ESM2

4.1 Pre-training Dataset

We obtained the classification data and cor-
responding amino acid sequences of proteins
from two databases, InterPro (https://www.
ebi.ac.uk/interpro/) (Paysan-Lafosse et al.,
2023) and UniprotKB (https://www.uniprot.
org/) (Boutet et al., 2016) are two databases to
obtain the classification data and corresponding
amino acid sequences of the proteins, respectively.
interPro classifies each protein into a family and
provides predictions of protein structural domains
and sites of importance in the protein sequence to
analyse the protein function. To classify proteins
in this way, InterPro uses prediction models pro-
vided by several different databases that make up
the InterPro consortium (called member databases).
By combining protein features from these member
databases into one searchable resource, their indi-
vidual strengths are exploited to generate a power-
ful integrated database and diagnostic tool.

UniProtKB contains the functional information
of the proteins and preserves the amino acid se-
quences of the proteins.UniProtKB consists of two
parts:

e The information in this part of the
UniProtKB/Swiss-Prot-Database is manually
annotated and reviewed, and is therefore of
high quality and non-redundant.

* UniProtKB/TrEMBL-The information in this
part of the database is computationally anno-
tated by algorithms and is not reviewed, thus
providing a high level of coverage of the pro-
teome.

The protein classification data from InterPro and
the protein sequence data from UniproKB are fi-
nally joined by protein entry numbers to obtain all
the training data.

Considering the limitations of local computing
resources and the quality of the data, all the proteins
from UniProtKB/Swiss-Prot database are finally
extracted in this paper, which are all These proteins
are all manually annotated and thus representative
and highly reliable.

A total of 568744 proteins were obtained from
UniProtKB /SwissProt, and all the obtained pro-
teins were queried for the corresponding protein
interfaces in InterPro, and finally 540601 training
data were obtained. For each protein, the complete
amino acid sequences of all families and superfam-
ilies were recorded. It should be noted that some
proteins may lack the corresponding superfamily
or family classification information, but they must
have one of the two categories, in this case, we will
randomly sample to fill in the missing items, for
example, if a protein lacks a family category, the
model will randomly select one of the superfamily
categories as the family category each time it reads
the sample. Detailed statistics of the data are given
in the table2.

4.2 Training Details

A 12-layer ESM2 model was used as the protein
representation model in the pre-training experi-
ments, which was subjected to knowledge distilla-
tion using Tinybert to generate the student model.
For the mask prediction task, 15% of the amino
acid residues in the protein sequence are randomly
selected for replacement, of which 80% are re-
placed with <mask>, 10% are replaced with a ran-
dom representation, and the remaining 10% are
kept unchanged. For Community Propagation-
Based Clustering Algorithm, the weights of family
score loss and superfamily score loss were 0.2 and
0.8, respectively. an AdamW was used as the opti-
miser with a learning rate of 5e-5 .

4.3 Validation of Protein Representation

The visualisation method demonstrates whether
the stability and functional properties possessed
by a protein can be deduced from the represen-
tation of the model. The stability of a protein is
mainly characterised by the biochemical properties
of the amino acid residues that make up the pro-
tein, whereas the function of a protein is mainly
reflected in the proximity of representations of pro-
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Table 1: Experimental validation of the model on downstream tasks.

Model Family Class. Mut. Effects Act. Pred. Interact. Func. Pred. Homol. Det.
ESM2-12layer 27.51% 0.514 0.040 99.68% 90.38% 87.8%
ESM2-6layer 20.55% 0.423 0.043 99.58% 88.39% 81.3%
TinyBert 13.30% 0.178 0.075 99.17% 88.09% 76.5%
OurModel 31.08% 0.601 0.038 99.99 % 91.47% 91.0%
Ablation Experiment
only MLM 27.93% 0.601 0.042 99.75% 90.27% 88.1%
only Graph 30.05% 0.132 0.052 99.69% 91.0% 89.2%
Table 2: Statistics of the dataset. these representations. These protein representa-
— tions project a sequence to a point in space, thus
Statistics Values different protein sequences can be distinguished. In
gr(’t‘?li“ Sainple,s count . 5‘1‘(7)?(3); this paper, the distribution of homologous genes in
Si?ér?a?iff(c):teesgggg count 3.189 space can be studied intuitively in two-dimensional
Family memberships per protein 1.23 coordinates by TSNE dimensionality reduction.
Family memberships per protein 1.43 P Thei ;
Average length of amino acid sequences 367.01 In addition, Principal Component Analysis (PCA)

teins with similar structure and function.In order to
investigate whether the model has learnt to encode
physicochemical properties in the representation
of amino acid residues, this paper uses TSNE to
downscale the parameters of the final prediction
layer of the network so that they can be plotted
onto 2D coordinates. In Fig. 3, it is found that
the space can clearly distinguish the boundaries
between amino acids with different biochemical
properties. These biochemical properties include
hydrophobicity, polarity, and aromaticity, as well
as molecular size and electrode properties, all of
which affect the interchangeability of amino acid
residues at a site in a protein, i.e., the stability of
the protein structure.

+W Biological properties
R % Negative Electric Charge
+F +Y . K M Positive Electric Charge
| |
oM ° L .H @  Hydrophobicity
°Q o Aromatic
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xE
Vv @ rolarity
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P oN Pecir
T °A size
.S G . (<120 Da)
° (120 - 150 Da)
c @® (>150Da)

Figure 3: Model prediction layer representation of the
biochemical properties of the embedded amino acids.

A representation of each amino acid residue can
be obtained through the final layer of the model,
and the final protein can be obtained by averaging

was applied to recover the main direction of change
in the representation, and four homologous genes
in four species were selected to find the direction
of change. In order to exclude the statistical prop-
erties of the number of amino acids itself in the
amino acid sequence, this paper also introduces the
protein representation before untrained and the pro-
tein representation using the unitary bag-of-words
model. Figure 4 shows that the modelled protein
representations encode structural and functional in-
formation about the proteins thereby allowing for a
significant aggregation effect of protein representa-
tions within the same protein family.

y
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'
L

After training with Transform Before training with Transform Unigram

Figure 4: Protein representation after TSNE reduction

S Downstream task experiments

5.1 Downstream task introduction

To evaluate the effectiveness of the protein repre-
sentation model post-pretraining, we established
the following downstream tasks based on six dif-
ferent protein aspects: Protein Classification, Pro-
tein Activity Prediction, Protein-Protein Interac-
tion, Protein Function Prediction, Mutation Ef-
fects, and Homology Testing. For task validation,



datasets specific to each task were procured, which
were not involved in the training of the protein rep-
resentation model. The model developed in this
study solely generates a numerical vector replete
with structural-functional information from the in-
put protein sequences, which is then utilized for
the respective downstream tasks. For tasks requir-
ing multiple protein sequences (Protein-Protein In-
teraction, Mutation Effects, Homology Testing),
we adopted an approach of training multiple pro-
tein sequences over several iterations. Tasks such
as Protein Classification, Protein-Protein Interac-
tion, and Protein Function Prediction necessitate
the construction of a multi-layer fully connected
neural network and subsequent fine-tuning on a
training set. It is important to note that the parame-
ters of the protein representation model proposed in
this paper remain constant during the experiments
of these downstream tasks. Detailed experimen-
tal procedures are provided in the appendix(from
appendixD to appendixI).

5.2 Enhanced Performance in Protein
Representation Tasks

The table highlights optimal performances in
bold, underscoring that ComproESM—Ileveraging
both mask prediction tasks and the graph net-
work asynchronous information propagation algo-
rithm—surpasses the ESM2 model in a range of
downstream tasks. Given ComproESM’s integra-
tion of protein family data, which encapsulates
structural and functional protein information, en-
hancements in family classification, function pre-
diction, and homology detection are anticipated.
Moreover, ComproESM outperforms the ESM2
model in tasks requiring a comprehensive under-
standing of the biochemical properties of amino
acid residues, such as mutation effects, activity pre-
diction, and protein-protein interactions. Ablation
studies focusing individually on these tasks further
suggest that while targeting specific tasks can yield
improvements, a combined approach garners opti-
mal results across all downstream tasks. Consider-
ing both ESM2 and our proposed model are trained
on mask prediction tasks, we partitioned data into a
training set and test set at a 9:1 ratio. Performance
on the mask prediction task is evaluated using the
Exponential Cross Entropy Score (ECE), where
a perfect model scores 1, and a uniform random
prediction across 25 amino acids scores 25. Lower
ECE scores indicate superior mask prediction per-
formance. As shown in Table 3, our model slightly

underperforms the sole MLM model trained on
the same dataset, attributed to the incorporation
of graph link prediction tasks altering the original
protein representation space by integrating protein
family data.Further validation of the changes in-
duced by the protein representation is detailed in
the appendixC.

Table 3: Mask prediction task.

Model Parameter Count ECE
Ideal value 1

Uniform Distribution 25

4-gram 19.21
LSTM-small 28.4M 15.13
LSTM-Large 113.4M 13.97
ESM2-12layer 35.8M 5.80
OurModel 35.8M 5.78
only MLM 35.8M 5.62

5.3 Protein Classification Model Analysis

In order to analyse the advantages of the model
in this paper on the protein classification task
even further, the 10 most common protein
families were selected from the dataset PF13649.6,
PF00560.33,PF13508.7,PF06580.13,PF02397.16,
PF00677.17,PF01035.20,PF02417.15,PF13472.6,
PF00684.19.60 samples of proteins were sampled
for each category, of which 50 samples were
used for training and 10 samples for testing. The
results after 20 epochs of iteration under the same
experimental setup are shown in Table 4, and
it can be found that the accuracy of the model
proposed in this paper is much larger than that
of the ESM2 model in the training set, which
indicates that the protein representation given
by the model proposed in this paper has a better
decision boundary between the different protein
family classes, and so the model can be in training
to find this boundary quickly. The confusion
matrix of the prediction results is shown in Figure
9, which shows that the ESM?2 model has a lower
prediction accuracy for the proteins in the protein
family categories PF13649.6, PF13508.7, and
PF13472.6, whereas there is no such bias in the
model proposed in this paper, which indicates that
the protein representations given in the proposed
model are more consistent with the protein family
categories than those given in the ESM2 model.
protein representation has a more direct correlation
with the protein family categories.



Table 4: Comparison of results on the protein classifica-
tion task

Models Training Sets ~ Test Sets
ESM2-12layer 38.46% 80.00%
OurModel 78.24% 94.00%

6 Conclusion

In this paper, we propose ComproESM, and demon-
strate the efficacy of integrating protein family clas-
sification information with the ESM2 model’s train-
ing process, thereby enhancing the model’s capabil-
ity to accurately represent global protein structures
and predict local amino acid residues. Our inno-
vative Community Propagation-Based Clustering
Algorithm, when combined with the masking algo-
rithm, has significantly advanced the model’s per-
formance across a spectrum of downstream tasks,
far surpassing the capabilities of the ESM2 model
with a comparable number of parameters.These
findings not only underscore the potential of tai-
lored algorithmic strategies in understanding com-
plex biological data but also pave the way for fu-
ture research in protein sequence analysis and func-
tional prediction. Through this work, we contribute
to the broader field of computational biology by
providing a robust framework for protein represen-
tation that is sensitive to both the structural and
functional nuances of proteins.

Limitation

Although this paper achieves optimal performance
on various protein downstream tasks, due to the
limitation of experimental resources, we does not
use the mask prediction task and the Community
Propagation-Based Clustering Algorithm to train
directly on the randomly initialised Transformer
model, but uses the 12-layer model of ESM2 for
initialisation. The representation space of the fi-
nal model trained by this method is highly offset,
which means that the model only converges to a
locally optimal solution. Meanwhile, the training
data taken in this paper only has 500,000 proteins,
which is still too small compared to the hundreds of
millions of proteins stored in protein databases. In
the future, this paper will train the model in this pa-
per from scratch on larger protein sequence data, so
as to obtain a higher quality protein representation
model.

Ethics Consideration

Given the profound potential impact of this re-
search on the life sciences and medical fields, sev-
eral ethical considerations must be taken into ac-
count. Firstly, ensuring data privacy is critical, par-
ticularly if any human-derived protein sequences
are included in the dataset; researchers must handle
such data responsibly and with consideration for
consent and confidentiality. Additionally, the acces-
sibility of the developed tools and methods should
be addressed to prevent exacerbating inequalities
in research capabilities across different institutions
or countries, especially considering the compu-
tational resources required for high-performance
models like ESM-2. Moreover, it is imperative to
transparently communicate both the capabilities
and limitations of the model to avoid misinterpreta-
tion or overreliance on its predictions, which could
have significant consequences for downstream ap-
plications such as drug discovery or personalized
medicine. Finally, there should be a commitment to
open science by making the methodologies, source
code, and potentially the trained model accessible
to other researchers, fostering collaboration and
accelerating advancements while respecting intel-
lectual property rights.
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A Interpretability of Community
Propagation-Based Clustering
Algorithms

In the Community Propagation-Based Cluster-
ing Algorithm, the data input to the model



is a set of samples {Pi,Ps,..., Py}, where
N is the batch size, and each sample corre-
sponds to the family category representation
{F1, F, ..., Fy} and the superfamily category rep-
resentation {SFy, SFy, ..., SFx}. For the ith sam-
ple P; of these, Softmax(Z;) is required to be equal
to 1. That is, the score Z; is required to be as large
as possible and the other scores as small as possible.
Since Z = wZp + (1 — w)Zgr, i.e., the scores
Zr and Zgp are required to be as large as possible.
Take the calculation of Zx as an example:

Zp =P F. (©))

where P = {p17p27"'apd}aF = {flan?"')fd}?
then Zr can be expressed as:

d
Zp =Y pj* [ (10)

j=1

And if you use the Euclidean distance measure
between P, F', the distance distance is given by:

Z?:1 (pj — fj)2 2?21 (pj — fj)2

S: ) )
[P F| |PIIF|

an

|PI> + [F|* — 2Zp
| PIIF| ’
Assuming that the stretching of the vectors does
not affect the properties of the vectors themselves,
it can be assumed that |P| = |F| = 1, and thus the
distance S can be expressed as:

(12)

S=2-27p. (13)

It follows that max(Zr) is equivalent to min(5),
in other words the optimisation objective treats the
category representation as a clustering centre, and
the purpose of the loss function is to bring in closer
the distance between nodes within the class and
the centre of the class, and to bring out further the
distance between nodes outside the class and the
centre of the class. The parameters w and size
are used to control the coverage of different gran-
ularity categories in the representation space. In
order to demonstrate the clustering effect of Com-
munity Propagation-Based Clustering Algorithm in
a more graphical way, in this paper, 120 random 2-
dimensional vectors are initialised using a normal
distribution, and each vector corresponds to a fine-
grained category and a coarse-grained category,
with a total of 30 small categories and 10 large cat-
egories. The backpropagation algorithm was used

on this randomly generated dataset using Commu-
nity Propagation-Based Clustering Algorithm until
convergence, and finally the representations of all
the 2-dimensional vectors were presented on the
axes (as shown in Fig. 5).
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Figure 5: Community Propagation-Based Clustering
Algorithm on random initialisation vectors

In the graph 5, all red nodes represent coarse-
grained cluster centres and all blue nodes represent
fine-grained cluster centres. The density of the red
nodes is less than that of the blue nodes due to
the weight parameters wy and w;. The rest of the
nodes are all nodes in the dataset, nodes belonging
to the same coarse-grained level are represented us-
ing the same shape, and nodes of the same colour
under the same shape represent their same fine-
grained category. From the figure, it can be seen
that Community Propagation-Based Clustering Al-
gorithm achieves a significant clustering effect and
the sample distribution is in accordance with the
assumption above, i.e., the stretching of the vectors
does not affect the nature of the vectors themselves.

B Mask Language Model Setting Details

The input used by the model is a protein sequence,
which is a string of letters where each letter repre-
sents a particular amino acid. Also for each protein
sequence there is a family class and superfamily
class to which the protein belongs, and these labels
will be used for subsequent loss function calcula-
tions. The model will first obtain a token sequence
from the input protein sequences (each letter, i.e.,
an amino acid, is a token) and add special identi-
fiers <bos> and <eos> at the beginning and the end
of the sequence, respectively, and use a masking
technique to blur the input so as to force the model



to derive the missing token based on the context.
15% of the tokens will be randomly selected and
used with the identifier <mask>. A random 15%
token is selected and replaced with the identifier
<mask>. Note that in order to improve the model’s
performance, the strategy of replacing the original
token with <mask>, replacing it with a random to-
ken, and keeping the original token unchanged is
implemented in a ratio of 8:1:1 for all the replaced
words. The inputs to the model are {x1, x2, ..., T, }
where z; € R, the first layer of the BERT model
is the word encoder, which is to convert the to-
ken input after word splitting into a vector input,
and here the approach is to use the shaping index
corresponding to each token to obtain the corre-
sponding column of vectors in the word encoding
matrix. The W, € RV and W,, € R¥*% are
the word encoding matrix and position encoding
matrix respectively, V' is the size of the vocabulary
list, S is the maximum length of the input that can
be accepted by the model, and d is the size of the
representation vector dimension. The vector en-
coding for each token is the sum of word encoding
and position encoding. After word encoding, we
obtain {201, 202, ..., 2on } Where zp; € R? Next
these word vectors will be passed through multiple
Transformer Blocks, and it should be noted that the
inputs and outputs of the Transformer Blocks pass-
ing through any of the layers will be of the exact
same form, so that the final representation of each
token after capturing the contextual information is
obtained {21, 22, ..., 2in },Wherez; € R%.

C Verify that the protein representation

In order to further validate the changes produced by
the protein representation, in this paper, 1010 pairs
of proteins belonging to a family were randomly
sampled as positive samples and an equal number
of pairs of proteins that do not belong to a protein
family were randomly sampled as negative samples,
and the similarity between the pairs of proteins was
calculated using cosine similarity. The similarity
takes values between 0 and 1. The results of the
two models are plotted in Figure6 and Figure7.
From the figure, it can be seen that the model pro-
posed in this paper can clearly distinguish between
positive and negative samples, and there is still a
large part of overlapping space in the distribution
of positive and negative samples for ESM2. There-
fore, the biggest advantage of the proposed model
is that it incorporates family information into the

protein representation with little or no loss of the
quality of the ESM2 representation, which itself
carries the structural and functional information of
the protein. Therefore, the protein representations
generated using the model proposed in this paper
can outperform the original ESM2-generated pro-
tein representations for a variety of protein down-
stream prediction tasks.

ESM2-12layer

Figure 6: ESM2 model cosine similarity distribution
(positive samples in blue, negative samples in red)

OurModel

Figure 7: ComproESM cosine similarity distribution
(positive samples in blue, negative samples in red)

D Protein Classification

Search engines compute target sequences by se-
quence comparison algorithms to compare them
with known sequences in databases to achieve clas-
sification, such as BLAST, and the performance of
this method is limited by the comparison algorithm.
Therefore, the use of machine learning methods
to classify protein families based on protein se-
quences has become a hot research topic in recent
years.

In this paper, we obtain the protein classifica-
tion dataset on Kaggle, and organise the dataset,
each sample is composed of protein sequences and
their corresponding family names, and count the
number of proteins corresponding to each family
type (see table 5 and figure 8), and it can be seen
from figure 8, it can be seen that the number of
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Table 5: Statistics on the number of proteins in each
category in the Protein Classification Dataset

Family Number
HYDROLASE 29,726
TRANSFERASE 24,338
OXIDOREDUCTASE 22,578
IMMUNE SYSTEM 11,087
HYDROLASE/HYDROLASE INHIBITOR 9569
LYASE 8445
ENDOCYTOSIS, PROTEIN BINDING 1
Transferase, Cell Cycle 1
HORMONE/GENE REGULATION 1

protein family distributions in this dataset shows
a long-tailed distribution, so the top 250 classes
of families with the highest number of proteins
are taken as the predicted labels, and the final data
obtained is 278,866. Considering the time of the
test, this paper uniformly samples each class to one
percent of the original one, and divides the training
set and the test set according to the ratio of 1:1. Fi-
nally, 1394 training samples and test samples were
obtained, and the model uses the simplest single-
layer fully connected neural network to classify the
input protein representations and use the classifica-
tion accuracy for representation quality assessment.
The test results are shown in Table 1.

ESMZ-lé\ayer O\;&rM.l':tdel
Figure 9: Confusion matrix for protein classification
tasks

E Mutation Effects

Masked Language Modelling Objective The train-
ing objective of a trained protein language model is
to output the probability of an amino acid occurring
at a position in a protein given its surroundings. In
this paper, we use this property to score mutations
in amino acid sequences. For a given mutation,
the amino acids in the original protein can be con-
sidered as a reference state, and the probability
assigned to the mutated amino acid is compared to
the probability assigned to the original amino acid
thereby deriving the mutation score.

Specifically, the mutation score is evaluated us-
ing a log odds ratio at the mutation site, and when
multiple mutation sites are present in a protein se-
quence, the scores at each position are summed
using an addition method:

> logp(w = & |a/7) — logp(x; = x| 7),
teT
(14)

Here the sum is summed over all mutation po-
sitions, and the sequence input to the model is
masked at each mutation position.

Riesselman et al. (Riesselman et al., 2018) col-
lected a set of 41 deep mutation scans and thus
evaluated the model, these scans consisted of as-
sessing the activity of a set of different proteins on
various tasks. The experiments corresponded to
different measurements in different tasks with dif-
ferent functions being tested. Each deep mutation
scan dataset was treated as a separate prediction
task and the model was used to score each variant
in the dataset. These tasks were divided into a vali-
dation set consisting of ten mutation scan datasets
and a test set consisting of the remaining datasets.
Protein representation quality was assessed by com-
paring scores to experimental measurements using
Spearman rank correlation.

Rank correlation, also known as rank correlation,
is a non-parametric statistical method, but does not
require a distribution of the original variable. It
is suitable for information that does not follow a
normal distribution, as well as information where
the overall distribution is unknown and the original
data is expressed in terms of rank.The Spearman
rank correlation coefficient is used to calculate the
correlation between two ordered sets of data. The
formula for calculation is:

63 d2

T (15)
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where d; = (z; — y;), x; and y; denote the position
of the two variables after sorting, and n is the total
number of samples.

The absolute value of Spearman’s rank correla-
tion coefficient is less than 1. The magnitude of
the absolute value represents the strength of the
correlation, and an absolute value of 1 indicates
that the two series are perfectly correlated. When
r4 18 positive, then the two sequences are positively
correlated; when r; is negative, then the two se-
quences are negatively correlated.

The correlation between the mutation scores pre-
dicted by the model and the mutation scores gener-
ated by the real experiment is calculated, and the
Pearman rank correlation is used here to return the
correction. Correction is closer to 1, which means
that the correlation between the two sequences is
greater, and in this paper, we use the model to
calculate the confusion degree of the amino acid
sequences, so as to realise the zero-shot prediction
of the activity of the protein. In this paper, we use
the model to calculate the perplexity of amino acid
sequence to achieve zero-shot prediction of protein
activity, and the results are shown in Table 1.

F Activity Prediction

Protein mutations affect the activity of protein func-
tion, and protein activity was predicted using linear
regression modelling of coded proteins regression,
with the mean square error used to assess the predic-
tion. The biological activity of protein mutations is
predicted by training a simple mutation prediction
network, i.e., using an embedded representation
of the protein coding model to the amino acid se-
quence. In this paper, a simple multilayer percep-
tron is used to predict the mutation effect of protein
sequences. The embedding representations of the
dataset are saved by pre-computation. Afterwards
a test of the downstream task is completed using
these embedding representations and the activity
corresponding to each representation. In this test,
the activity of B-lactamase variants is predicted by
training a model. The data was initially obtained
from deep mutation scans and published by the En-
vision paper (Gray et al., 2018). The dataset was
taken from a fasta , and each entry in the file con-
tains: the mutated B-lactamase sequence, a residue
in which the mutation occurs (exchanged for an-
other amino acid) and a target value corresponding
to the activity of the mutated protein, which de-
scribes the magnitude of the strength of the protein

to act on a function and is a real-valued value. The
quality of the protein representation was assessed
by comparing the mean square error between the
predicted activity values of the model and the exper-
imentally measured activity values, and the results
are shown in Table 1.

G Protein-protein interactions

PPIs have so far been studied from different per-
spectives (e.g. signalling, biochemistry, etc.) using
a variety of approaches. Protein-protein interac-
tion networks can then be constructed using this
information. The use of machine learning meth-
ods to complete the complementation of large PPI
networks and to make inference predictions on PPI
networks is a major research topic in computational
biology. In order to explore whether the protein rep-
resentation model trained in this paper can embed
protein interaction relationships into protein rep-
resentation, the human protein-protein interaction
network (Agrawal et al., 2018) provided by Stan-
ford University is selected in this paper. This is a
protein-protein interaction network that contains
physical interactions between proteins in the exper-
imentally recorded human body, such as metabolic
enzyme coupling interactions and signalling inter-
actions. The nodes on the graph represent human
proteins and the edges represent physical interac-
tions between proteins in human cells (see Table
6).

Consider each edge in the table 6 as a positive
example and use the randomly generated edges as
negative examples. The final positive and nega-
tive examples are divided in the training and test
sets in the ratio of 9 : 1, respectively. The two
proteins were encoded into vectors with the model
separately, spliced and then directly predicted by a
binary neural network, with prediction accuracy as
the evaluation metric, and the results are shown in
Table 1.

Table 6: Statistics of human protein-protein interaction

Attribute Quantity
Nodes 21,577
Edges 342,353
SCC Node Count 21,521
SCC Edge Count 342,316
Triangle Count 55,614,585
Closed Triangle Ratio  0.045652
Diameter 8




H Function Prediction

TheGeneOntology resource (GO) is the most com-
prehensive and widely used knowledge base on
gene function. Therefore, in this paper, we test
whether the protein embeddings generated by the
protein representation model proposed in this paper
can accurately predict the functions of protein se-
quences by collecting the functional descriptions of
proteins from the Gene Ontology database. Func-
tional descriptions corresponding to each class of
proteins can be extracted from the protein database,
and a total of 39,168 human proteins with 23,666
protein functions contained in all annotations were
extracted from the UniprotKB database, and the
model is required to accurately predict the correct
functional option for a defined protein, given its
functional description and three randomly gener-
ated functional descriptions. Detailed statistical
information about the dataset is given in Table 7.

In this paper, we use PubMedBERT (Gu et al.,
2021) to obtain a representation of the functional
description.PubMedBert is a pre-trained model
trained from scratch from a large mixed dataset
containing knowledge of a range of biological lit-
erature on diseases, drugs, genes, organs, cells,
etc. PubMedBert uses masks on all of this data
to predict the task. These data were pre-trained
using the mask prediction task and fine-tuned and
achieved state-of-the-art performance on a variety
of tasks such as named entity recognition, PICO,
relation extraction, semantic similarity, document
classification, knowledge quizzing, and more. Each
character-level encoding is obtained by feeding the
functional description of the protein into PubMed-
Bert, and all these encodings are averaged to ob-
tain the encoding of the sentence. The sentence
representation should contain rich semantic infor-
mation, and a linear layer is used to project the
protein representation into the representation space
of the functional description. Afterwards, the sim-
ilarity between the functional description and the
protein representation is computed using vector dot
product and the one with the highest similarity is
selected as the correct option. The accuracy of se-
lecting the correct option using the model is used
as an evaluation metric of how good the protein rep-
resentation is, and the results are shown in Table 1.

Table 7: Protein function prediction dataset statistics

Attribute Quantity
Protein Quantity 39,168
Protein function quantity 23,666
Number of Annotation Functions 45,877
Average Length of Functional Description ~ 69.327
Functional Description Vocabulary 30,522

I Homology Detection

We use SCOPe (Fox et al., 2014) to assess remote
homology detection. According to standard prac-
tice (Soding and Remmert, 2011), Rossman-type
folds (c.2-2.5, ¢.27 and 28, ¢.30 and 31) and four- to
eight-bladed propellers (b.66-b.70) were excluded
from this paper. Proteins from the same super-
family belong to different families. Vector inner
products were used directly to measure the struc-
tural and functional similarity of the protein rep-
resentations, taking the highest 10 scored proteins
to consider them as remotely homologous to the
target proteins, using the Hit-10 metric, i.e., the
proportion of proteins corresponding to the top 10
scores and the target proteins that do belong to the
same protein superfamily. The experiments are per-
formed by measuring the density of homologous
proteins near the query sequence based on an un-
supervised classifier that measures the similarity
between protein representations based on the inner
product of vectors. For each domain, a vector simi-
larity query will be performed on all other domains
and they will be sorted by distance to the query
domain. For superfamily level assessment, any do-
mains with the same superfamily and not belonging
to the same family are considered as positive ex-
amples; any domains with different superfamilies
are considered as negative samples. The metrics
were measured using Hit-10, which gives the pro-
portion of correctly predicted remote homologues
among the ten highest ranked results. The experi-
mental data is consistent with the ESM?2 paper, and
the final results are shown in Table. 1 In order to
distinguish the effect of the model more clearly,
this paper also increased the difficulty of the ex-
periments by using only protein sequences with
sequence similarity below 40% to participate in the
experiments, and at the same time, due to the limi-
tation of computational resources, only proteins of
the « folding family were used. The experiment
verifies that the protein representation can detect
remote homology between proteins belonging to
the same superfamily (but belonging to different
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Table 8: Remote homology detection

Model SF-Hit@10 SF-Hit@5 SF-Hit@l F-Hit@10 F-Hit@5 F-Hit@1
ESM2-12layer 47.04% 44.33% 28.52% 14.67% 9.53% 2.27%
OurModel 50.00% 47.43% 31.85% 17.47% 10.14% 2.72%

families) as well as between proteins belonging to
the same fold (but belonging to different superfam-
ilies). The final sample size of the experiment was
2644, and the correlation between two two proteins
was calculated using cosine similarity, and the top
10 proteins were taken as the homologous proteins
detected by the model. The final calculations were
done separately (Hit@10: the proportion of pro-
teins ranked in the top 10 of similarity that are
homologous proteins, Hit@5 and Hit@1), and the
final results are shown in Table 8, where SF stands
for the results on superfamily homology detection,
and F stands for the results on folding homology
detection.

From Table 8, it can be seen that when the se-
quence similarity of the proteins in the dataset used
for testing is reduced to below 40%, the accuracy
of the model on the remote homology detection
task will be greatly reduced, and the model pro-
posed in this paper performs significantly better
than the ESM2 on this task as well.It is argued that
this result arises due to the fact that the model pro-
posed in this paper is introduced into the training of
the protein family data, the protein representation
itself spatially conforms to the reticulation distribu-
tion of protein families, in other words, the protein
representation contains the functional information
of proteins, so that functionally similar proteins
can still be recognised better when sequence sim-
ilarity decreases. Both models perform poorly in
protein folding homology detection when sequence
similarity decreases, probably because the folding
structure of proteins itself is highly correlated with
sequence similarity.
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