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Within the framework of the recently introduced multi-nanoparticle power-series expansion
method for the polarized small-angle neutron scattering (SANS) cross section, we present ana-
lytical expressions for the polarized SANS observables arising from dilute nanoparticle assemblies
with antisymmetric vortex-type spin structures. We establish connections between the magnetic
correlation coefficients and the magnetic field-dependent vortex-axes distribution function, which is
related to the random orientations of the magnetocrystalline anisotropy axes of the nanoparticles.
Our analytical results are validated through a comparative analysis with micromagnetic simula-
tions. This framework contributes to a comprehensive understanding of polarized magnetic neutron
scattering from spherical nanoparticle systems exhibiting vortex-type spin structures.

Introduction. Magnetic nanoparticles, which are in the
scope of immense interdisciplinary research, offer versa-
tile applications, e.g., in materials science, nanotechnol-
ogy, and biomedicine [1–7]. They open up new possi-
bilities in the nanoscopic realm and drive technological
advances and breakthrough discoveries. But still, at the
current stage of research, it is an immense challenge to
characterize their internal spin structure, which is gener-
ally to be expected as nonuniform (e.g., [8–16]).

Magnetic small-angle neutron scattering (SANS) is
possibly the only technique to probe the spatial vari-
ation of spin structures on a scale of ∼1−100 nm and
in the bulk of the material [17, 18]. Recent advances
in the understanding of magnetic SANS from complex
nanoparticle systems have been achieved by the marriage
of micromagnetic theory and magnetic neutron scatter-
ing formalism, through both computer simulations and
analytical calculations [19–27]. Although computer sim-
ulations offer considerable potency in predicting neutron
scattering observables for intricate nanoparticle assem-
blies, their drawback lies in their time-intensive nature,
vast parameter space, and the inherent challenge of inter-
preting results. This complexity hinders the derivation of
overarching conclusions and poses a substantial obstacle
in formulating generalized statements.

To address these challenges, Adams et al. [28] in-
troduced the multi-nanoparticle power-series expansion
(MNPSE) method to study the neutron scattering sig-
natures from spherical nanoparticle assemblies featuring
diverse types of magnetic surface anisotropy. Here, we
use the MNPSE approach to predict the main features
of nanoparticle assemblies with inherent vortex-type spin
textures as to be seen in the neutron scattering observ-
ables. Vortex-type structures are ubiquitous in mag-
netism research and are encountered in many systems,
such as in type-II superconductors [29], GdCo2 micropil-
lars [30], Nd-Fe-B magnets [31], iron oxide nanoparti-
cles [32–34] and nanoflowers [35], or the very recently
discovered topological vortex rings in a chiral magnetic

nanocylinder [36]. Our results, which replace the conven-
tional analytical formulation for the superspin model, en-
able the straightforward prediction of the spin-flip SANS
cross section Isf(q) and the corresponding spin-flip pair-
distance distribution function psf(r) arising from spa-
tially antisymmetric spin structures, such as nanovor-
tices, through easily-applicable analytical expressions.

The Letter is organized as follows: We start out by
analyzing the main features of the first-order MNPSE
method for the spin-flip SANS cross section and the
pair-distance distribution function. This approach is
valid for an arbitrary linear magnetization distribution.
Subsequently, for the particular case of a linear vortex,
we derive analytical expressions for the two- and one-
dimensional SANS observables. The analytical expres-
sions are compared to the results of micromagnetic com-
putations. We refer to the Supplemental Material [37]
for details regarding the analytical derivations and the
micromagnetic SANS simulations.

Linear MNPSE method. This approach is based on the
following expansion for the magnetization vector field,
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where r′ = [x′, y′, z′] denotes the position vector in the
local particle frame. The model consists of 12 expansion
coefficients per particle, i.e., 3 zero-order coefficients mi

0

and 9 first-order coefficientsmjk
1 . For a dilute assembly of

spherical nanoparticles, the MNPSE formalism yields the
following expression for the azimuthally-averaged spin-
flip SANS cross section [28, 37]:

Isf(q) = I0sf [f(qR)]
2 + I1sf [f

′(qR)]2, (2)

whereR is the particle radius, and the field-dependent co-
efficients I0sf and I1sf represent complicated averages of the
magnetization coefficients mi

0 and mjk
1 over the particle
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FIG. 1. “Phase diagram” for the azimuthally-averaged spin flip SANS cross section Isf(q) [Eq. (2)] and for the spin-flip pair-
distance distribution function psf(r) [Eq. (3)] within the limits of the first-order magnetization model. The left panel shows
the analytical results, while the right panel features the corresponding results of the micromagnetic simulations. The ratio ι of
the zero-order coefficient I0sf and the first-order coefficient I1sf determines the appearance of vortex-type spin structures. Field
(B0 = µ0H0) variations in the simulations correspond to ι variations in the analytical part (zero field: ι → ∞; saturation:
ι → 0). (a) Color-coded plot of the normalized Isf(q) as a function of ι = I1sf/I

0
sf and qR. The black solid line in (a) describes

the shift of the maximum in Isf(q) towards qmax
∼= 2.50/R [white dashed line, compare (e)]. (b) Normalized psf(r) as a function

of ι and r/R. The black solid line in (b) describes the shift of the zero in psf(r) towards rz ∼= 1.07R [white dashed line, compare
(f)]. (c) Normalized Isf(qR) and (d) normalized psf(r/R) for different ι [see inset in (d)]; the inset in (c) displays Isf(q)/I

max
sf

for 4 < qR < 10. The colored horizontal lines in (a) and (b) correspond, respectively, to the curves in (c) and (d).

assembly and over the detector plane. The corresponding
basis functions are given by (u = qR):

f(u) =
sinu− u cosu

u3
,

f ′(u) =
df

du
=

(u2 − 3) sinu+ 3u cosu

u4
.

Here, f(u) is the form-factor function of the unit
sphere [18] and f ′(u) is the related first-order derivative.
By inverse Fourier transformation we find from Eq. (2)
the related pair-distance distribution function [37]:

psf(r) = I0sf
πr2

6R3

[
1− 3r

4R
+

r3

16R3

]
(3)

+ I1sf
πr2

10R3

[
1− 5r

4R
+

5r3

16R3
− r5

32R5

]
.

While the zero-order contribution (I0sf) arises from sym-
metric (parallel, positive) correlations only, the first-
order contribution (I1sf) contains antisymmetric (antipar-

allel, negative) correlations. By comparison to micro-
magnetic simulations using Mumax3 [38, 39]—including
isotropic exchange, a random cubic anisotropy [40], the
Zeeman interaction, and the demagnetizing field—we
find that this linear approach [Eqs. (2) and (3)] already
captures the main features of vortex-type spin textures
seen in the SANS observables.

The results that are embodied by Eqs. (2) and (3)
are summarized in Fig. 1. Prominent features regard-
ing vortex-type spin structures are the decreased spin-flip
scattering intensity Isf(q) at momentum transfer q = 0
[see Fig. 1(a,c,e,g)] and the damped oscillatory behavior
of the pair-distance distribution function psf(r) exhibit-
ing negative (antiparallel) correlations related to a vortex
(see Fig. 1(b,d,f,h), compare to [23, 31, 41]). In the lim-
iting case of ι = I1sf/I

0
sf → ∞ (modeling the remanent

state) our linear theory predicts a maximum of Isf(q) at
qmax

∼= 2.50/R [maximum of (f ′(u))2]. This prediction
is in excellent agreement with the result from our micro-
magnetic simulations, where we find qmax(B0 = 0 T) ∼=



3

2.50/R [see Fig. 1(g)]. Furthermore, the relevant zero
of psf(r) is predicted as the result of the following cubic
equation that is derived from Eq. (3):

ν3 + 4ν2 +

(
2− 10

3ι

)
ν −

(
8 +

40

3ι

)
= 0, (4)

where ν = r/R. For ι → ∞, Eq. (4) predicts the zero
at rz ∼= 1.07R, whereas in our micromagnetic simulations
we find rz(B0 = 0 T) ∼= 1.03R [see Fig. 1(h)].

Beyond these limits for the momentum transfer qmax

and the “zero” correlation length rz we find two spe-
cific transition points for ι in the two-dimensional (2D)
maps shown in Fig. 1(a) and (b). In Fig. 1(b) we ob-
serve for ι > 1 the occurrence of negative correlations
[negative values of psf(r)], and in Fig. 1(a) we see that
the scattering intensity at the origin of reciprocal space,
Isf(q = 0)/Imax

sf , is constant for ι < 5 and decreases for
ι > 5. The micromagnetic simulation results reveal an
analogous behavior [compare Fig. 1(e) and (f)].

MNPSE method: The case of a linear vortex. In the
formulation of the linear MNPSE method the parameters
I0sf and I1sf [in Eqs. (2) and (3)] are arbitrary functions of
the 12 magnetization expansion coefficients in Eq. (1). In
the following, we aim to adapt the linear MNPSE method
to include physically motivated parameters (replacing I0sf
and I1sf). This approach allows us to obtain a scattering
model that is closer related to the underlying micromag-
netic Hamiltonian in the sense that it contains informa-
tion on the vortex helicity, on the orientation distribution
of the vortex axes, and on the transformation behavior
of the energies in the Hamiltonian under space inversion.

We consider a dilute assembly of noninteracting spher-
ical nanoparticles that are rigidly embedded in a homo-
geneous and nonmagnetic matrix. Each particle is as-
sumed to have a random orientation of its (cubic or uni-
axial) magnetic anisotropy axis with respect to the ex-
ternally applied magnetic field H0 ∥ ez, which defines
the laboratory frame of reference. In addition to mag-
netic anisotropy and the Zeeman interaction, we consider
an isotropic exchange energy and, most importantly, the
magnetodipolar interaction (see the Supplemental Mate-
rial [37]). When the spin structure of such a spherical
nanoparticle is computed starting from saturation, we
always find—using the materials parameters of iron—a
vortex-type texture at low fields and for particle sizes
larger than about 20 nm [23, 41]. It is the dipolar inter-
action that is responsible for the vortex formation.

Based on these simulation results, and with the aim
to obtain an approximate expression for the spin-flip
SANS cross section of an ensemble of vortex-carrying
randomly-oriented nanoparticles, we introduce a magne-
tization model with a uniform (constant) part of mag-
nitude m0 and a linear vortex term of magnitude m1.
More specifically, the basic magnetization vector field is

written as:

M′(r′) = m0e
′
z +m1v(r

′), (5)

where e′z = [0, 0, 1] is the unit vector in z′ direction,
v(r′) = [−y′, x′, 0] is the linear vortex field, and r′ =
[x′, y′, z′] is the position vector with reference to the lo-
cal vortex frame. Compared to Eq. (1) the number of ex-
pansion coefficients in Eq. (5) has been reduced to two.
A positive m1 indicates a counterclockwise (CCW) or
right-handed sense of rotation, while a negative m1 cor-
responds to a clockwise (CW) or left-handed sense of
rotation. We note that for a micromagnetic Hamiltonian
that contains the isotropic exchange interaction, mag-
netic anisotropy, the Zeeman, and magnetodipolar inter-
action, there exists no preference for CCW or CW vortex
rotation senses in the particles. CCW and CW vortices
appear with equal probability so that the chiral function
averages to zero (see below). However, by including the
Dzyaloshinskii-Moriya interaction (DMI), which breaks
space-inversion symmetry, chirality selection takes place
and leads to a nonzero chiral function [27].

Equation (5) models a linear vortex in the local vortex
frame. We introduce a zy rotation matrix R(α, β) that
transforms the local magnetization M′ into the labora-
tory frame of reference, where α and β denote the (global)
polar and azimuthal angles, respectively. The resulting
global magnetization vector field is then obtained as:

M(r;α, β) = R(α, β) ·M′(RT (α, β) · r). (6)

Using Eq. (6) in the MNPSE method [37], we define the
ensemble-averaged (dilute) SANS cross sections as:〈

dΣsf,χ

dΩ

〉
=

1

2

∫ 4π

0

[
dΣCCW

sf,χ

dΩ
+
dΣCW

sf,χ

dΩ

]
ψ(α, β)dΥ (7)

where dΥ = sinαdαdβ is the solid-angle differential, and
dΣCCW

sf,χ

dΩ (q;α, β) and dΣCW
sf,χ

dΩ (q;α, β) are the SANS cross
sections referring to two nanoparticles with the same ori-
entation (α, β), but opposite senses of vortex rotation
(mCCW

1 = −mCW
1 ). The function ψ(α, β) is a field-

dependent probability distribution that models the ori-
entation of both the CCW and CW vortex rotation axes
(no distinction between the different polarities); its ori-
gin is related to the distribution of the net magnetiza-
tion vectors of the nanoparticles. For simplicity, we as-
sume a uniform distribution ψu on the spherical surface,
which is limited by a field-dependent conical opening an-
gle 0◦ ≤ αc ≤ 90◦. The azimuthally-symmetric distribu-
tion is then given by (see [37] for details):

ψu(α, β) =
Θ(1− α/αc)

2π(1− cosαc)
, (8)

where Θ(ξ) is the Heaviside function. In the fully sat-
urated case (B0 → ∞) it follows that αc → 0, and αc
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FIG. 2. Illustration of the 2D (normalized) spin-flip SANS cross section and chiral function computed from Eqs. (9) and
(10) reflecting the saturation and remanence cases (particle size: D = 2R = 40nm) (linear color scale). (a,b) and (g,h) show
snapshots of the underlying real-space spin structures. The left panel shows the analytical results, while the right panel features
the results of the micromagnetic simulations. The incoming neutron beam (∥ ex) is perpendicular to the applied magnetic field
H0 ∥ ez (B0 = µ0H0). The maximum of the spots in (d) and (j) are found at qy,max

∼= 2.50/R. (e,f) and (k,l) display the
respective chiral functions in the remanent state for counterclockwise (CCW) and clockwise (CW) vortex rotations. Note that
the specific values for αc = 27◦ and for the ratio m1/m0 = 0.7 in (d) are based on a fit of the analytical function [Eq. (9)] to
the 2D simulation data shown in (j).

increases with decreasing applied magnetic field. By in-
serting Eqs. (5)−(8) into the formalism of the MNPSE

method, we obtain the following final expressions for the
randomly-averaged 2D spin-flip SANS cross section and
chiral function [37]:

〈
dΣsf

dΩ

〉
(q, θ) =

W

8
[m0f(qR)]

2 ×
[
12− (cos2 αc + cosαc)(3 cos

2(2θ) + 2 cos(2θ) + 3) + 4 cos(2θ)
]

(9)

+
W

2
[Rm1f

′(qR)]2 ×
[
3− (2 cos2 αc + 2 cosαc − 1) cos(2θ)

]
,〈

dΣCCW,CW
χ

dΩ

〉
(q, θ) = ±W [Rm0|m1|f(qR)f ′(qR) cos θ]×

[
4 + cos2 αc + cosαc − 3(cos2 αc + cosαc) cos

2 θ
]
, (10)

where W is a scaling constant. In Eq. (10) we have sep-
arated the chiral function into CCW (“+” sign) and CW
(“−” sign) contributions. For the here-considered mi-

cromagnetic energy contributions [37] (with no chirality
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selection taking place), it then follows that〈
dΣχ

dΩ

〉
=

1

2

[〈
dΣCCW

χ

dΩ

〉
+

〈
dΣCW

χ

dΩ

〉]
= 0. (11)

Figure 2 displays Eqs. (9) and (10). At saturation
[Fig. 2(a,c) and (g,i)], with αc = 0◦ and m1/m0 =
0, the spin-flip SANS cross section exhibits the well-
known sin2 θ cos2 θ angular anisotropy. At remanence
[Fig. 2(b,d) and (h,j)], with αc = 27◦ and m1/m0 = 0.7,
we observe for the spin-flip signal an anisotropy that
strongly differs from the saturated case, with maxima
for θ = 90◦. This observation strongly suggests that the
magnetization Fourier components are anisotropic, i.e.,
M̃x,y,z = M̃x,y,z(q, θ) (compare to Eq. (4) in [37]). Con-
sequently, to not lose this information, the experimental
data analysis should be concentrated on 2D spin-flip data
rather than on the azimuthally-averaged 1D data. In mi-
cromagnetic simulations of spherical nanoparticles, very
similar scattering patterns were observed [27, 42].

Averaging Eq. (9) over the angle θ, i.e.,
(2π)−1

∫ 2π

0
(...)dθ, yields the 1D quantity [37]

⟨Isf⟩(q) =
3W

16
[m0f(qR)]

2(8− 3 cos2 αc − 3 cosαc)

+ 8
3W

16
[m1Rf

′(qR)]2. (12)

By comparison to Eq. (2) we note that the new parame-
ters m0, m1, and αc in Eqs. (9) and (10) are related to
the coefficient ratio I1sf/I

0
sf as follows:

ι =
I1sf
I0sf

=
8m2

1R
2

m2
0(8− 3 cos2 αc − 3 cosαc)

, (13)

which emphasizes the importance of the vortex-axes dis-
tribution function. The angle αc may be obtained from
the analysis of (preferentially 2D) experimental spin-flip
SANS data (compare to Fig. 2(d) and (j) and the video
clip in [37]).

Conclusion. In this Letter we have demonstrated that
the linear MNPSE approach captures the main effects in
the spin-flip SANS cross section and pair-distance dis-
tribution function stemming from dilute assemblies of
spherical nanoparticles exhibiting vortex-type spin tex-
tures. A crucial insight is that the linear functional-
ity represents the most important contribution to the
magnetic neutron scattering cross section. Based on
the specific case of a linear vortex model, we have de-
rived analytical expressions for the 2D and 1D spin-
flip and chiral cross sections of an ensemble of ran-
domly oriented vortex-carrying nanoparticles. The max-
imum of the spin-flip scattering intensity and the zero
of the pair-distance distribution function appear, respec-
tively, at momentum transfer qmax

∼= 2.50/R and position
rz ∼= 1.07R, where R denotes the radius of the spheri-
cal nanoparticles. The analytical predictions, which en-
able e.g. the determination of the field-dependent conical

opening angle αc of the vortex-axes distribution from ex-
perimental data, are in very good agreement with the
results of micromagnetic simulations. The chiral SANS
cross section is sensitive to the vortex rotation sense, but
in a many-particle system with no chirality selection, it
averages to zero (as expected). A candidate for chiral-
ity selection is the DMI interaction that breaks space-
inversion symmetry.
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