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2) Department of Physics and Astronomy, University of British Columbia,

6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada
(Dated: April 25, 2024)

Conformal symmetry heavily constrains the dynamics of non-relativistic quantum gases tuned to a
nearby quantum critical point. One important consequence of this symmetry is that entropy produc-
tion can be absent in far away from equilibrium dynamics of strongly interacting three-dimensional
(3D) and one-dimensional (1D) quantum gases placed inside a soft harmonic trapping potential.
This can lead to an oscillatory fully revivable many-body dynamic state, which is reflected in many
physical observables. In this article we further investigate the consequences of conformal symmetry
on a) the zero-temperature auto-correlation function, b) the Wigner distribution function, and c)
the Von Neumann entanglement entropy. A direct calculation of these quantities for generic strongly
interacting systems is usually extremely difficult. However, we have derived the general structures of
these functions in the non-equilibrium dynamics when their dynamics are constrained by conformal
symmetry. We obtain our results for a) by utilizing an operator-state correspondence which connects
the imaginary time evolution of primary operators to different initial states of harmonically trapped
gases. While the dynamics of the functions in b) and c) are derived from conformal invariant density
matrices.

I. INTRODUCTION

Far-away from equilibrium quantum dynamics of a
generic strongly interacting quantum state has been a
highly fascinating topic that is generally an extremely
challenging topic to fully explore due to its enormous
complexity. The dynamics of strongly interacting quan-
tum states with scale invariant interactions on the other
hand can be severely constrained by an emergent dy-
namic conformal symmetry. Consequential dynamics due
to such a dynamic symmetry have very surprising and
distinct features that usually do not appear in generic
interacting quantum states.

The conformal symmetry can naturally appear in non-
relativistic scale invariant quantum field theories with
Galilean invariance [1, 2] and had been applied long ago
to understand statistical critical phenomena [3]. In the
context of quantum gases, the dynamic consequence of
scale invariant interaction has also been studied in two
spatial dimensions by Pitaevskii and Rosch et.al. [4], al-
though the scale symmetry in two dimensions is only
approximate due to quantum anomaly [5–7]. Later,
coordinate re-parametrization and transformations were
applied to understand dynamics of unitary gases near
Feshbach resonance in a series articles by Castin and
Werner [8–10]. At around the same time, Son consid-
ered the implications of conformal invariance on hydro-
dynamics of strongly interacting thermal gases at high
temperatures and the bulk viscosity [11]. In addition,
the scaling dimensions of primary operators and implica-
tions on ground states and excitations in quantum gases
were also investigated and discussed in [12].

Scale and later conformal symmetry have since then
been exploited numerous times to examine the different
aspects of quantum dynamics of both strongly interact-

ing Bose and Fermi gases in various dimensions [14–34].
These studies include an examination of conformal sym-
metry in the expansion dynamics [15, 20, 23], the dynam-
ics in time-dependent traps [14, 17–19, 24, 26, 34], the
study of breathing dynamics [8, 9], and the existence of
large amplitude fully reversible non-equilibrium quantum
phenomena or a quantum Boltzmann breather[25, 27]
that is consistent with the absence of the bulk viscosity
from an earlier study [11], short-cuts to adiabaticity and
quantum thermodynamics [16, 21, 22, 28], rotating quan-
tum gasses [30], as well as to quantify the role of scale-
breaking interactions on the dynamics [20, 23, 25, 27, 33].

It is worth remarking that the earlier works on quan-
tum dynamics of three dimensional strongly interacting
gases near Feshbach resonance focus on either pure quan-
tum states [8–10] or hydrodynamics of strongly inter-
acting thermal gases above the degeneracy temperatures
[11]. In a series of more recent works, a few new dis-
tinct aspects and exciting phenomena in the conformal
dynamics that had not been understood before, or had
not been connected to dynamic symmetries have been
further explored quite intensively and emphasized.

Firstly, the conformal dynamics can occur near any
scale invariant fixed points suggested by scale transfor-
mations or renormalization group equations (RGEs), in-
dependent of particle statistics, high dimensions or low
dimensions. Examples are quantum gases near Feshbach
resonance, non-interacting quantum gases in 3D and 1D,
as well strongly interacting Tonk-Girardeau fixed point
in 1D etc [25, 27, 33]. Notably, we find that far away
from equilibrium dynamics near 1D strong coupling limit
can be considered to be dual to that near a 3D non-
interacting fixed point. Particularly, the scale invariance
and consequential conformal symmetry offer a unified
picture of quantum dynamics in very different classes of
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strongly interacting many-body states.

Secondly, the conformal dynamics occur in strongly
interacting systems at both zero temperature, tempera-
tures below the quantum degeneracy temperature, as well
as high temperatures where strongly interacting thermal
gases emerge, as far as the interactions are scale invari-
ant. In fact, the universal density matrix dynamics are
manifestly invariant under conformal transformations at
a broad range of temperatures [23]. Consequently, en-
tropy production dynamics in non-equilibrium dynamics
are entirely suppressed resulting in surprising fully re-
versible far away from equilibrium quantum dynamics in
strongly interacting quantum gases in 3D and 1D. Such
a quantum phenomenon had been named as a quantum
Boltzmann breather in Ref. [25] in strongly interacting
quantum gases. When taken to high temperatures, the
density matrix dynamics indeed also indicate that the
bulk viscosity in hydrodynamics of strongly interacting
thermal gases has to vanish.

Finally, the stabilities of these dynamics due to a
change in the interaction depends on the nature of the
fixed points, i.e. the stability depends on both the spatial
dimensions and what type of fixed point (strongly inter-
acting vs free particle) the quantum states are nearby
[20, 23, 27]. When stable, conformal symmetry can also
appear in the infrared limit as an emergent symmetry
in the long wavelength or low frequency limit although
the scale symmetry is broken explicitly by strong inter-
actions.

One important consequence of conformal symmetry is
the possibility for energy and (thermodynamic) entropy
preserving dynamics [23, 25]. Such energy and entropy
conserving dynamics is so far only known to occur for
conformally invariant systems. This feature was illus-
trated previously in the context of large amplitude oscil-
lations of three-dimensional (3D) Fermi gases with res-
onantly large s-wave interactions in quenched harmonic
oscillator potentials [25]. Provided the initial state is a
thermal mixture in a harmonic trap with frequency ωi,
the resulting dynamics in a quenched harmonic trap with
frequency ωf < ωi conserves both energy and entropy
and is fully reversible and cyclic. For this situation the
gas will expand and contract in the final harmonic trap
at a frequency of 2ωf without end. This motion is the
quantum version of the Boltzmann breather [25].

These large-amplitude oscillations are one signature
of the system undergoing a cyclic revival. More re-
markably, one can show that the N -body density ma-
trix, where N is the number of particles, is completely
periodic with frequency 2ωf [23]. In fact, the time-
dependence of the density matrix in position space is a
time-dependent rescaling similar to what happens in a
simple adiabatic expansion or contraction, but with an
important time-dependent gauge factor that represents
the coherent global flow and conserves the energy.

In this article we further investigate the consequences
of the non-relativistic conformal symmetry and the asso-
ciated quantum revival in strongly interacting 1D and 3D

Fermi gases where the quantum dynamics are cyclic. To
this end, we explicitly consider, for the sake of simplicity,
the d-dimensional strongly interacting Fermi gas placed
in a quenched harmonic trap. We then examine how the
conformal symmetry and quantum revivals are manifest
in the post-quench dynamics. Namely, we investigate:
a) the zero-temperature auto-correlation function for

the dynamics of scale invariant quantum gases in
quenched harmonic traps (via an imaginary time evolu-
tion of a primary operator and the operator-state corre-
spondence);
b) the Wigner distribution function via the density ma-

trix quantum dynamics;
c) the entanglement entropy dynamics.
The dynamics of these quantities are nigh intractable

for generic many-body systems. However, as we will
see below, the conformal dynamics and the cyclic nature
of the quantum state heavily constrain the dynamics of
these quantities to be a simple time-dependent rescaling
of their original values.
The remainder of this article is organized as follows.

We first review the notion of scale and conformal invari-
ance for unitary Fermi gases in 3D and 1D in Sec. II.
We then discuss some general properties of the non-
relativistic conformal, or SO(2,1), symmetry in Sec. III.
In Sec. IV we use those general results to obtain a general
state-operator correspondence for harmonically trapped
gasses. This correspondence allows us to evaluate the
zero-temperature auto-correlation function in Sec. V. In
Sec. VI, we consider the dynamics of the Wigner dis-
tribution function and the momentum distribution. We
then examine the Von Neumann entanglement entropy in
Sec. VII. Our final conclusions are presented in Sec. VIII.

II. HAMILTONIAN FOR THE STRONGLY
INTERACTING FERMI GAS

An ideal platform to study conformal symmetry and
its implications on dynamics is a spin-1/2 Fermi gases in
d = 1, 3 spatial dimensions with scale invariant s-wave
interactions. In the absence of the trapping potential,
the Hamiltonian for the system is:

H =

∫
dr ψ†(r)

(
−1

2
∇2

)
ψ(r)

+
g

2

∫
dr ψ†(r)ψ†(r)ψ(r)ψ(r) (1)

where ψ(†)(r) is the fermionic annihilation (creation) op-
erator, and g is the bare interaction strength. In Eq. (1)
we have set ℏ andm to be unity, and have also suppressed
the spin indices.
In 3D the bare coupling constant g is related to the

s-wave scattering length according to:

1

4πa
=

1

g
− Λ

2π2
(2)
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where Λ is the ultraviolet (UV) cut-off for the theory,
and a is the 3D s-wave scattering length. Similarly in 1D
the bare coupling constant is related to the 1D s-wave
scattering length, which we also define as a, via:

g = −2

a
. (3)

For finite interaction strengths, the presence of the s-
wave scattering length breaks scale symmetry. Hence the
dynamics are no longer conformally invariant. Scale in-
variance reappears in the strongly interacting limit when
a−1 = 0 for 3D and when a = 0 for 1D, which can be
readily achieved experimentally thanks to Feshbach and
confinement induced resonances [35–37]. Unless other-
wise stated, we will assume the system resides at the
strongly interacting scale invariant point.

We will be primarily concerned with the dynamics in
the presence of a harmonic trapping potential:

Hω(t) = H + ω2(t)C (4)

where:

C =

∫
dr

1

2
r2ψ†(r)ψ(r) (5)

and ω(t) is a general, possibly time-dependent, harmonic
trap frequency.

As a practical set up, We assume that the gas is in
thermal equilibrium inside the harmonic trap with fre-
quency ωi, which can be readily achieved experimentally.
At time t = 0, the system experiences a quench in the
trapping frequency to a final value ωf ≪ ωi. Provided
ωf ≪ ωi, the system is in a highly non-equilibrium state
and will expand.

III. GENERAL CONFORMAL SYMMETRY IN
STRONGLY INTERACTING FERMIONS

The conformal symmetry discussed in many-body
quantum dynamics is closely related to the covariance
discussed by Hagen [1] in the context of a non-relativistic
quantum field theory. Consider the case of free space dy-
namics, ωf = 0. It was pointed out that the equation of
motion for the field ψ(R, t):

−i∂tψ(R, t) =
[
Hωf=0, ψ(R, t)

]
(6)

as well as the action for a scale invariant non-relativistic
quantum field theory, exhibits a general conformal sym-
metry, i.e. invariance under the following space-time
transformation of the coordinates [11]:

R → R̃ =
R

λ(t)
, dt→ dτ =

dt

λ2(t)
(7)

Figure 1: We show the transformation of a finite volume
indicated by Ω along the time domain (defined as the
vertical direction). a) represents standard time
evolution. b) is the transformation introduced for the
studies of invariance of actions in (d+ 1) dimension. c)
and d) are conformal co-moving coordinates introduced
for the studies of N -body fermion dynamics in free
space c) and in a harmonic trap d). τ(t) is the time
defined in the conformal co-moving frame (see the main
text).

and of the field operator:

ψ(R, t) → ψ̃(R̃, τ) =
1

λ
d
2 (t)

ψ(R̃, τ) exp[i
R̃2

2
˙λ(t)

2
] (8)

provided the dynamic re-parametrization factor λ(t) is a
solution in the following differential equation:

d

dt
[
λ̇(t)

λ(t)
] + [

λ̇(t)

λ(t)
]2 = 0. (9)

Eq. (9) indicates the following solutions:

λ(t) = 1− ct, −∞ > t > +∞. (10)

for a general constant c with units of frequency.
The space-time mapping in Eqs. (7-8) describes the

dynamics in free space inside a conformal comoving frame
also in free space. It is illustrated in Fig. (1) b). In this
transformation, t = ±∞ is always mapped into a finite τ
point in the conformal coordinate implying an effective
freezing of any non-trivial quantum dynamics in the long
time limit.
Often we are interested in the expansion dynamics of

quantum gases released from harmonic traps. If we as-
sume the gas is initially in an equilibrium state in a
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harmonic trap with frequency ωi, we can still use the
general conformal symmetry to simplify the dynamics.
In this case it is much more convenient to force the
reparametrization factor, λ(t), to be the solution of:

d

dt
[
λ̇(t)

λ(t)
] + [

λ̇(t)

λ(t)
]2 =

ω2
i

λ4(t)
(11)

The solution to the above equation is:

λ(t) =
√
1 + ω2

i t
2 τ(t) =

1

ωi
arctan(ωit). (12)

In the conformal comoving frame defined by Eq. (12), the
free-space dynamics are mapped onto the dynamics in-
side in a harmonic trapping potential with frequency ωi

[23]. This emergent harmonic trapping potential can be
thought of as a fictitious force in the non-inertial confor-
mal comoving frame. In this frame, the long-time dynam-
ics are simple as: λ(t) ≈ ωit and τ(t) ≈ π/2+O(1/(ωit).
These conformal coordinates effectively compactify quan-
tum dynamics in the time domain (see Fig. (1) c.)

The general conformal transformation is also useful in
describing the dynamics in a harmonic trap with fre-
quency ωf . Again, we will consider the case where the
gas is initially in equilibrium in a harmonic trap with fre-
quency ωi. In this case the time-dependent scaling factor
satisfies:

d

dt
[
λ̇(t)

λ(t)
] + [

λ̇(t)

λ(t)
]2 + ω2

f =
ω2
i

λ4(t)
. (13)

The solution to Eq. (13) has the following form:

λ(t) =

√
cos2(ωf t) +

ω2
i

ω2
f

sin2(ωf t)

τ(t) =
1

ωi
arctan

(
ωi

ωf
tan(ωf t)

)
(14)

This coordinate transformation maps the dynamics in a
harmonic trap with frequency ωf into a comoving frame
where the system is inside the original harmonic trap of
frequency ωi. In this conformal comoving frame, τ(t)
is effectively compactified on the domain [0, π] with t =
+π/2ωf being mapped into τ = π/2. This situation is
illustrated in Fig. (1) d).

In general this general conformal transformation can
be applied to the dynamics of arbitrary time-dependent
harmonic trapping potentials. In this case the relevant
equation is the Ermakov equation:

d

dt
[
λ̇(t)

λ(t)
] + [

λ̇(t)

λ(t)
]2 + ω2(t) =

ω2
i

λ4(t)
. (15)

In this situation, the harmonic trap in the comoving
frame has a frequency ωi. This has been used previously

to study scale invariant quantum gases in time-dependent
harmonic traps [14, 17–19, 24, 26].
We note that the dynamics of the scaling factor is

identical to a hydrodynamic analysis of the expansion
dynamics. For completeness we present this analysis in
Appendix A. Below we will exploit the compactified ef-
fective time coordinate, τ , to understand the dynamics
of strongly interacting scale invariant Fermi gases.

IV. STATE-OPERATOR CORRESPONDENCE
FOR QUENCHED HARMONIC TRAPS

Another important consequence of conformal symme-
try is related to the spectrum of the Hamiltonian, Hω.
In particular, one can show that the energy spectrum of
the Hamiltonian Hω consists of a set of conformal tow-
ers. The eigenstates within a conformal tower are evenly
spaced by an amount 2ω [9, 12]. However, the difference
in the ground state energies of two conformal towers are
not generally commensurate in the strongly interacting
limit [12].
The ground states of each conformal tower is special as

it can be constructed from a primary operator, Op which
satisfy: [C,Op] = [Ki, Op] = 0, where C is the generator
of conformal transformations, and Ki is the generator of
Galilean boosts along the i = x, y, z direction. For our
discussions on more general nonequilibrium dynamics in
a soft trap with frequency ωf , it is imperative that we
are able to connect Op to a wide range of initial states
that can be easily prepared experimentally. Here we show
that the ground state of a trapped gas with frequency ωi

can be obtained through the imaginary time evolution of
the primary operator in a harmonic trap with frequency
ωf via the state-operator correspondence.
Let |ψ0⟩ be an initial state prepared as the ground

state of the Hamiltonian Hωi
in experiments. We will

show that the the ground state of the Hωi
is related to

imaginary time-evolution in the trap Hωf
:

|ψ0⟩ = e−Hωf
τO†

p|vac⟩, tanh(ωfτ) =
ωf

ωi
(16)

where τ is the amount of imaginary time needed to
achieve a desired initial state |ψ0⟩ from O†

p acting on
the many-body vacuum, |vac⟩. Note τ is a function of
ωf and ωi given by the solution to the second equation
above.
To prove Eq. (16) it is sufficient to show that |ψ0⟩ is

indeed an eigenstate of Hωi for a given τ(ωi, ωf ). Further
conformal symmetry arguments require this state to be
the ground state. Consider the following equation that
is identical to Eq. (16):

Hωi
|ψ0⟩ = e−Hωf

τeHωf
τHωie

−Hωf
τO†|vac⟩ (17)

Eq. (17) can be evaluated analytically using the SO(2,1)
algebra in Table I. From the SO(2,1) algebra one can
show that:
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eHωf
τHωi

e−Hωf
τ =

(
1−

ω2
i − ω2

f

ω2
f

sinh2(ωfτ)

)
Hωf

− i
ω2
i − ω2

f

2ωf
sinh(2ωfτ)D

+ (ω2
i − ω2

f ) cosh(2ωfτ)C (18)

To simplify things further we use the properties of the
primary operator, namely its commutation relations:

[D,O
(†)
p ] = i∆OpO

(†)
p where ∆Op is the scaling dimen-

sion of O
(†)
p and [C,O

(†)
p ] = 0:

Hωi |ψ0⟩ =

(
1−

ω2
i − ω2

f

ω2
f

sinh2(ωfτ)

)
Hωf

|ψ0⟩

+
ω2
i − ω2

f

2ωf
sinh(2ωfτ)∆Op |ψ0⟩ (19)

In order to remove the spurious term related to Hωf
,

we set:

sinh(ωfτ) =
ωf

(ω2
i − ω2

f )
1
2

, or tanh(ωfτ) =
ωf

ωi
. (20)

In this way Eq. (19) simplifies to:

Hωi
|ψ0⟩ = ∆Oωi|ψ0⟩ (21)

which by construction is the ground state of Hωi
.

Previously this state-operator correspondence was
shown to relate the ground state of a trapped gas to
imaginary time evolution in free space with Hωf=0 [12].
We note that in the limit ωf → 0, i.e. for the case of the
final Hamiltonian being in free-space, our result states
τ = 1/ωi, which is the result for free space evolution.

As in the case of free space, the dynamics of the
state |ψ0⟩ following the Hamiltonian Hωf

is a simple
time-dependent rescaling of the many-body wavefunc-
tion. This can be readily seen by examining:

|ψ0⟩(t) = e−iHωf
t|ψ0⟩ = e−iHωf

(t−iτ)O†
p|vac⟩ (22)

In other words, the dynamics of a primary state is given
by a time evolution of O†

p|vac⟩ over complex time t− iτ .
By changing the amount of imaginary time evolu-

tion, i.e. τ , one can access different final Hamiltonians
via Eq. (20). Similarly to obtain different times, one
tunes the real part of the time evolution. This is shown
schematically in Fig. (2) a). The converse is also true,
by fixing the final Hamiltonian, and by tuning the imag-
inary time evolution, one can have access to different
initial states. Thus by suitably adjusting the imaginary
time-evolution, one can examine a wide range of initial
conditions and dynamics.

Figure 2: Non-equilibrium quantum dynamics via
imaginary time evolution of a primary conformal
operator. In a), different paths in the plane of
Ret− Imt can be used to represent various quantum
dynamics under the actions of different Hamiltonians
but with the same initial state. They can also represent
unitary evolution under the action of the same
Hamiltonian but different initial states. In b), we
schematically show that imaginary time evolution of the
same operator Op under the action of different
Hamiltonians can result in the same state |ψ0⟩ if a
proper imaginary time duration is chosen for each
distinct Hamiltonian. See the main text in Section IV
for details.

Following the same argumentation, one finds that at
each moment in time |ψ0⟩(t) is an exact eigenstate of a
Hamiltonian of the form:

Hωi

(
r

λ(t)
, λ(t)p− λ̇(t)

)
|ψ0⟩(t) = ∆Op

ωi|ψ0⟩(t) (23)

where λ(t) is given by Eq. (14), and we have highlighted
the position and momentum dependence of the Hamilto-
nian as: Hωi(r,p). This is equivalent to the statement of
scaling dynamics proposed in the context of the general
conformal symmetry of the equation of motion. This
result was previously derived for the case of free-space
dynamics [25], but equally applies to any initial and final
trap provided τ is chosen accordingly.

V. ZERO-TEMPERATURE
AUTO-CORRELATION FUNCTION IN

QUENCHED HARMONIC TRAPS

From the state-operator correspondence, we can
present a different illustration of the conformal dynam-
ics. Consider the zero-temperature generalized auto-
correlation function in a quenched harmonic trap:
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G(R, t) = ⟨ψ0| e−iHωf
teiP·R |ψ0⟩ (24)

where |ψ0⟩ is the ground state of the Hamiltonian Hωi .
For a general discussion, we also define the momentum
operator in the ith direction as Pi so that we can also
translate the center of |ψ0⟩ to point R in space.

The auto-correlation function defined in Eq. (24) is
a special case of the Loschmidt echo evaluated at zero-
temperature. In general the Loschmidt echo quantifies
the overlap between a given initial state time evolved
according to two different Hamiltonians, H1 and H2:

L(t) = ⟨ψ0|eiH2te−iH1t|ψ0⟩. (25)

Eq. (25) is exactly Eq. (24), with H1 = Hωf
and H2 =

Hωi
, except we further separate these two states in posi-

tion space by R.
First, we can write the auto-correlation function in

terms of a correlation function of the primary operator:

G(R, t) = ⟨vac|Op(R, t− iτ)O†
p(0, iτ)|vac⟩ (26)

where we have defined:

O(†)
p (R, t) = e−iP·ReiHωf

tO(†)
p e−iHωf

teiP·R (27)

The non-relativistic conformal symmetry completely
restricts the form of such correlation funcitons [12, 38,
39]. Consider:

0 = ⟨vac|[C,Op(R, t− iτ)O†
p(0, iτ)]|vac⟩ (28)

since C|vac⟩ = 0. As discussed in Appendix B, it is pos-
sible to evaluate Eq. (28) from the Schroedinger algebra
in Tab. I:

0 =

[
sin2(ωf (t− iτ))

ω2
f

∂t +
sin(2ωf (t− iτ))

2ωf

(
R · ∇R +∆Op

)
+iNOp

R2

2
cos(2ωf (t− iτ))

]
G(R, t) (29)

where ∆O and NO are the scaling dimension and num-
ber of the primary operator O†

p: [D,O†
p] = i∆Op

O†
p and

[N,O†
p] = NOpO

†
p. Similarly, [K, Op] = 0 leads to the

following dynamic equation,

0 =

[
sin(ωf (t− iτ))

ωf
∇R + iNOp

R cos(ωf (t− iτ))

]
G(R, t).

(30)

The solution to Eqs. (29-30) is unique and gives us
the final form of the zero-temperature auto-correlation
function:

[A,B] H C D Pi Ki

H 0 −iD −2iH 0 −iPi

C iD 0 2iC iKi 0

D 2iH −2iC 0 iPi −iKi

Pj 0 −iKj −iPj 0 −iδi,jN

Kj iPj 0 iKj iδi,jN 0

Table I: Commutation relations for the Schroedinger
algebra. The rows and columns are the operators A and
B respectively. The operators shown above are derived
in the main text. The Schroedinger algebra also
contains the angular momentum operator, which we
ignore as we focus on isotropic systems. We also define
N as the number operator, which commutes with all the
above operators. The SO(2,1) algebra repersents the
sub-algebra spanned by H, C, and D.

G(R, t) =

(
ω2
f

sin2 (ωf (t− iτ))

)∆Op
2

× exp

[
−i
NOp

2
R2 ωf

tan (ωf (t− iτ))

]
(31)

Eq. (31) is periodic with a frequency of 2ωf . This is a
signature of both the lack of entropy production in the
conformal dynamics, and the evenly spaced spectrum of
the conformal towers. This result is also consistent with
the N -body density-matrix analysis which states that the
time-evolved many-body wavefunction returns to itself
at time t = π/ωf . We note that the explicit value of
G(0, 0), is related to the normalization of the many-body
wavefunction.
Eq. (31) is also valid in the limit of free-space expan-

sion, ωf → 0 and ωf t ≪ π. In this case, the auto-
correlation function decays as a power-law in time, con-
sistent with Galilean invariance:

lim
ωf→0

G

(
R, t≪ π

ωf

)
≈ 1

t∆Op
e−i

NOp
2

R2

t (32)

where we have disregarded the initial conditions for com-
parison to previous results [12, 38, 39].

VI. WIGNER DISTRIBUTION

A more experimentally practical signature of the cyclic
quantum dynamics is to examine the Wigner distribution
function, and in a related manner, the momentum dis-
tribution. The Wigner distribution function is related to
the one-body density matrix:

f(R,k; t) =

∫
ddre−ik·rρ1

(
R

2
+ r,

R

2
− r; t

)
(33)
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where ρ1
(
R
2 + r, R2 − r; t

)
is the one-body density ma-

trix, R = (r+ r′)/2 is the center of mass coordinate and
k is the relative momentum.

Previously, we proved that the N -body density matrix
for the system can be written in real space as [25]:

ρN ({ri}, {r′j}, t) = ⟨ψ0|
N∏
j=1

ψ†(r′i, t)

N∏
i=1

ψ(rj , t)|ψ0⟩

=
1

λdN (t)
exp

[
i
λ̇(t)

λ(t)

N∑
i=1

r2i − r′2i
2

]

ρN

({
ri
λ(t)

}
,

{
r′i
λ(t)

}
, 0

)
(34)

with {ri} is the set coordinates for N particles. Eq. (34)
is exact if the initial density matrix is the one of an equi-
librium state in a harmonic trap. For more general ini-
tial states, Eq. (34) represents asymptotic dynamics of a
strongly interacting quantum gas when t→ ∞.

This density matrix result naturally extends to the
one-body density matrix. Substituting Eq. (34) into
Eq. (33) yields a surprisingly simple result:

f(R,k; t) = f

(
R

λ(t)
,kλ(t)− λ̇(t)R; 0

)
(35)

The dynamics of the Wigner distribution function,
Eq. (35) is completely constrained by the conformal sym-
metry. The dynamics of the Wigner distribution function
are shown in Fig. (3). The dynamics contain a time-
dependent rescaling of the position and momentum co-
ordinates alongside a translation in momentum space by
λ̇(t)R. Such dynamics are again completely periodic at a
frequency 2ωf and is another manifestation of the Quan-
tum Boltzmann breather discussed in Ref. [25].
One interesting observation is that Eq. (35) appears to

be a solution to the following transport equation:

0 =
[
∂t + k · ∇R − ω2

fR · ∇k

]
f(R,k, t) (36)

if at t = 0 the Wigner function is of an equilibrium form.
Eq. (36) resembles the quantum kinetic equation, in

the Fermi liquid theory, for the quasiparticle distribu-
tion function in the collisionless limit [40, 41]. This is
quite surprising as our examination of the Wigner dis-
tribution function contains the full quantum dynamics
in the strongly interacting regime and is valid at both be-
low and above quantum degeneracy temperatures. In fact,
the temperature during the course of dynamics is simply
related to the initial one via a proper time-dependent
rescaling.

A quantum kinetic description for a generic strongly
interacting system is expected to be much more compli-
cated than Eq. (36). In particular, one expects there to
be a finite collision integral strongly depending on tem-
peratures, as well as renormalization effects of the quasi-
particle velocity due to self-energy effects etc. These fea-
tures appear to be entirely absent in Eq. (36). Similarly,

0

1

2

3

4

(R
,k

,t
) a) b) R i = 0

R i = 2

2 0 2

k/ i

0

1

2

3

4

(R
,k

,t
) c)

2 0 2

k/ i

d)

Figure 3: Schematic for the Wigner distribution,
Eq. (35), as a function of momentum k for two
center-of-mass coordinates, R (blue: R = 0, and red:
R = 2/

√
ωi). The plots a)− d) correspond to times

t/Tf = 0, 1/4, 1/2, 3/4, respectively. When R = 0 the
dynamics are a simple rescaling, while for finite R the
dynamics also involves a time-dependent shift of the
center of the Wigner distribution.

Eq. (36) is almost identical to the set of GHD equations
for the rapidity distribution with hardcore contact inter-
action in 1D [42–47].

Also Eq. (36) resembles the classical kinetic theory for
the phase space distribution function. The classical ki-
netic theory can also support a undamped motion known
as the Boltzmann breather in a weakly interacting gas
[48]. This motion was later observed in thermal Bose
gases in Ref. [49]. In the Boltzmann breather, the classi-
cal distribution function maintains its equilibrium form
and undergoes a rescaling motion that is similar to what
is suggested by Eq. (35). Notably the collision integral
vanishes identically, and the motion of the distribution
function follows Eq. (36). From the point of view of con-
formal dynamics, both the non-interacting and strongly
interacting scale invariant fixed points shall naturally ex-
hibit conformal symmetry which supports the undamped
motion.

A natural corollary of Eq. (35) is that the momentum
distribution:

n(k, t) =

∫
ddRf(R,k, t) (37)

is also completely oscillatory in conformal dynamics at
a frequency of 2ωf . These oscillations in the momen-
tum distribution were originally posited in Ref. [50] and
seen experimentally [51] for 1D Bose gases in the Tonks-
Girardeau limit. Here we state that this phenomenon is
more generally associated with the conformal dynamics
of scale invariant quantum gases expanding in harmonic
traps, and thus can be observed in higher-dimensions, for
example the 3D spin- 12 Fermi gases at a Feshbach reso-
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Figure 4: Schematic for the entanglement Entropy. The
region A is shown by the red region, while B is the blue
region. The boundary of A is denoted by ∂A(r, t). The
dynamics of the entanglement entropy are entirely
coded in the motion of the boundary:
∂A(r, t) = ∂A(r/λ(t), 0).

nance. And it shall occur at a wide range of temperatures
both below and above degeneracy temperatures.

VII. VON NEUMANN ENTROPY AND
CONFORMAL DYNAMICS

The fact that conformal dynamics are completely pe-
riodic at a frequency 2ωf means that there is no ther-
modynamic entropy production. This is evident from
the scaling dynamics of the density matrix in Eq. (34).
However, one can ask about the dynamics of the entan-
glement entropy. Can the reversible nature of conformal
dynamics be detected in the dynamics of the entangle-
ment entropy? Indeed, as we will now show, conformal
symmetry also constrains the entanglement entropy.

The starting point is the N -body density matrix de-
fined in Eq. (34). To calculate the entanglement entropy
we will partition real space into two subspaces, A and
B. Since particles, can either be in either A or B, it is
possible to write:

ρN ({ri}, {r′j}, t) =
∏
i

(θ(r⃗i ∈ A) + θ(r⃗i ∈ B))∏
j

(
θ(r⃗′j ∈ A) + θ(r⃗′j ∈ B)

)
ρN ({ri}, {r′j}, t) (38)

where θ(r⃗i ∈ A(B)) is unity if r⃗ is in A (B) and is zero
otherwise. We focus on terms that have fixed particle
number in each definite subspace. Then by performing
the trace over B, we obtain the reduced density matrix
for A, see Fig (4).

The density matrix in subspace A can be written as a
direct sum of density matrices describing the state of the
system with k particles in the subspace [63]:

ρA =

N⊕
k=0

pkρA,k (39)

where pk is the probability of finding k atoms in A:

pk =

(
N

k

)∫
{drA,i}

∫
{drB,j}

ρN ({rA,i, rB,j}, {rA,i, rB,j}, t) (40)

and ρA,k is the normalized density matrix of subspace A
with k atoms:

ρA,k =
1

pk

∫
{drB,j}ρN ({rA,i, rB,i}, {r′A,j , rB,j}, t) (41)

In the above formulae rA,i is the position of the ith par-
ticle in A (i = 1, 2, ...k), and similarly rB,j is the position
of the jth particle in B (j = 1, 2, ...N − k).
The probability pk has two main components. The

first is a factor of
(
n
k

)
which represents the combinatorics

of having k particles out of N in A. The second part
is the trace of the N -body density matrix provided k-
particles are in A. For translational invariant systems,
this is intuitively related to the probability of finding
k particles in A and the rest in B. The probability of
finding a single particle in either A or B is ≈ VA(B)/V
where VA(B) is the volume of A or B and V = VA + VB
is the total volume. This implies the following expected
behaviour of the probability:

pk ≈
(
N

k

)
V k
AV

N−k
B

V N

∑
k

pk = 1. (42)

Although this was derived in free space, one can prove
that

∑
k pk = 1 holds more generally [63].

Given the decomposition of ρA in Eq. (39), the von
Neumann, or entanglement, entropy for A:

SvN (t) = −TrA [ρA log ρA] (43)

simplifies into a classical and a quantum piece:

S(t) = Sc + Sq(t),

Sc = −
∑
k

pk ln pk, (44)

Sq(t) = −
∑
k

pkTrA,k [ρA,k · log ρA,k] . (45)

The classical piece is just the Shannon entropy for finding
k particles in A with probability pk, while the quantum
piece gives the entanglement entropy of the k particles in
A.



9

The dynamics of the entanglement entropy is contained
in Sq(t), which depends on the reduced density matrices,
ρA,k. The dynamics of these reduced density matrices
immediately follows from Eq. (34); they are equivalent
to a time-dependent rescaling of the position coordinate
up to a gauge transformation. Thus one expects the total
entanglement entropy to be conserved, or at least oscil-
latory. This depends on the choice of the subspace A.

Let the boundary of the A be denoted as ∂A(r). For
general ∂A(r), the entanglement entropy will oscillate at
a frequency of 2ωf , as the dynamics of the density matri-
ces are oscillatory at this frequency. If one considers the
comoving frame moving with the scale factor λ(t), the
boundary of A becomes time dependent: ∂A(r/λ(t)). In
the comoving frame, the oscillations of the entanglement
entropy are due to the oscillations of the boundary, see
Fig. (4). Naturally if one judicially chooses A to be a
semi-infinite plane with its boundary at the origin, the
entanglement entropy will be conserved at all times as
∂A(0/λ(t)) = ∂A(0). In both cases such trivial dynam-
ics of the entanglement entropy are related to conformal
symmetry and the motion of the boundary of A, not nec-
essarily related to information scrambling of the whole
system.

VIII. CONCLUSION

In this article we have examined several signatures of
conformal symmetry on dynamics. First we examined the
operator state correspondence for harmonically trapped
gases, which connects the imaginary time evolution to
different initial states and real time evolution to different
dynamical states. We employed this result to examine
the oscillatory motion of a) the zero-temperature auto-
correlation function, b) the Wigner distribution function,
and c) the entanglement entropy. In all these quanti-
ties, the conformal symmetry completely restricts the dy-
namics, making them related to a simple time-dependent
rescaling of their initial values. This is a huge simpli-
fication of the original problem which would require a
microscopic calculation of the dynamics.

This revival is not related to the many-body Poincare
recurrence time which is exponentially long and not a
perfect revival [64], nor is it related to the one-body
recurrence as the one-body spectrum is evenly spaced.
Rather this many-body revival is indeed exact provided
the system is initially in thermal equilibrium, and is a
consequence of the non-relativistic conformal symmetry
and the dynamics of the resulting conformal tower states
[8, 9, 12]. For more generic initial states, our results
represent long time asymptotics of general expansion dy-
namics. This has been emphasized in Ref. [23].

Since this simplification of the dynamics depends on
the symmetry alone, it is quite general and applies to ar-
bitrary scale invariant quantum gas. Thus these results
not only apply to the strongly interacting gas in 1D and
3D, but also the non-interacting, regardless of dimension-

ality. As discussed in a recent work by the authors [33],
these results also apply to the case of expansion dynam-
ics in the presence of irrelevant perturbations, like finite
range effects in the two-body scattering, three-body in-
teractions, and in 1D, small deviations from strong scale
invariant interactions. In these systems, the effects of
breaking scale invariance occur in a limited short time
window when the gas is most dense, and as such take
many cycles to accumulate. For these systems confor-
mal symmetry can still be readily applied and provides
a clear path towards an analytical understanding of far-
away-from-equilibrium dynamics.
The authors would like to thank Randy Hulet and

Shizhong Zhang for useful discussions. This project was
partially supported by the NSERC (Canada) Discovery
Grant.

Appendix A: Conformal Dynamics in a Two-Quench
Protocol

In this section we review the dynamics of scale invari-
ant and nearly scale invariant quantum gasses inside a
harmonic trap with time-dependent frequency:

ω(t) =


ωi t < 0

ωf 0 < t < th

ωi t > th

(A.1)

where th is the hold time. Initially we assume the gas is
in thermal equilibrium. After the first quench, 0 < t <
th, the gas undergoes conformal dynamics which can be
described by the scale factor in Eq. (14). Equivalently,
one can use the hydrodynamic equations of motion [15,
25] to obtain the following differential equation for the
moment of inertia:

d2

dt2
⟨C⟩(t) = 2

(
ω2
i + ω2

f

)
⟨C⟩(0)− 4ω2

f ⟨C⟩(t) (A.2)

Although this result was obtained from hydordynam-
ics, note that conformal symmetry requires ⟨C⟩(t) =
λ2(t)⟨C⟩(0). This leads to the following differential equa-
tion:

d2λ2(t)

dt2
= 2

(
ω2
i + ω2

f

)
− 4ω2

fλ
2(t) (A.3)

Given the initial conditions:

λ(0) = 1 λ̇(0) = 0, (A.4)

the solution to Eq. (A.3) is Eq. (14). That is both hy-
drodynamic and conformal arguments give the same pre-
diction for the dynamical scale factor.
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A similar analysis for t > th gives the following differ-
ential equation:

d2λ2(t)

dt2
= 2

(
ω2
i + ω2

f

)
+ 2

(
ω2
i − ω2

f

)
λ2(th)− 4ω2

i λ
2(t)

(A.5)

where λ(th) is the value of Eq. (14) at th.
Given the solution for λ2(t) and its first derivative are

continuous functions of t, the general solution to Eq. (14)
has the form:

λ2(t > th) =
Ef

2ω2
i ⟨C⟩(0)

+A cos (2ωi(t− th)) +B sin (2ωi(t− th))
(A.6)

where Ef is the final energy:

Ef =
[
(ω2

i + ω2
f ) + (ω2

i − ω2
f )λ

2(th)
]
⟨C⟩(0) (A.7)

and the coefficients A and B are found to be:

A = λ2(th)−
Ef

2ω2
i ⟨C⟩(0)

B =
1

2ωi

d

dt
λ2(th) (A.8)

In general the system will exhibit undamped oscilla-
tions around Ef/(2ω

2
i ⟨C⟩(0) at frequency 2ωi as required

by conformal symmetry. The amplitude of those oscilla-
tions is determined via:

Ampl. =
√
A2 +B2. (A.9)

Since A and B are periodic functions with frequency
2ωf , the amplitude of these oscillations can be tuned
continuously. Specifically for th = nπ/ωf , λ

2(th) = 1
and dλ2(th)/dt = 0. In this case, A = B = 0 while
Ef = 2ωi⟨C⟩(0). Thus the amplitude of the oscillations
is zero, and λ(t > th) = 1. This is expected as there is
a quantum revival of the full many-body state for this
choice of th. When th = (2n + 1)π/2ωf we have max-
imum amplitude oscillations with Ampl. = ω2

i /ω
2
f . For

arbitrary th the amplitude of the oscillations changes con-
tinuously between the aforementioned limits.

The presence of oscillations for t > th are related to the
amount of work done on the system by the two-quench
protocol. The work done after this two quench protocol
is given by:

W (th) = ⟨Hωi
⟩(t = t+h )− ⟨Hωi

⟩(t = 0−), (A.10)

where t = 0− and t+h mean right before the first quench,
and right after the second quench respectively.

The average work done is necessarily a function of hold
time. Since the many-body wave function is completely
oscillatory at a frequency 2ωf , the average work done
should also be oscillatory. At times t = nπ/ωf for some
integer, n, the many-body wave function returns to itself,
and the average work done will be zero, while it should
be maximum at multiples of half the period, i.e. for t =
(2n+ 1)π/2ωf .
The dynamics of the average work done can be illus-

trated exactly via conservation of energy and conformal
symmetry arguments. The initial energy is given by:
E0 = ⟨Hωi⟩(t = 0−). Immediately after the first quench
the energy is given by:

⟨Hωf
⟩(t = 0+) =

(
ω2
f − ω2

i

)
⟨C⟩(0) + E0 (A.11)

The dynamics after the first quench conserves both en-
ergy and entropy, hence ⟨Hωf

⟩(0 < t < th) = ⟨Hωf
⟩(t =

0+). Immediately after the second quench the energy:

⟨Hωi⟩(t = t+h ) =
(
ω2
i − ω2

f

)
⟨C⟩(th) + E0 (A.12)

The work done for this quench-quench protocol is simply
related to the difference between the moment of inertias
at time th and its initial value:

W (th) =
(
ω2
i − ω2

f

)
(⟨C⟩(th)− ⟨C⟩(0))

=
(
ω2
i − ω2

f

) (
λ2(th)− 1

)
⟨C⟩(0) (A.13)

As expected, the work is an oscillatory function with
frequency 2ωf . The work done has a minimum of zero
at t = nπ/ωf while it has a maximum value of Wmax =
(ω2

i − ω2
f )(ω

2
i /ω

2
f − 1)⟨C⟩(0) at t = (2n + 1)π/2ωf . In

Fig. (5) we present the average work done from the two-
quench protocol according to Eq. (A.13), while the inset
shows the residual oscillations of the moment of inertia.

Appendix B: The Zero-Temperature
Auto-Correlation Function

In this appendix we provide a detailed calculation of
the zero-temperature auto-correlation function. We first
begin with the state-operator correspondence:

|ψ0⟩ = e−iHωf
τO†

p|vac⟩

where tanh(ωfτ) = ωf/ωi. The operator Op is a primary
operator, which satisfies the following relations:

[C,Op] = [Ki, Op] = 0. (B.1)

where C and Ki are the generators of conformal transfor-
mations and Galilean boosts along the i = x, y, z direc-
tion. The scaling dimension of O, ∆O, and the number
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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W
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Figure 5: Average work done after the two-quench
protocol in Eq. (A.1) with ωf = ωi/5. The work done is
periodic with frequency 2ωf and oscillates between 0
and (ω2

i − ω2
f )

2/ω2
f . The inset shows the simulation of

the time-dependent rescaling factor, λ2(t), during the
whole two quench protocol for a generic th ̸= nπ/ωf for
an integer n. For 0 < t < th, the dynamics are
oscillatory with a frequency of 2ωf , while for th < t, the
dynamics are oscillatory with a frequency 2ωi.

NO are given as:

[D,Op] = i∆oOp

[
N,O†

p

]
= NOp

O†
p [N,Op] = −NOp

Op

(B.2)

The auto-correlation function is defined in Eq. (24):

G(R, t) = ⟨ψ0| e−iHωf
teiP·R |ψ0⟩

In the Heisenberg picture, we can write the auto-
correlation function as a correlation function of the pri-
mary operator:

G(R, t) = ⟨vac|Op(R, t− iτ)O†
p(0, iτ)|vac⟩

where we have defined:

O(†)
p (R, t) = e−iP·ReiHωf

tO(†)
p e−iHωf

teiP·R

We can evaluate the auto-correlation function by con-
sidering the equations:

0 = ⟨vac|
[
C,Op(R, t− iτ)O†

p(0, iτ)
]
|vac⟩

0 = ⟨vac|
[
Ki, Op(R, t− iτ)O†

p(0, iτ)
]
|vac⟩ (B.3)

First let us consider:

[C, Op(R, t)] = e−iP·ReiHωf
t[

e−iHωf
teiP·RCe−iP·ReiHωf

t, OP

]
e−iHωf

teiP·R

(B.4)

Each of these commutators can be evaluated analyti-
cally using the Schroedinger algebra in Eq. (I). For sim-
plicity we will report the necessary results below:

eiP·RCe−iP·R = C −R ·K+
R2

2
N (B.5)

eiP·RKe−iP·R = K+RN (B.6)

e−iHωf
tCeiHωf

t =
sin2(ωf t)

ω2
f

Hωf
− sin(2ωf t)

2ωf
D

+ cos(2ωf t)C (B.7)

e−iHωf
tKeiHωf

t = K cos(ωf t)−
sin(ωf t)

ωf
P (B.8)

e−iHωf
tPeiHωf

t = cos(ωf t)P+ ωf sin(ωf t)K (B.9)

We supplement these equations by noting:

−i∂tO(†)
p (R, t) = e−iP·ReiHωf

t

·
[
Hωf

, O(†)
p

]
e−iHωf

teiP·R (B.10)

i∇RO
(†)
p (R, t) = e−iP·ReiHωf

t

·
[
cos(ωf t)P, O

(†)
p

]
e−iHωf

teiP·R (B.11)

where we have used Eq. (B.9) and Eq. (B.1).

Combining all the commutation relations together
gives us :

[C,Op(R, t)] = −i

[
sin2(ωf t)

ω2
f

∂t − i
R2

2
NOp

+
sin(2ωf t)

2ωf

(
R · ∇R +∆Op

)]
Op(R, t)

(B.12)

Following the same arguments we can also obtain:

[K, Op(R, t)] = i

[
tan(ωf t)

ωf
∇R + cos(ωf t)RNOp

]
Op(R, t)

(B.13)

Similar results holds for O†
p(R, t), where we replace

NO†
p
= −NOp

, and ∆O†
p
= ∆Op

.

It is straightforward to combine everything together in
Eq. (B.3) to obtain differential equations for the auto-
correlation function: Eqs. (29-30). We note that in order
to obtain Eqs. (29-30) we have disregarded terms that
affect the imaginary time evolution as these only describe
the normalization of the auto-correlation function, i.e.
G(0, 0) = 1.
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