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Abstract

The conventional Big Bang model successfully anticipates the initial abundances
of 2H(D), 3He, and 4He, aligning remarkably well with observational data.
However, a persistent challenge arises in the case of 7Li, where the predicted abun-
dance exceeds observations by a factor of approximately three. Despite numerous
efforts employing traditional nuclear physics to address this incongruity over the
years, the enigma surrounding the lithium anomaly endures. In this context, we
embark on an exploration of Big Bang nucleosynthesis (BBN) of light element
abundances with the application of Tsallis non-extensive statistics. A comparison
is made between the outcomes obtained by varying the non-extensive parameter q
away from its unity value and both observational data and abundance predictions
derived from the conventional big bang model. A good agreement is found for the
abundances of 4He, 3He and 7Li, implying that the lithium abundance puzzle
might be due to a subtle fine-tuning of the physics ingredients used to determine
the BBN. However, the deuterium abundance deviates from observations.
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1 Big Bang Nucleosynthesis

While the cosmological big bang model aligns with numerous observations crucial for
our comprehension of the universe, the comparison between model-based calculations
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and actual observations is not straightforward. This complexity arises due to poorly
understood time-sensitive effects and systematic errors affecting the data. Neverthe-
less, the big bang model stands as the primary tool for investigating the physics of
the early universe within the time frame of 3 − 20 minutes. Beyond this point, the
decreasing temperature and density prevent nuclear fusion, hindering the formation
of elements heavier than beryllium [1–7].

The model corresponds with the observed cosmic microwave background (CMB)
radiation temperature of 2.275 K [8], offering insights into various scientific realms,
including nuclear and particle physics. Additionally, calculations based on the big
bang model remain consistent with the number of light neutrino families, Nν = 3.
The literature on the subject suggests a range for Nν between 1.8 and 3.9 (see, for
instance, Ref. [9]). Notably, measurements from experiments at CERN indicate Nν =
2.9840± 0.0082 based on the Z0 width [10].

In the framework of the big bang model, nearly all neutrons ultimately combine to
form 4He, introducing a dependence of the abundance of 4He on Nν and the neutron
lifetime τn. The dependence on τn influences Big Bang Nucleosynthesis (BBN) in
two distinct ways. Firstly τn impacts weak reaction rates due to its connection to
the weak coupling constant. A longer (or shorter) τn implies that the reaction rates
remain lower (or higher) than the Hubble expansion rate until a higher (or lower)
freeze-out temperature, significantly affecting the neutron-to-proton equilibrium ratio
at freeze-out.

The ratio of neutrons to protons in thermal equilibrium, denoted as n/p, is
approximately characterized by n/p = exp[−∆m/kT ] ≈ 1/6, where T stands for the
temperature at the weak freeze-out, and ∆m ∼ 1.3 MeV signifies the mass difference of
neutron and proton. Another significant effect of τn arises from neutron decay occur-
ring between the weak freeze-out (t ∼ 1 s) and the onset of nucleosynthesis (t ∼ 200
s), causing a decrease in the n/p ratio to approximately 1/7. A longer τn corresponds
to a higher predicted BBN helium abundance. Here, we adhere to the most recent
experimental determination of τn, specifically τn = 877.75± 0.28stat+0.22/− 0.16syst
s, as documented in recent experiments [11] (for an extensive review of neutron life-
time, see Ref. [12]). The ramifications of variations in τn on BBN predictions have
been recently explored in Ref. [13].

The baryonic density in the universe, derived from astronomical observations
anisotropies in the CMB radiation, places constraints on the value of the baryons
to photon ratio, denoted as η. This ratio remains constant as the universe expands.
Calculations within the BBN model align with the value determined from WMAP
observations, indicating η = 6.104± 0.055× 10−10 [14].

Our focus in this brief review centers on the abundances of light elements. During
the initial stages of the universe, specifically within the first 20 minutes, when condi-
tions were sufficiently dense and hot to facilitate nuclear reactions, the temperature
of the primordial plasma underwent a substantial decrease from a few million elec-
tronvolts (MeV) to approximately 10 kiloelectronvolts (keV). This environment gave
rise to the production of light nuclides such as 2H, 3He, 4He, and, to a lesser extent,
7Li, through a complex network of nuclear reactions. The final abundances for these
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nuclides can be determined through various observational techniques, spanning diverse
astrophysical environments.

However, discrepancies in lithium (Li) abundances observed in metal-poor stars,
compared to inferences from WMAP data, have sparked extensive inquiries into both
BBN and the stellar mixing processes that potentially influence Li abundance. The
findings of these investigations remain inconclusive, emphasizing the need for further
studies on the abundances of light elements in low-metallicity stars and in extragalactic
HII regions, i.e., denser, collapsed regions in giant molecular clouds where stars are
forming. Additionally, refining estimates using BBN becomes crucial to address this
issue comprehensively. High-resolution spectroscopic analyses of stellar and interstellar
matter need to be integrated with nuclear physics experiments and nucleosynthesis
models and nuclear theories to gain a deeper understanding of these intricacies [15, 16].

The calculation of nuclear reaction rates during BBN relies on fundamental inputs,
one of which is the Maxwell-Boltzmann distribution describing the kinetic energy
of particles in a plasma. This distribution is grounded on basic assumptions of the
Boltzmann-Gibbs statistics, namely, (a) the particle collision time is significantly
shorter than the average time between collisions, (b) interactions are localized, (c)
velocities of two particles are uncorrelated, and (d) there is a minimal energy trans-
fer to and from collective variables and therefore energy of the colliding particles is
locally conserved. When conditions (a) and (b) are not satisfied, the effective two-
body interaction becomes non-local, dependent on the energy and momentum of the
ions. Assuming that the one-particle energy distribution follows the Maxwellian pat-
tern, additional assumptions on particle correlations are needed to prove that the
relative-velocity distribution is still Maxwellian.

While the Boltzmann-Gibbs (BG) model of statistical mechanics holds well in
numerous situations, recent theoretical efforts have increasingly explored alternative
approaches, treating BG statistics as a limit within more general theories [18] (see also,
[17]). These alternative theories aim to describe systems with long-range interactions
and memory effects, departing from the assumptions of ergodicity. One prominent
alternative to BG statistics, as suggested by C. Tsallis [18, 19]. This approach,
known as non-extensive statistics, has gained popularity in recent years (for in-depth
details, refer to comprehensive reviews [19–21]). While traditional statistical mechan-
ics assumes energy to be an “extensive” variable, proportional to the system size, and
entropy to be extensive, this justification may be valid for short-range interactions
binding matter. However, when dealing with long-range interactions, particularly in
the context of gravity, entropy is found to be non-extensive [22–26].

In traditional statistics, determining the mean values of system quantities like
energy, the number of molecules, and volume involves seeking the probability distri-
bution that maximizes entropy while satisfying constraints for the correct average
values of those quantities. Cognizant of this, Tsallis introduced a novel, non-extensive
entropy, commonly known as the Tsallis entropy, and advocated for its maximiza-
tion under the same constraints, replacing the conventional (BG) entropy. A family
of Tsallis entropies are characterized by a real-valued parameter q that quantifies the
departure from extensivity, reverting to the usual definition of entropy when q = 1.
One has demonstrated in various scenarios that traditional results from statistical
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mechanics can be translated into this new framework [21]. These entropies, result in
probabilities following power laws instead of the typical exponential laws found in the
standard statistics [21]. In many instances where the Tsallis formalism is employed,
such as in Ref. [27], the non-extensive parameter is held constant q ≃ 1, i.e., close
to the value yielding conventional statistical mechanics. Some studies have explored
substantial deviations of q from unity to elucidate various phenomena across diverse
scientific domains [19].

We will demonstrate that the foundational Maxwell-Boltzmann (MB) distribu-
tion, crucial to big bang and stellar evolution nucleosynthesis, undergoes significant
modification under non-extensive statistics when q deviates substantially from unity.
Consequently, this alteration exerts a profound impact on the predictions of BBN.
A robust prior justification for a substantial deviation of q from unity in the BBN
is lacking. Specifically, since matter is presumed to be in equilibrium with radiation
during BBN, any modification to the MB distribution of velocities would influence
the Planck distribution of photons. Analyses of temperature fluctuations in the CMB
have demonstrated that a Planck distribution modified by the Tsallis statistics accu-
rately describes temperature fluctuations in the CMB as observed with WMAP and
q = 1.045 ± 0.005, a value close to unity but not precisely equal [28]. Notably, tem-
perature distributions based on Boltzmann-Gibbs statistics, inadequately describe
CMB temperature fluctuations [28]. These fluctuations, possibly allow for even larger
variations in q and might manifest during the BBN, consequently influencing the
exponentially small tail of the velocity distribution.

Building on the accomplishments of the BBN model, it is reasonable to trust that
it can impose stringent constraints on the parameter q of the non-extensive statis-
tics. Within the scientific literature, endeavors to address the lithium problem often
involve exploring various facets of “new physics” [15]. This study contributes to the
array of novel approaches, with implications extending far beyond the expected scope
for resolving the lithium problem within BBN [29–31]. If Tsallis statistics effectively
characterizes deviations in the tails of statistical distributions, then BBN becomes a
valuable tool for probing such deviations. Indeed, the potential for a departure from
the Maxwellian distribution and the repercussions of modifying the MB distribution’s
tail for nuclear fusion in stars have been explored in previous studies [32–35] and in
recent studies it has been shown that a small departure of the parameter q from the
unity is enough to solve the lithium puzzle [30].

2 Extensive versus Non-Extensive Statistics

2.1 Extensive Statistics

Consider two levels separated by an energy E with n0 particles occupying the lowest
energy level and n1 the higher energy one. For identical particles, the number of ways
that one can arrange the system is Ω = N !/n0!n1!, where N = n0+n1. The number Ω
attains very large values for macroscopic systems and a better measure of the number
of possibilities that the system can rearrange is S = k lnΩ. This is the usual definition
of entropy and k is identified as the Boltzmann constant. For the aforementioned
two-level problem we get S = k[lnN ! − lnn0! − lnn1!]. If an additional amount E of
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energy is added to the system, one particle is promoted to the higher level and the
entropy increases to S′ with the replacements n0 → n0 − 1 and n1 → n1 + 1. The
additional entropy gain is ∆S = S′ − S = k ln(n0/n1), for n1 ≫ 1. If we compare to
the thermodynamics relation for the change in entropy, we have ∆S = ∆E/T = E/T ,
which implies that n1 = n0 exp(−E/kT ), the famous Boltzmann law of statistics.

Extending this logic to multiple energy levels, one defines occupation probabilities
proportional to particle numbers in each level i. Normalizing these probabilities, yields

P (Ei) =
1

Z
exp

(
− Ei

kT

)
, where Z =

∑
i

P (Ei), (1)

for the occupation probability of the state i with energy Ei. Z is know as the partition
function.

The Boltzmann law is a cornerstone of thermodynamics and statistics. For non-
interacting particles in thermal equilibrium, one can define f(v)dv as the probability
of encountering a particle with velocity v. This leads to the Maxwell-Boltzmann (MB)
distribution:

f(v) = 4πv2
( m

2πkT

)3/2

exp

(
−mv2

2kT

)
, (2)

which we focus on in this review.
The property of extensivity can be easily understood if the Boltzmann-Gibbs

entropy is expressed as

SBG = −k
∑
i

pi ln pi, (3)

where pi represents the probability of finding the system in the i-th microstate, and∑
i pi = 1. Considering two independent systems labeled A and B, the combined

probability of finding a state i+ j in a microstate i of A and j of B, is:

pA+B
i+j = pAi · pBj . (4)

Inserting this into Eq. 3, implies that the Boltzmann-Gibbs entropy adheres to the
relationship

SA+B = SA + SB . (5)

Hence, entropy derived from Boltzmann-Gibbs statistics is recognized as an extensive
quantity since, akin to volumes of thermodynamic systems, it adds extensively.

2.2 Non-Extensive Statistics

Boltzmann-Gibbs statistics provides a sound framework for treating ergodic systems,
where given sufficient time, any state has a non-zero probability pi of occurrence. How-
ever, particle correlations and the breakdown of ergodicity often push systems into
out-of-equilibrium states, rendering Boltzmann-Gibbs statistics inadequate. Further-
more, some assumptions inherent to Boltzmann-Gibbs statistics, particularly when
applied to interacting systems, prove overly restrictive. They are not universally
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valid, even in systems of particles at thermodynamic equilibrium. Indeed, alter-
natives to Boltzmann-Gibbs statistics are available and frequently utilized in the
literature [17–19].

Within the realm of non-extensive statistics [18], a departure from tradition
emerges as the conventional entropy yields to an alternative formulation, due to
Tsallis [18]:

Sq = k
1−

∑
i p

q
i

q − 1
, (6)

where q denotes a real number. When q = 1, Sq = SBG, illustrating Tsallis statistics
as a smooth extension of the Boltzmann-Gibbs entropy.

Following that, it can be easily shown that

Sq(A+B) = Sq(A) + Sq(B) +
(1− q)

k
Sq(A)Sq(B). (7)

Here, the parameter q acts as a gauge for non-extensivity, a concept pioneered by
Tsallis in the development of statistical mechanics grounded in this generalized entropy
[21].

A significant implication of this non-extensive framework is the deviation of the
distribution function maximizing Sq from the Maxwellian [36–38]. With q = 1, the
MB distribution is faithfully replicated. However, for q < 1, high-energy velocities
become notably more probable compared to the extensive distribution. Conversely,
when q > 1, high-energy velocities become less probable, with a subsequent cutoff
beyond which no velocities are possible.

2.3 Nuclear Reaction Rates with Extensive Statistics

Within stellar environments, the rate of thermonuclear reactions, weighted with a MD
in the plasma, is given by [39]:

Rij =
NiNj

1 + δij
⟨σv⟩

=
NiNj

1 + δij

(
8

πµ

) 1
2
(

1

kT

) 3
2
∫ ∞

0

dE S(E) exp

[
−
(

E

kT
+ 2πη(E)

)]
. (8)

Here, T denotes the temperature, S(E) stands for the astrophysical S-factor, σ denotes
the nuclear fusion cross section, v signifies the relative velocity between the ij-pair,
E = µv2/2 denotes their relative motion energy, µ stands for their reduced mass, Ni

represents the number of nuclear species i, and η = ZiZje
2/ℏv is the Sommerfeld

factor, where Zi denotes the charge of the i-th particle. The factor 1 + δij in the
denominator avoids double-counting when i = j. A modified expression for the reaction
rates, namely, NA⟨σv⟩, can be expressed in units of cm3 mol−1 s−1, where NA denotes
Avogadro’s number, and ⟨σv⟩ is given in Eq. (8) with the substitution of the Maxwell
distribution f(E) by Eq. (14) defined below.
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To factor out the steep energy dependence of reaction cross sections on energy, one
usually defines:

σ(E) =
S(E)

E
exp [−2πη(E)] . (9)

We write 2πη = b/
√
E, with

b = 0.9898ZiZj

√
A MeV1/2, (10)

where A represents the reduced mass in atomic mass units. The S-factor exhibits a
weaker dependence on E, unless it approaches a resonance, where it manifests a strong
peak. For a weak S(E) energy dependence, the reaction rate integral in Eq. 8 is peaked
at the “Gamow energy”

E0 = 0.122(Z2
i Z

2
jA)1/3T

2/3
9 MeV, (11)

and the “Gamow width” of the peak is

∆E = 0.2368(Z2
i Z

2
jA)1/6T

5/6
9 MeV, (12)

where T9 it the temperature in units of 109 K, and A denotes the reduced mass in
atomic mass units (amu). Regarding charged particle reactions in the BBN, a high
precision (within 0.1%) is attained by employing integration limits ranging from E0−
5∆E to E0 + 5∆E, where ∆E is determined by Eq. (12).

Neutron-induced reactions are a subset of paramount importance for BBN, partic-
ularly including the p(n,γ)d, 3He(n,p)t, and 7Be(n,p)7Li reactions. The cross section
at low energies typically scales proportionally to 1/v, where the neutron velocity is rep-
resented by v =

√
2mE/ℏ. Consequently, it’s sometimes advantageous to reformulate

Eq. (9) as

σ(E) =
S(E)

E
=

R(E)√
E

, (13)

where R(E) is a smooth function of energy akin to an S-factor.

3 Nuclear Reaction Rates

3.1 Nuclear Reaction Rates with Non-Extensive Statistics

The non-extensive characterization of the Maxwell-Boltzmann distribution is realized
through the replacement f(E) → fq(E), as detailed by [21]:

fq(E) =

[
1− q − 1

kT
E

] 1
q−1

q→1−→ exp

(
− E

kT

)
, 0 < E < ∞. (14)

If q−1 < 0, this equation yields real values for any value of E ≥ 0. On the other hand,
if q − 1 > 0, it is clear that f(E) is real only if the expression within square brackets
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remains positive. In other words,

0 ≤ E ≤ kT

q − 1
, for q ≥ 1, and 0 ≤ E, for q ≤ 1. (15)

Consequently, for 0 < q < 1, the range is 0 < E < ∞, while if 1 < q < ∞, it becomes
0 < E < Emax = kT/(q − 1).

Using this alternate statistics, the nuclear reaction rates transform into:

Rij =
NiNj

1 + δij

∫ Emax

0

dE S(E)Mq(E, T ), (16)

with the “modified” Gamow energy distribution given by

Mq(E, T ) = A(q, T )

(
1− q − 1

kT
E

) 1
q−1

e−b/
√
E

= A(q, T )

(
1− q − 1

0.08617T9
E

) 1
q−1

exp

[
−0.9898ZiZj

√
A

E

]
, (17)

representing the non-extensive counterpart of the nuclear astrophysics input in the
BBN, where Emax = ∞ if 0 < q < 1, and Emax = kT/(1− q) if 1 < q < ∞, and with
E given in MeV units. The function A(q, T ) is a normalization constant dependent on
the temperature T and on the non-extensive parameter q.

In the case of neutron induced reactions, the modified Gamow distribution function
in Eq. (16) can be expressed as

Mq(E, T ) = A(q, T )fq(E) = A(q, T )

(
1− q − 1

kT
E

) 1
q−1

. (18)

The omission of the tunneling factor in this equation decreases the reliance of the
reaction rates on the non-extensive parameter q.

The quest for a unified statistical framework encompassing Fermi-Dirac, Bose-
Einstein, and Tsallis statistics for particles in a plasma has been a focal point
of research, as discussed in Ref. [40]. In this pursuit, a non-extensive statistical
distribution for both fermions and bosons was proposed, represented by the expression:

n±
q (E) =

1[
1− (q − 1) (E−µ)

kT

] 1
q−1 ± 1

, (19)

where µ denotes the chemical potential. This formulation seamlessly transitions to the
Fermi distribution (n+) as q approaches 1 and to the Bose-Einstein distribution (n−)
for photons when µ = 0 and q tends to 1. Furthermore, by incorporating the appro-
priate modifications, Planck’s law governing the distribution of radiation is derived by
augmenting n− in the equation above (with µ = 0) with ℏω2/(4π2c2), where E = ℏω.
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E  [MeV]
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0.5

1.0

∆
n
±

/n
±

T9 =10
q=2

q=2

q=0.5

q=0.5

Fig. 1 The difference between non-extensive nq and extensive n = nq→1 statistics expressed in

terms of (n±
q −n±)/n± for Fermi-Dirac statistics n+ (solid lines) and for Bose-Einstein statistics n−

(dashed lines). In both cases, µ = 0 is used for q = 2, q = 0.5, and T9 = 10.

For electrons, the number density can be derived from n+ in the equation above, with
considerations for relativistic or non-relativistic regimes, necessitating the inclusion of
proper phase factors. Additionally, normalization factors A±(q, T ) are introduced to
ensure consistency, as previously established in the literature.

During the early universe, electron density experiences significant variation with
temperature, with electron number densities reaching approximately 1032/cm3 at T9 =
10, vastly surpassing the electron density at the sun’s core, approximately 1026/cm3.
This heightened electron density stems from the copious production of e+e− pairs by
abundant photons during BBN. However, despite the substantial electron densities,
nuclear reactions remain largely unaffected, with the enhancement of nuclear reaction
rates due to electron screening proving negligible, as demonstrated by reference [41].

The electron Fermi energy at these densities remains much smaller than kT for
energies relevant to BBN, permitting the utilization of µ = 0 in Eq. (19) for n+. In
Figure 1, the relative difference ratio (n±

q − n±)/n± between non-extensive (nq) and
extensive (n = nq→1) statistics is illustrated. Solid curves represent Fermi-Dirac (FD)
statistics (n+), while dashed curves depict Bose-Einstein (BE) statistics (n−), with
results shown for q = 2 and q = 0.5, at T9 = 10. Notably, non-extensive distributions
are amplified for q > 1 and suppressed for q < 1 compared to respective FD and
BE quantum distributions. These deviations grow larger with energy, with the non-
extensive electron distribution roughly twice as large as the usual FD distribution at
Ee = 1 MeV, at T9 = 10.

Although numerical results with modified FD and BE distributions are not pre-
sented here, it is anticipated that these generalizations will profoundly impact the
freezout temperature and the neutron to proton (n/p) ratio. The freezout tem-
perature, marking when the weak reaction rate, Γ ∼ ⟨σv⟩, for the weak reaction
νe+n → p+e− becomes slower than the universe’s expansion rate, remains unaffected
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by non-extensive statistics due to low particle densities compared to kT , allowing µ to
be set to zero. The adoption of non-extensive quantum distributions, as in Eq. (19),
yields the same temperature powers as those predicted by the FD and BE distributions,
ensuring consistency in reaction rates.

3.2 Non-Maxwellian Distribution for Relative Velocities

It’s important to highlight that while a Maxwellian distribution governs individual
particle energies, it doesn’t inherently ensure a Maxwellian distribution of relative
velocities. To achieve this, additional assumptions regarding particle correlations are
necessary to establish the distribution of relative velocities, which is pivotal for
accurate rate calculations. This matter has been extensively studied in references
[18, 32, 42], where it’s demonstrated that non-Maxwellian distributions arise from
non-extensive statistics.

In this context, we illustrate that if the particle velocity distribution deviates from
Maxwellian behavior as described by Eq. (14), then an adjustment can be made to
the two-particle relative velocity to accommodate the recoil of the center-of-mass.
Denoting the kinetic energy of a particle as Ei, this distribution is represented by:

f (i)
q =

(
1− q − 1

kT
Ei

) 1
q−1

q→1−→ exp

[
−
(
Ei

kT

)]
. (20)

Let’s consider the equation:

f (i)
q =

(
1− q − 1

kT
Ei

) 1
q−1

Expressing the two-particle energy distribution as f
(12)
q = f

(1)
q f

(2)
q , and exponentiating

the Tsallis distribution, we obtain:

f (i)
q = exp

{
1

q − 1

[
ln

(
1− q − 1

kT
Ei

)]}
. (21)

This leads to the simplification of the product f
(1)
q f

(2)
q as:

f (12)
q = exp

{
1

q − 1

[
ln

(
1− q − 1

kT
E1

)
ln

(
1− q − 1

kT
E2

)]}
. (22)

Considering Ei = miv
2
i /2, where E1 +E2 = µv2/2 +MV 2/2, with µ representing

the reduced mass of the two particles, M = m1+m2, v being the relative velocity, and
V as the center-of-mass velocity, the product inside the natural logarithm simplifies to:

1− 1− q

kT

(
µv2

2
+

MV 2

2

)
+

(
1− q

kT

)2
µv2

2

MV 2

2
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=

(
1− 1− q

kT

µv2

2

)(
1− 1− q

kT

MV 2

2

)
(23)

Therefore, the two-body distribution can be factorized into a product of relative
and center-of-mass components:

f (12)
q (v, V, T ) = f (rel)

q (v, T )f (cm)
q (V, T ), (24)

where

f (rel)
q (v, T ) = Arel(q, T )

(
1− 1− q

kT

µv2

2

) 1
q−1

,

f (cm)
q (V, T ) = Acm(q, T )

(
1− 1− q

kT

MV 2

2

) 1
q−1

. (25)

The normalization constants are determined by the condition∫
d3vd3V f (12)

q (v, V, T ) = 1. (26)

Given the factorization of the distribution, unit normalization can be obtained for the
relative and center-of-mass distributions separately. Hence, the distribution required
in the reaction rate formula is:

fq(v, T ) =

∫
d3V f (12)

q (v, V, T ) = f (rel)
q (v, T ), (27)

which adopts the same form as the absolute distribution.
In the limit q → 1, the two-particle distribution reduces to a Gaussian, where the

last term in the left-hand side of Eq. (23) drops out:

f (12)
q = A(q, T ) exp

[
−
(
µv2/2 +MV 2/2

kT

)]
, (28)

as anticipated.

4 Fixing the BBN Lithium Problem

4.1 Non-Extensive Energy Distributions

Referring to abundant literature on non-extensive statistics (see, for example, [18, 32–
35]), it is commonly expected that the non-extensive parameter q remains close to
unity. Nonetheless, to explore the ramifications of non-Maxwellian distributions on
BBN, we investigate scenarios where q significantly deviates from unity. This inves-
tigation aims to deepen our understanding of the underlying physics departing from
Boltzmann-Gibbs (BG) statistics. Figure 2 illustrates Gamow energy distributions of
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2 H(d,p)3 H
T9 =1

Fig. 2 Non-extensive Gamow distributions Mq(E, T ) of deuterons of importance for the reaction
2H(d,p)3H at T9 = 1. The solid line, representing q = 1, refers to the use of a MB distribution. Also
depicted are the outcomes obtained if one employs non-extensive MB distributions. For the sake of
understanding the deviation from the usual MB distribution, we exploit very large deviations for q
from the unity, namely, q = 0.5 (dotted line) and q = 2 (dashed line).

deuterons of importance for the reaction 2H(d,p)3H at T9 = 1. The solid line, repre-
senting q = 1, refers to the use of a MB distribution. Also depicted are the outcomes
obtained if one employs non-extensive MB distributions. For the sake of understand-
ing the deviation from the usual MB distribution, we exploit very large deviations for
q from the unity, namely, q = 0.5 (dotted line) and q = 2 (dashed line). It is notewor-
thy that higher kinetic energies become more accessible when q < 1 compared to the
extensive case q = 1, whereas high energies are less probable for q > 1, with a distinct
kinetic energy cutoff. Here, for q = 2, the cutoff occurs at 0.086 MeV, equivalent to
86 keV.

We illustrate in Figure 3 the reaction rates for 2H(d,p)3H as a function of T9, con-
sidering q = 0.5, 1, 2. The solid curve represents the conventional Maxwell-Boltzmann
distribution (q = 1). On the other hand, the dashed and dotted curves correspond to
q = 2 and q = 0.5 respectively. In both instances, deviations from the Maxwellian rate
are evident. For q > 1, the deviations are notably significant, leading to an overall
suppression of the reaction rates, particularly at lower temperatures. This deviation
stems from the non-Maxwellian energy cutoff, occurring at 0.086 MeV for this reac-
tion, thereby hindering numerous reactions from occurring at higher energies. For
q < 1, the similarity in results to the Maxwell-Boltzmann distribution arises from a
delicate balance between the suppression of reaction rates at low energies and their
augmentation at high energies.

This clarifies why, at T9 = 1, the relevant energy range for computing the reaction
rate is delineated by the solid curve in Figure 2. For q < 1, the Gamow window ∆E
expands, contributing both to the suppression of reaction rates at low energies, akin to
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Fig. 3 Reaction rates for 2H(d,p)3H as a function of T9 for various values of q. Rates are depicted
as a function of the natural logarithm of NA⟨σv⟩. Results utilizing are shown for q = 0.5 (dotted
line) and q = 2 (dashed line).

the Maxwell-Boltzmann distribution, and to a corresponding enhancement at higher
energies. Consequently, this elucidates the nearly identical outcomes depicted in Figure
3 for q = 1 and q < 1. This observation holds true for all charged particle reaction rates,
except in cases where the S-factor exhibits a pronounced energy dependency at, or
around, E = E0. However, such behavior is absent in the most crucial charged-induced
reactions during BBN.

Table 1 Theoretical predictions and observed abundances for
primordial light elements

q = 1 q = 1.069 - 1.082 Observation

4He 0.2476 0.2470 0.2453± 0.0034 [49]
D/H(×10−5) 2.57 3.14 - 3.25 2.527± 0.030 [52]
3He/H(×10−5) 1.04 1.46 - 1.50 < 1.1± 0.2 [50]
7Li/H(×10−10) 5.23 1.62 - 1.90 1.58± 0.31 [51]

In Figure 4, we depict the distributions of the kinetic energy of nucleons relevant
to the p(n,γ)d reaction at T9 = 0.1 (upper panel) and T9 = 10 (lower panel). q = 1
is represented by the solid line, with the dotted line for q = 0.5 (dotted line) dashed
line for q = 2. Akin to the case of charged particles, higher kinetic energies are more
probable with q < 1, whereas high energies are less accessible with q > 1 and a cutoff
is reached. A notable difference is the absence of the Coulomb barrier, leading to a
lack of suppression of the reaction rates at low energies. When T9 increases, the MB
and non-MB distributions approach each other.
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Fig. 4 Mq(E, T ) distributions for protons and neutrons of importance for the p(n,γ)d reaction for
T9 = 0.1 (upper panel) and T9 = 10 (lower panel). The solid line, corresponding to q = 1, represents
the Boltzmann distribution. The non-extensive distributions are shown for for q = 0.5 (dotted line)
and q = 2 (dashed line).

4.2 Backward Reactions

One usually defines the 1+2 → 3+4 reaction with positiveQ-value as the forward reac-
tion and 3+4 → 1+2 with a negative Q value as the reverse one. The ratio between the
reverse and forward rates is proportional to exp(−Q/kT ). The non-extensive velocity
distribution for reverse reactions is modified to

Mq(E, T ) = c×A(q, T )

[
1− (q − 1)

E +Q

kT

] 1
q−1

e−b/
√
E , (29)

where, from the detailed balance theorem,

c =
m1m2(2J1 + 1)(2J2 + 1)(1 + δ34)

m3m4(2J3 + 1)(2J4 + 1)(1 + δ12)
. (30)

It was first observed in Ref. [30] that the inclusion of Q-values in the reverse reactions
has a large impact on the element abundance calculated in the BBN.

4.3 Solving the lithium puzzle, creating a deuterium problem

The primordial abundances are calculated using a standard BBN code and adopting
the cosmological baryon-to-photon ratio η = (6.104 ± 0.055) × 10−10 [14], and the
neutron lifetime of τ = (878 ± 0.3) [11]. The thermonuclear (forward and reverse)
rates for those 17 principal reactions have been determined employing non-extensive
statistics, including 11 reactions of primary importance and 6 secondary reactions in
the primordial light-element nucleosynthesis. Standard MB rates have been adopted
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Fig. 5 Time and temperature evolution of primordial light-element abundances during the BBN
era. The solid and dotted lines indicate the results for the classical MB distribution (q = 1) and the
non-extensive distribution (q = 1.0755), respectively.

for the remaining reactions, as they play only a minor role during BBN. Some reaction
rates have been updated by using recent investigations [43–48].

Table 1 shows that the predicted and observed abundances of D, 4He, and 7Li
are in close agreement when a non-extensive velocity distribution with 1.069 < q <
1.082 is adopted. The 4He abundance is rather resilient to the variation of q and
is in agreement with the data from Ref. [49]. The predicted 3He abundance for the
above range of q agrees at the 1.8σ level with the observed abundance [50]. The
prediction of 7Li is greatly improved and agrees with the observation [51]. Thus, the
cosmological lithium problem can be solved with the non-extensive statistics. However,
the deuterium abundance now deviates appreciably from the value one would obtain
with the standard BG statistics (q = 1).

The agreement between the 7Li abundance and observational data, when consider-
ing non-extensive statistics, stems from the reduced production of 7Li and radioactive
7Be (which decays into 7Li) when q > 1. The production of these elements primar-
ily occurs through radiative capture reactions, namely 3H(α, γ)7Li and 3He(α, γ)7Be.
However, when q > 1, the alpha-capture rates of these reactions decrease due to the
decreased availability of high-energy nucleons compared to the standard MB (q = 1)
distribution. Conversely, the reverse photodisintegration rates remain unaffected by q
due to the adoption of Planck’s radiation law for photon energy density. Consequently,
the overall production of 7Li and 7Be decreases, resulting in a better match between
predicted and observed primordial abundances. Figure 5, illustrates the temporal and
thermal evolution of primordial abundances during BBN calculated using both MB
and non-extensive distributions (with an average value of q = 1.0755). It demonstrates
a significant reduction in the predicted abundance of 7Be (which eventually decays
into 7Li) compared to q = 1, ultimately offering a solution to the 7Li problem within
this model.
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Deuterium is a very fragile isotope that is surely destroyed after BBN throughout
stellar evolution. The tension with the predicted abundances using q = 1.0755 is
explained because as seen from Figure 3, the reaction rates for 2H(d,p)3H tend to
decrease for any value of q > 1. Therefore, there is more deuterium left over from BBN.
The fact that we find excellent agreement between observed and predicted primordial
abundances of 7Li in the interval 1.069 < q < 1.082 is intriguing. It shows that the
solution of the so-called lithium puzzle might be due to a small change in the physics
during the BBN. But, it seems that the solution proposed in Ref. [30], while solving the
lithium puzzle leads to a discrepancy with the observed value of 2.527±0.030 (×10−5)
for the D/H abundance [52]. With the standard MB statistics, the BBN deuterium
abundance compares much better with the observations [53].

5 Conclusions

The concentrations of the four light elements, namely D, 3He, 4He, and 7Li, serve
as robust constraints for primordial abundance assessment. Across all these ele-
ments, non-extensive statistics with the non-extensive parameter q slightly above the
unity manifest greater agreement with experimental findings. A chi-square fitting
against observed elemental abundances suggests that the non-extensive parameter
q = 1.0755 [30] best describe observations.

Presently, 3He measurements are only viable within our Galaxy’s interstellar
medium, limiting assessments at low metallicity crucial for fair primordial element
comparisons. Consequently, determining the primordial 3He abundance remains unre-
liable. Our analysis has excluded potential alterations in n/p conversion rates induced
by non-extensive statistics, alongside expected electron distribution changes. These
adjustments would influence freezeout temperatures, consequently impacting 4He
abundance.

Using a non-extensive MB statistics to replicate observed light element abun-
dances without compromising other successful BBN predictions appears unfeasible
if one considers its discrepancy with the deuterium observations. Should confirma-
tion of a non-Maxwellian distribution stemming from Tsallis non-extensive statistics
emerge, significant revisions to our comprehension of cosmic universe evolution would
be imperative.
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