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Nonlocal effective interactions are inherent to non-relativistic quantum many-body systems, but
their systematic resummation poses a significant challenge known as the “vertex problem” in many-
body perturbation theory. We introduce a renormalization scheme based on a projection-based
renormalization condition that selectively resums the most essential nonlocal contributions to the
effective interaction vertex, avoiding the computational complexity of the full vertex function. This
enables us to derive a renormalized Feynman diagrammatic series with large parameters canceled
by counter-diagrams, efficiently generated using a perturbative expansion of the parquet equations
and computed using a diagrammatic Monte Carlo algorithm. Applying our approach to a 3D
Yukawa Fermi liquid, we demonstrate that the renormalized perturbation theory remains predictive
even in the strongly correlated regime and uncover significant sign cancellations between different
channels contributing to the scattering amplitude. Our work establishes a novel framework for
investigating strong correlations in quantum many-body systems, offering a systematic approach to
explore nonlocal theories for challenging systems like the electron liquid in material science.

I. INTRODUCTION

Emergent quantum fields in many-body systems, char-
acterized by distinct spatial and temporal structures
within the Newtonian framework, inherently feature non-
local effective interactions. These interactions naturally
arise in the long-wavelength and low-energy limit, ex-
hibiting intricate patterns that extend beyond the local,
gauge boson-mediated forces described by conventional
quantum field theory (QFT) [1–3]. A prime example
where nonlocal QFT can be highly relevant is the Fermi
liquid, a fundamental quantum many-body state that de-
scribes interacting fermions in diverse systems, including
the conduction electrons in real materials [4], ultracold
atomic gases [5, 6], and neutron star matter [7]. Near
the Fermi surface, quasiparticles with renormalized dis-
persions and interactions govern the low-energy dynam-
ics of Fermi liquids [8, 9]. Deriving these renormalized
properties from the bare theory poses a significant chal-
lenge, as many candidate field theories for Fermi liquids
feature nonlocal interactions in space and time rather
than purely local ones [10–15]. Developing a systematic
field-theoretical framework to solve these nonlocal QFTs
is crucial for tackling the Fermi liquid problem and en-
abling precise predictions of low-energy properties from
first principles.

The primary challenge in nonlocal QFTs, known as the
“vertex problem,” stems from the difficulty in system-
atically resumming the full nonlocal interaction vertex
within the framework of many-body perturbation the-
ory. This resummation process, known as the renormal-
ization of interactions, is crucial for obtaining a well-
behaved perturbative expansion that accurately captures
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the low-energy physics. Existing quantum many-body
approaches, such as Dyson-Schwinger equations [16, 17],
functional renormalization group equations (fRG)[3, 18,
19], and parquet equations[20–22], attempt to tackle this
challenge by employing a skeleton diagrammatic frame-
work to resum the full interaction vertex. However, de-
spite their successes in various applications, these meth-
ods encounter significant obstacles that lie at the heart
of the vertex problem.

The vertex problem manifests itself in several ways.
Firstly, the full interaction vertex exhibits a complex de-
pendence on multiple external momenta and frequencies,
leading to a high-dimensional parameter space that is
computationally challenging to handle, a phenomenon
known as the curse of dimensionality. This complexity is
particularly pronounced in strongly correlated systems,
such as the Hubbard model near half-filling and quan-
tum critical points. In these systems, the interaction
vertex develops intricate structures with multiple singu-
larities [23–26], arising from the interplay between com-
peting ordering tendencies and the presence of low-energy
collective modes. Capturing these rich features neces-
sitates a high-dimensional representation of the vertex,
which poses significant computational challenges. Sec-
ondly, the full interaction vertex obtained from skeleton
diagrammatic techniques often violates fundamental con-
servation laws or Ward identities [27, 28], leading to un-
physical results that undermine the reliability of the cal-
culations. This issue is particularly troublesome, as it
suggests that the resummation of the full vertex may not
always yield a consistent and physically meaningful the-
ory. Finally, the skeleton diagrammatic series may fail
to converge to the correct answer, especially in strongly
correlated systems where the perturbative expansion is
not well-controlled [29]. This raises concerns about the
reliability and accuracy of the results obtained from these
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methods, even when the full vertex can be successfully
resummed. Taken together, these issues constitute the
vertex problem and pose a significant barrier to the ac-
curate description of nonlocal interactions in quantum
many-body systems. Overcoming the vertex problem is
therefore crucial for unlocking the full potential of non-
local QFTs in describing the rich physics of strongly cor-
related systems.

Recent numerical efforts to mitigate the vertex prob-
lem have focused on finding efficient representations
that compress the complex space-time structure of the
vertex function into a manageable number of basis
functions. This idea has been particularly successful
in the imaginary-time domain, where universally opti-
mized basis functions have been rigorously derived from
the Lehmann representation of Green’s functions. No-
table examples include the intermediate representation
(IR)[30, 31] and the discrete Lehmann representation
(DLR)[32]. However, finding efficient representations
that capture both the spatial and temporal structure of
the vertex function remains a significant challenge. Two
promising approaches that have emerged are the partial
bosonization of the vertex function and the use of ten-
sor network approximations. In the partial bosonization
approach [33–35], the vertex function is decomposed into
single-boson exchange contributions, reducing the com-
plexity of diagrammatic expansions and improving the
convergence properties of the resulting equations. How-
ever, a key challenge in this approach is finding an ac-
curate parameterization of the irreducible vertex func-
tion that cannot be directly bosonized, which is crucial
for capturing the full complexity of the vertex function,
especially in strongly correlated regimes. Tensor net-
work representations, such as the tensor train approxima-
tion [36, 37], have also shown promise in tackling the ver-
tex problem by exploiting the low-rank structure of the
vertex function in the space-time domain. While tensor
networks offer a compact and efficient representation, the
effectiveness and accuracy of this approach across a wide
range of physical systems and parameter regimes remains
an open question. Despite the progress made in develop-
ing efficient representations, finding a universal and ro-
bust approach that can accurately capture the full space-
time structure of the vertex function while maintaining
computational feasibility remains an ongoing challenge.
The limitations of existing methods highlight the need for
new and innovative approaches that can simultaneously
achieve accuracy and efficiency in the resummation of the
vertex function.

In this paper, we propose a systematic approach to
tackle the vertex problem by selectively resumming only
the essential part of the vertex interaction while treat-
ing the remaining corrections perturbatively. This strat-
egy is based on the insight that the essential part, which
captures the most important low-energy physics, is often
much simpler to represent than the full vertex function.
By focusing on this essential part, identified through
physical considerations or approximated using suitable

representations, we can circumvent the computational
complexity associated with the full vertex while still accu-
rately describing the key physical processes. Our theory
allows for the systematic computation of corrections us-
ing renormalized Feynman diagrams, ensuring that even
a crude initial approximation can serve as a reliable start-
ing point.

Our scheme goes beyond a mere technical develop-
ment; it generalizes the well-established field-theoretical
renormalization scheme [38–41], originally developed for
local QFTs in high-energy physics [42–44], to nonlocal
QFTs in many-body physics. The cornerstone of our
approach is a momentum-resolved renormalization con-
dition based on projection operators, which extends the
concept of coupling constant renormalization to nonlo-
cal interactions. This generalized condition gives rise to
renormalized Feynman diagrams and counterterms that
are functionals of the nonlocal interactions. To system-
atically derive these diagrams, we introduce a parquet al-
gorithm that efficiently constructs high-order vertex di-
agrams by combining lower-order subdiagrams. More-
over, we develop a dedicated diagrammatic Monte Carlo
algorithm (DiagMC) [45–51] specifically designed to ef-
ficiently compute the resulting diagrammatic series. By
generalizing the field-theoretical renormalization scheme
to nonlocal QFTs, our approach opens up an alternative
avenue for addressing the vertex problem.

The practical strength of our approach is showcased in
its application to a three-dimensional (3D) Fermi liquid
system with a Yukawa interaction. By focusing on the
calculation of the 4-vertex function, including the scat-
tering amplitude and the Landau quasiparticle interac-
tion, we derive the precise quasiparticle effective interac-
tion from the microscopic theory. Our results show that
the renormalized perturbation theory remains predictive
even in the strongly correlated regime where the bare
perturbation theory fails.

Remarkably, our work uncovers significant cancella-
tions between different channels contributing to the scat-
tering amplitude, providing a deeper understanding of
how Fermi liquids maintain their stability and exhibit
emergent weakly interacting behavior despite strong bare
couplings. First, as predicted by the conventional wis-
dom of particle-hole screening, we observe a substantial
cancellation between the bare coupling and the particle-
hole channel, indicating a strong screening effect. Sec-
ond, and more remarkably, we find a strong cancella-
tion between the particle-hole-exchange channel and the
particle-particle channel, which further reduces the scat-
tering amplitude. Interestingly, we also find that the in-
teraction vertex function exhibits a relatively weak angle
dependence, suggesting emergent locality in the quasi-
particle interaction, despite the momentum-dependence
of the bare interaction. These findings highlight the im-
portance of considering the full complexity of many-body
effects when studying strongly correlated systems and
provide valuable insights into the mechanisms responsi-
ble for the emergent properties of Fermi liquids.
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The remainder of this paper is structured as follows.
Sec. II introduces a nonlocal quantum field theory for
Fermi liquids and discusses the challenges posed by the
vertex problem in many-body perturbation theory. We
also review the field-theoretical renormalization scheme
in local QFT and explore its potential generalization to
nonlocal theories. Sec. III presents our projection-based
renormalization condition that selectively resums the es-
sential nonlocal contributions to the effective interaction
vertex. Sec. IV develops a renormalized Feynman dia-
grammatic expansion, introducing an algorithm for gen-
erating high-order diagrams using the parquet equations.
Sec. V discusses the importance of the imaginary-time
representation and proposes a projection operator design
that mitigates the sign problem, which enables an effi-
cient DiagMC algorithm for evaluating the renormalized
diagrams. Sec. VI demonstrates the application of our
approach to a 3D Yukawa Fermi liquid, showcasing its
predictive power in the strongly correlated regime and
uncovering significant sign cancellations between differ-
ent scattering channels. Sec. VII summarizes our find-
ings, discusses broader implications, and outlines future
directions.

II. MOTIVATION

A. Nonlocal Field Theory of Fermi liquids

We investigate a many-fermion system with generic
dispersion and nonlocal two-body interactions, providing
a versatile model for various physical phenomena. The
system’s bare action is described by:

S =

∫
12

ψ†
1g

−1
12 ψ2 +

ξ

4

∫
1234

u1234ψ
†
1ψ

†
2ψ3ψ4, (1)

Here, ψ† and ψ are Grassmann variables, with indices
i = 1, 2, 3, 4 representing space/imaginary-time coordi-
nates and the spins i = (x⃗i, τi, σi). The bare fermionic
propagator is denoted by g12, while the bare interaction
term u1234 is short-ranged but can exhibit complex space-
time behavior. We introduce a constant ξ = 1 to track
the perturbation order. This interaction term encom-
passes a wide range of physical scenarios, such as the
Yukawa potential, which plays a fundamental role in de-
scribing nuclear forces [52], and the statically screened
Coulomb interaction, a key component in understanding
the dynamics of electrons in metals [4]. By setting the
interaction strength to an intermediate level, we ensure
that the system remains within the Fermi liquid regime
while exhibiting nontrivial renormalization effects. In
this regime, the low-energy dynamics of the system is
controlled by quasiparticles with renormalized mass and
interactions. The versatility of this model makes it ap-
plicable to various fields, including condensed matter
physics, nuclear physics, and ultracold atomic gases, pro-
viding a unified framework for studying many-body phe-
nomena across different scales and systems.

To address the quasiparticle dynamics near the Fermi
surface, which may differ significantly from those of bare
particles, we introduce an effective action that incorpo-
rates renormalization effects. This effective action, given
by,

S =

∫
12

ψ̄†
1G

−1
12 ψ̄2 +

ξ

4

∫
1234

R1234ψ̄
†
1ψ̄

†
2ψ̄3ψ̄4 +CTs. (2)

The quasiparticle propagator G and the screened inter-
action R1234 are crucial for capturing the renormaliza-
tion of the bare propagator and interactions caused by
the particle-hole fluctuations. The quasiparticle fields
are represented by ψ̄† and ψ̄. Although the theory al-
lows for more complex multi-quasiparticle interactions,
modern RG analyses suggest that these are irrelevant at
the Fermi liquid fixed point[3, 11–13]. Consequently, we
assume that these interactions are only perturbatively
significant and do not include them at the tree level in
our model.
The renormalized parameters in the effective action,

such as the quasiparticle propagator and the screened
interaction, already incorporate a resummation of many-
body effects. To avoid double-counting these effects in
the perturbation theory, we introduce a set of countert-
erms (CTs) in Eq. (2). They effectively subtract out the
many-body contributions that are already accounted for
in the renormalized parameters, ensuring that the pertur-
bative expansion remains consistent and accurate. The
specific form of the counterterms should be determined
by the definition of the renormalized coupling R, which
will be discussed in the following sections.
In general, the renormalized coupling R in the action is

nonlocal due to the system’s characteristic length scales
1/kF and energy scales EF . The tools and techniques
developed for local QFT cannot be directly applied to
nonlocal interactions, presenting a significant challenge
in the study of these systems.

B. Field-theoretical Renormalization Scheme

To develop a framework for solving nonlocal QFTs, it is
instructive to review the field-theoretical renormalization
scheme [38–41], which has been remarkably successful in
tackling local QFTs such as quantum electrodynamics
(QED) [42–44]. In local QFTs, bare perturbation theory
often proves inadequate due to the presence of large pa-
rameters arising from the renormalization of interactions.
These large parameters typically manifest as ultraviolet
(UV) divergences in loop integrals, rendering the pertur-
bative expansion ill-defined. The field-theoretical renor-
malization scheme systematically addresses this issue by
introducing counterterms in the action. These countert-
erms are determined by imposing renormalization condi-
tions that establish a well-defined relationship between
the bare and renormalized quantities at a specific energy
scale, known as the renormalization scale. Although con-
densed matter systems generally do not suffer from UV
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divergences due to the presence of natural cutoffs such as
the lattice spacing, the challenge of dealing with large pa-
rameters arising from the renormalization of interactions
remains pertinent.

A key feature of the field-theoretical renormalization
scheme is that it focuses on renormalizing only the most
relevant coupling constant in the interaction vertex, while
treating the remaining part, which may exhibit a complex
dependence on external momenta and frequencies, per-
turbatively using renormalized Feynman diagrams. This
approach circumvents the need for an explicit calculation
of the full effective interaction with all its intricate de-
tails, as only the renormalization of the most relevant
part needs to be tracked. Although this scheme has
proven highly effective in the context of local QFTs, its
generalization to nonlocal interactions has not yet been
thoroughly explored in the realm of nonlocal QFTs in
many-body problems.

In this work, we explore a renormalization scheme of
nonlocal interactions with the following strategy: 1) De-
veloping an ansatz for the renormalized coupling R that
accurately captures its dependence on momentum and
frequency. This task requires going beyond the standard
local QFT framework and incorporating the specific fea-
tures of quantum many-body systems, such as the Fermi
surface and the associated length and energy scales. 2)
Adapting the standard renormalized diagrammatic tech-
nique of local QFT to nonlocal theories. This requires
development of efficient algorithms to derive and com-
pute the diagrams as well as the counterterms.

In this work, we delve into a renormalization scheme
that deals with nonlocal interactions. Our approach in-
volves two steps: 1) We will develop an ansatz for the
renormalized coupling R that accurately captures its mo-
mentum and frequency dependence. To accomplish this,
we need to go beyond the standard local QFT framework
and take into account the specific features of quantum
many-body systems, such as the Fermi surface and its as-
sociated length and energy scales. 2) We will adapt the
standard renormalized diagrammatic technique of local
QFT to nonlocal theories. This will require us to develop
efficient algorithms to derive and compute the diagrams,
as well as the counterterms. By tackling these chal-
lenges, we seek to extend the powerful tools of renormal-
ized field theory to a wider range of quantum many-body
systems, deepening our understanding of these complex
systems and enabling more accurate predictions of their
low-energy properties.

III. PROJECTION-BASED
RENORMALIZATION CONDITION

To address the first challenge of developing an ansatz
for the renormalized coupling R, we propose a projection-
based renormalization condition. In QFT, renormaliza-
tion conditions define the relationship between bare and
renormalized quantities, such as couplings and fields, at a

(a) (b)

FIG. 1. a) The projection operator (the red box) to extract
the forward-scattering part of the particle-hole-reducible ver-
tex function. The incoming momenta/frequencies k1 and k2
are projected onto the Fermi surface (k = (k, iωn) → k̄ =
(kFk/|k|, iω0)), and two outgoing momenta/frequencies are
projected to the EXACT forward-scattering direction. b) Ex-
amples of the third-order renormalized diagrams of the ver-
tex function Γ4. It demonstrates the cancellation between the
counter-diagrams (in the red box) and the corresponding ver-
tex subdiagrams.

particular energy scale [38]. These conditions are essen-
tial for ensuring the perturbation theory yields physically
meaningful results. However, the traditional local QFT
approach of defining renormalized couplings as constants
at a specific energy scale is insufficient for Fermi liquids
due to the nonlocal nature of their interactions.

We focus on the 4-point vertex function,
Γ4(k1, k2; k

′
1, k

′
2), which depends on four momentum-

frequency vectors: two incoming particles with k1
and k2, i, and two outgoing particles with k′1 and k′2.
Due to the momentum-frequency conservation law,
k1 + k2 = k′1 + k′2, only three of these four vectors are
independent. The 4-point vertex function Γ4 consists
of two parts: the bare interaction uk1k2;k′

1k
′
2
and the

quantum many-body correction ∆Γ4(k1, k2; k
′
1, k

′
2). The

bare interaction u possesses a simple analytic form
and captures the essential UV physics. In contrast,
∆Γ4 exhibits a complex dependence on momentum and
frequency encodes the emergent infrared (IR) physics.

In the context of Fermi liquids, the quantum many-
body correction ∆Γ4 receives significant contributions
from scattering processes mediated by particle-hole exci-
tations, which can be further decomposed into the direct
particle-hole channel Γph and the exchanged particle-hole

channel Γ̃ph. Diagrammatically, Γph represents particle-
hole reducible diagrams, which are Feynman diagrams
that can be divided into two separate diagrams by cutting
one particle and one hole propagator line. On the other
hand, Γ̃ph diagrams are derived from Γph diagrams by ex-
changing the two outgoing external legs. These two chan-
nels exhibit distinct low-energy behaviors. The direct
particle-hole channel Γph is characterized by non-analytic
scattering amplitudes when the momentum-frequency
transfer q = k1 − k′1 is small, signaling a soft particle-
hole excitation. In contrast, the exchanged particle-hole
channel Γ̃ph features non-analyticity when the exchanged
momentum-frequency transfer q̃ = k1 − k′2 approaches
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zero. Elucidating the contributions from these channels
is crucial for capturing the essential physics of particle-
hole excitations and their role in renormalizing the effec-
tive interactions in Fermi liquids.

To incorporate the most relevant physics from both
components, we define the renormalized interaction R
as:

R ≡ u+ P∆Γ4. (3)

where P represents a projection operator applied to ∆Γ4,

P∆Γ4(k1, k2; k
′
1; k

′
2) = Γph(k̄1, k̄2; k̄1, k̄2) · e−q2/2δ +

Γ̃ph(k̄1, k̄2; k̄2, k̄1) · e−q̃2/2δ. (4)

The projection operator P maps the incoming and
outgoing momenta/frequencies (k1, k2 and k′1, k

′
2) onto

the Fermi surface, with k̄i denoting the projected mo-
menta/frequencies (Fig. 4(a)). This simplifies the quan-
tum correction to primarily depend on the angles be-
tween the incoming and outgoing momenta. The small
parameter δ satisfies δ ≪ kF , where kF is the Fermi mo-
mentum, ensuring that the projection operator focuses
on the forward-scattering contributions, which are cru-
cial for the low-energy behavior of Fermi liquids [11].

By constructing R as a sum of the bare interaction u
and the projected quantum correction P∆Γ4, our renor-
malization condition (Eq. (3)) interpolates the bare in-
teraction in the UV limit to the quasiparticle interaction
in the IR limit, capturing the most relevant physics at dif-
ferent scales. Following the seminal work by Shankar [11],
we focus on the momentum dependence and omit the
frequency dependence in our renormalization condition,
effectively treating R as a static interaction.

IV. RENORMALIZED FEYNMAN
DIAGRAMMATIC EXPANSION

The projection-based renormalization condition in Eq.
(3) lays the foundation for a renormalized perturbation
theory of the 4-vertex function Γ4, which is central to
describing quasiparticle scattering amplitudes.

In Fermi liquids with strong bare interactions, straight-
forward perturbation theory based on the bare coupling
u fails to capture the essential physics due to significant
higher-order contributions arising from the renormaliza-
tion of both the single-particle propagator and the two-
particle interaction vertex (e.g., 4-vertex function). The
renormalization of the propagator can be addressed us-
ing the well-established skeleton diagrammatic approach,
where the bare propagator is replaced by the renormal-
ized quasiparticle propagator G, and all self-energy in-
sertions are eliminated. For brevity, we will assume that
this renormalization has been performed and omit the
explicit dependence on G in the subsequent discussion.
However, the renormalization of the interaction vertex
poses a more formidable challenge, as discussed in the in-
troduction, leading to the notorious vertex problem. To

tackle this issue, we introduce a renormalized perturba-
tion theory based on the renormalized coupling R, which
effectively captures the essential physics of interaction
renormalization while circumventing the computational
complexity associated with the full 4-point vertex func-
tion.
We start with the bare perturbation theory for Γ4[u],

which can be derived using the standard Feynman rules.
It’s an expansion in powers of the bare coupling u:

Γ4[u] = u · ξ +∆Γ4[u], (5)

where ∆Γ4[u ·ξ] = γ2 ·ξ2+γ3 ·ξ3+ ..., with ξ = 1 tracking
the number of u in the skeleton Feynman diagrams, and
γn[u] representing the set of diagrams with n instances
of u. Since ∆Γ4 represents the quantum corrections, its
power series in u starts from the second order.
To obtain the renormalized expansion, we re-express

the bare coupling u in terms of the renormalized coupling
R using the renormalization condition Eq. (3):

u[R] = R · ξ − P∆Γ4[u[R]]. (6)

Substituting this expression into the bare expansion,
we derive the renormalized Feynman diagrams for Γ4:

Γ4[R] ≡ R · ξ + (1− P)∆Γ4[u[R]], (7)

where 1−P is the projection operator that removes the
forward-scattering contributions in the vertex function
diagrams. A systematic derivation results in a diagram-
matic series as shown in Fig. 1(b). Remarkably, for ev-
ery particle-hole loop integral, the renormalized expan-
sion introduces counter-terms that cancel the large con-
tributions from particle-hole fluctuation near the Fermi
surface, ensuring a well-behaved perturbative expansion
even with strong bare interactions.
Generating high-order diagrams in the renormalized

expansion is a significant challenge. To address this prob-
lem, we build upon the algorithm proposed recently in
Ref. [53], which systematically constructs a Feynman
diagrammatic expansion using the parquet equations.
These equations, in their conventional form, are a set of
self-consistent relations that connect the four-point ver-
tex function to its irreducible components in different
channels. The algorithm repurposes the parquet equa-
tions by expanding them perturbatively, transforming
them into a generator that systematically builds high-
order four-point vertex diagrams from lower-order sub-
diagrams. The resulting high-order Feynman diagrams
are not represented as individual diagrams; instead, they
are organized into a single comprehensive computational
graph of nodes and leaves, where the leaves represent the
propagators and interactions, and the nodes represent
mathematical operations. This computational graph rep-
resentation allows for the reuse of many subnodes, greatly
simplifying the integrand evaluation process compared to
the individual diagram representation.
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FIG. 2. Self-consistent equations for generating high-order
renormalized diagrams. The first two equations represent
the renormalized expansions for the physical vertex func-
tion Γ4 and the bare coupling u. The red solid box de-
notes the projection operator P, which extracts the dominant
low-energy contribution, while the red dashed box represents
P̄ = 1 − P, which captures the remaining correction. The
superscript on each term indicates its order in the perturba-
tive expansion. In this figure, ∆Γ4 = I + Γph + Γ̃ph + Γpp

represents the quantum correction to the physical vertex
function, where I, Γph, Γ̃ph, and Γpp denote the fully irre-
ducible, particle-hole reducible, exchanged particle-hole re-
ducible, and particle-particle reducible contributions, respec-
tively. F = u+ I + Γ̃ph + Γpp is the particle-hole irreducible

vertex function, and V = u + I + Γph + Γ̃ph is the particle-
particle irreducible vertex function. The fully irreducible ver-
tex I does not contribute until the fourth order.

The original algorithm in Ref.[53], while effective, does
not support the sophisticated nonlocal interaction renor-
malization scheme required for this work. In that ap-
proach, the renormalization of propagators and inter-
actions is implemented through high-order automatic
differentiation (AD) of the original Feynman diagrams.
This results in renormalized diagrams with countert-
erms that must be pre-calculated numbers, limiting the
scheme’s applicability to the more complex nonlocal in-
teraction renormalization employed in this paper. As
shown in Fig.1, the counterterms in our approach are ac-
tually counter-diagrams with internal loop integrations,
which is beyond the scope of the method in Ref. [53].

To overcome this limitation, we extend the algorithm
by introducing a set of renormalized parquet equations,
as depicted in Fig. 2. Unlike the original parquet equa-
tions that involve the bare coupling, the renormalized
parquet equations operate on the renormalized interac-
tions. We then perturbatively expand the renormalized
parquet equations to generate the renormalized diagram-
matic expansion. The hallmark of our iterative scheme is
the simultaneous generation of all diagrammatic topolo-

gies and counter-diagrams (namely, the subdiagrams in
the red boxes in Fig.1 and Fig. 2). Specifically, one starts
with the first-order physical vertex function Γ1

4 = R and
the bare coupling parameterized with the renormalized
interaction u1 = R, and then substitutes them into the
renormalized parquet equations to generate the second-
order diagrams of the particle-hole channel Γph, the

particle-hole-exchanged channel Γ̃ph, and the particle-
particle channel Γpp. This process is repeated until all
diagrams up to order N are generated. Notably, this
all-in-one scheme is more straightforward than conven-
tional iterative algorithms such as Bogoliubov’s R opera-
tion [39–41, 54], where one first needs to list all topologies
of bare diagrams and then iteratively generates the cor-
responding counter-diagrams for each topology.
In contrast to the previous scheme in Ref. [53], the

counterterms in our approach are not pre-calculated val-
ues. Instead, they are represented as projected vertex
sub-diagrams that share the same internal variables as
their corresponding subdiagrams. This formulation en-
ables the application of more complex renormalization
conditions. Furthermore, when the loop integral contains
divergences, our approach ensures that the counterterms
cancel these divergences before the integral is evaluated.
By canceling divergences at the integrand level, we avoid
potential numerical instabilities that could arise from di-
rectly computing divergent integrals.
The renormalized perturbation theory presented here

provides a framework for investigating nonlocal interac-
tions in Fermi liquids, enabling accurate calculations of
the interaction vertex and other observables. By system-
atically generating high-order diagrams, we can capture
the essential physics of the system while maintaining a
well-behaved perturbative expansion, even in the pres-
ence of strong bare couplings.

V. IMAGINARY-TIME REPRESENTATION

Evaluating the renormalized Feynman diagrams in
nonlocal QFT poses significant computational challenges
compared to local theories. In local QFT, the effective
couplings are typically constants, which allows for the
use of analytical techniques like Feynman parameteriza-
tion to simplify the computation of diagrams. However,
in nonlocal QFT, the diagrams are functionals of the
renormalized coupling R(k1, k2; k

′
1, k

′
2), which exhibits a

complex dependence on the momentum and frequency
variables. This functional dependence renders analyti-
cal techniques ineffective, necessitating the use of Monte
Carlo integration algorithms for diagram evaluation, even
at the one-loop level.
The performance of the Monte Carlo integration

greatly depends on the sign structure of the diagram-
matic series, as sign cancellations between the configu-
rations can result in a severe sign problem, significantly
hindering the efficiency and accuracy of the calculation.
In our renormalized diagrammatic series, there are two
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straightforward measures to alleviate the sign problem.
First, we should work in the imaginary-time representa-
tion instead of the Matsubara-frequency representation,
as the propagators and interactions are real-valued in the
former, mitigating the sign problem and improving the
efficiency of Monte Carlo integration.

Second, to further alleviate the sign problem, we
should ensure a massive cancellation between the ver-
tex sub-diagrams and their counter-diagrams at each
Monte Carlo step. This raises a crucial question: how
can we design the renormalization scheme in Eq.4 in
the imaginary-time representation to maximize the sign
cancellation at the integrand level for any given set of
internal and external variables? Although our renor-
malization scheme fixes the projection operator in the
Matsubara-frequency domain, the freedom in its imple-
mentation in the imaginary-time domain provides an op-
portunity to design the projection operator to mitigate
the sign problem, making this question essential for the
efficiency of our Monte Carlo algorithm.

We propose a projection operator design, as shown in
Fig.4, which operators on the vertex sub-diagram in Fig.3
with the internal variables preserved and aligns all ex-
ternal imaginary-time variables to the same time vari-
able. The operator modifies the external imaginary-time
variables to project out the zero-frequency contributions
of the vertex sub-diagram, ensuring that the counter-
diagram largely balances the vertex sub-diagrams for any
given set of internal variables. This design guarantees
that the cancellation occurs at the integrand level, be-
fore the integration of internal variables takes place, ef-
fectively mitigating the sign problem.

Based on this insight, we design a DiagMC algorithm
to calculate the diagrams. DiagMC algorithms have
emerged as a powerful tool for tackling the computational
challenges associated with evaluating Feynman diagrams
in various fields of physics [45–51]. These algorithms
combine the principles of Monte Carlo sampling with
the diagrammatic expansion of perturbation theory to
efficiently compute high-order contributions to physical
observables. There are three main approaches to renor-
malization in DiagMC: Bold Diagrammatic Monte Carlo
(BDMC) replaces bare propagators with fully dressed
ones [47, 49, 50], the Renormalized Connected Deter-
minant (CDet) method [48, 55] and combinatorial ap-
proach [56] rely on a determinantal formulation of con-
nected diagrams, and the Taylor-mode automatic differ-
entiation approach represents renormalized diagrams as
computational graphs with derivatives computed using
generalized chain rules [53, 57].

DiagMC algorithms with renormalized expansions
have found numerous applications in quantum many-
body physics, yielding state-of-the-art results for vari-
ous systems. For instance, BDMC has been successfully
applied to the Fermi polaron problem [49, 58], the Hub-
bard model [47, 59, 60], the resonant Fermi gas [61, 62],
and the frustrated spin systems [63–66], providing accu-
rate predictions for the equation of state and correlation

functions. The CDet method has been employed to cal-
culate the self-energy and spectral functions in the Hub-
bard model [48, 67–69] and a variety of other quantum
many-body problems [70], while the combinatorial ap-
proach has been used to study the equation of state of the
2D SU(N) Hubbard model in an experimentally relevant
regime [56]. Additionally, the Taylor-mode automatic
differentiation approach has been utilized to investigate
the electron gas problem with long-range Coulomb inter-
actions, yielding precise values for the quasiparticle effec-
tive mass and other low-energy quantities [53, 57, 71, 72].
Despite these successes, existing DiagMC algorithms

have primarily focused on the renormalization of
single-particle properties (of fermions or force-mediating
bosons), leaving the computation of renormalized Feyn-
man diagrams with generic non-local interaction counter-
diagrams as an unexplored frontier. The challenges asso-
ciated with the functional dependence of the renormal-
ized coupling on momentum and frequency variables, as
well as the presence of counter-diagrams, have hindered
the development of efficient DiagMC algorithms for this
problem.
To address this challenge, we have developed an ef-

ficient diagrammatic Monte Carlo (DiagMC) algorithm
that tackles the high-order integrals by using the renor-
malized diagrams of nonlocal QFT. The primary objec-
tive of this algorithm is to calculate the order-N contribu-

tion of the renormalized vertex function Γ
(N)
4 for a given

set of external variables. Mathematically, the Nth-order
contribution we aim to evaluate is a high-dimensional in-
tegral,

Γ
(N)
4 =

∫
dkN−1dτN

∑
t∈T

Wt(k1, . . . , kN−1; τ1, . . . , τN ),

(8)
where Wt is an Nth-order renormalized diagram with
the topology label t, involving N − 1 internal momenta
(k1, k2, . . . , kN−1) and N internal imaginary-time vari-
ables (τ1, τ2, . . . , τN ).
Conventional DiagMC methods that sample the dia-

gram topology face significant challenges when adapted
to our renormalized Feynman diagrams. In these ap-
proaches, diagram topology and internal variables are
sampled stochastically, performing a random walk with a
distribution ∝ ∑

t∈T |Wt|. However, when two diagrams
differ by the replacement of a vertex sub-diagram with a
counter-diagram, they experience substantial sign cancel-
lation. Sampling the absolute sum of these two diagrams
leads to a severe sign problem, limiting the computa-
tional accuracy and efficiency of conventional DiagMC.
To overcome this problem, we have developed a DiagMC
algorithm specifically designed for renormalized Feynman
diagrams with nonlocal interactions. Instead of sam-
pling the diagram topology, our approach samples the
total summed weights ∝ |∑t∈TWt| of all diagrams and
counter-diagrams at the same order, which can be effi-
ciently evaluated using the parquet formalism. This en-
ables the cancellation of vertex sub-diagrams and their
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counter-diagrams in each Monte Carlo step, effectively
mitigating the sign problem.

By leveraging the advantages of the imaginary-time
representation, carefully designing the projection oper-
ator, and developing a DiagMC algorithm, we can effi-
ciently compute high-order contributions to the renor-
malized vertex function, paving the way for a deeper un-
derstanding of the rich physics in nonlocal QFTs.

FIG. 3. Recursive relation for constructing an (i + j)-order
Γph vertex function from the i-order particle-hole irreducible
vertex F and the j-order full vertex function Γ4. In the figure,
k1, . . . , ki+j−1 denote the internal momentum variables, while
P1, P2, and P ′

1 represent the external momentum variables.
The temporal variables are labeled as τ1, . . . , τi+j+2, which
include both internal and external variables. The temporal
variable of the left incoming leg is fixed to τ1, while the tempo-
ral variables of the other three external legs are determined by
the subvertices. This recursive relation allows for the efficient
generation of high-order diagrams by combining lower-order
subdiagrams. Similar recursive relations can be constructed
for the other channels, such as the exchanged particle-hole
(Γ̃ph) and particle-particle (Γpp) channels, enabling a system-
atic approach to generate all required diagrams in the parquet
formalism.

VI. APPLICATION

To demonstrate the effectiveness of our renormaliza-
tion scheme, we apply it to a 3D Fermi liquid with a
Yukawa interaction. To focus on the effect of inter-
action renormalization, we consider a simplified model
where the self-energy renormalization is treated analo-
gously to the renormalized perturbation theory in QED.
In QED, the details of the bare electron propagator (at
the Planck scale) are not important; only the renormal-
ized electron propagator measured at low energies ap-
pears in the renormalized diagrams. Similarly, in our
model, the bare fermionic propagator is fine-tuned such
that the fully dressed Green’s function takes the form
Gk = −1/(iωn − k2/2m + EF ), removing all self-energy
insertions from the diagrams. The system is character-
ized by the Wigner-Seitz radius rs, which determines the
Fermi energy EF = (9π/2S)2/3/r2s in atomic Rydberg
units, where S = 1 for the polarized case and S = 2 for

FIG. 4. Application of the projection operator (red box) to
a particle-hole vertex diagram. The operator projects the two
incoming momenta onto the Fermi surface, mapping k → k̄,
as explained in the main text. It also projects the temporal
variables of all four external legs to the same value as the left
incoming leg, ensuring that all external frequencies are pro-
jected to iω0 in the Matsubara frequency representation. This
projection operation is essential for isolating the dominant
low-energy contributions to the vertex function. It is impor-
tant to note that the external momenta experience an abrupt
change before and after the projection (across the red box).
Notably, the projected vertex function still obeys the mo-
mentum conservation law. The application of the projection
operator is a crucial step in the renormalization procedure,
as it allows for the identification and selective resummation
of the most important contributions to the vertex function,
while avoiding the computational complexity associated with
the full vertex function.

the unpolarized case. The bare interaction is the stati-
cally screened Coulomb repulsion uqkk′ = 8π/(q2 + λ),
with λ as the inverse screening length. Calculations are
performed at T = 0.025EF .
The renormalized coupling is derived from the bare

coupling by solving a self-consistent equation:

R = u+ P∆F [u[R]] + P [(u+∆F [u[R]])GGΓ4[u[R]]] .
(9)

Here, ∆F ≡ ∆Γ4 − Γph represents the particle-hole ir-
reducible (PHI) diagrams. It includes all the 4-vertex
function diagrams except for the bare interaction u and
the particle-hole reducible diagrams. By excluding the
particle-hole reducible diagrams, ∆F captures the es-
sential many-body correlations without double-counting
the contributions from particle-hole channels. Both
∆F [u[R]] and Γ4[u[R]] are perturbatively expanded in
powers of R. We solve this self-consistent equation with
a DiagMC to derive the renormalized parameters from
the bare coupling. It is also possible to derive the renor-
malized parameters using the functional RG[3, 73] or the
field-theoretic RG[74]. For simplicity, we will not discuss
the detail here.
The renormalization’s effectiveness is demonstrated by

calculating the static particle-hole vertex function with
renormalized and bare expansions in the fully polarized
limit (Fig. 5). The renormalized expansion is signifi-
cantly more predictive than the bare expansion.
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FIG. 5. Comparison of the forward-scattering particle-hole
vertex function, averaged on the Fermi surface, calculated
using the bare expansion (blue) and the renormalized expan-
sion (black). The loop order of the expansion is denoted by
n. The calculations are performed for two polarized Yukawa
Fermi liquids with a Wigner-Seitz radius of rs = 21/3 and
inverse screening lengths of λ = 2 (left panel) and λ = 1
(right panel). In the system with stronger screening (λ = 1),
the bare expansion diverges, indicating the breakdown of the
perturbative approach. In contrast, the renormalized expan-
sion remains well-behaved and predictive, demonstrating the
effectiveness of the renormalization scheme in capturing the
essential physics of the strongly correlated system.

To investigate the impact of strong correlations, we
study the two-body scattering amplitude and the Landau
quasiparticle interaction of an unpolarized Yukawa Fermi
liquid with rs = 4 and λ = k2F . The scattering amplitude
Γq is defined as the 4-vertex function averaged on the
Fermi surface in the static limit with a vanishingly small
momentum transfer,

Γq(θ) ≡ R(q → 0, θ) ≡ 1

NF
[As(θ) · I +Aa(θ)σ⃗ · σ⃗] ,

(10)
where θ is the angle between the two incoming momenta,
and NF is the density of states on the Fermi surface. In
the paramagnetic limit, the scattering amplitude is de-
composed into a spin-symmetric component As and a
spin-asymmetric component Aa. Each component can
be further decomposed into different angular momen-
tum channels using the Legendre transform As,a(θ) =∑∞

l=0(2l + 1)As,a
l Pl(cos θ), where As,a

l are the Legen-
dre coefficients and Pl(cos θ) are the Legendre polynomi-
als. The Landau quasiparticle interaction F s,a(θ), on the
other hand, is defined as the 4-vertex function in the zero
transfer momentum and small transfer frequency limit,
averaged over the Fermi surface. It is related to the scat-
tering amplitude the relation: As,a

l = F s,a
l / (1 + F s,a

l ),
where F s,a

l are the Legendre coefficients of F s,a(θ).
Accurate results for the scattering amplitude and the

Landau quasiparticle interaction as a function of the
angle between the incoming momenta are presented in
Fig. 6. These quantities, which represent different
momentum-frequency slices of the full 4-vertex function,
exhibit weak angle dependence, suggesting that the 4-
vertex function is relatively local. This locality is a con-
sequence of the many-body corrections and the screening
effects, which significantly modify the momentum and
frequency dependence of the bare interaction.
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FIG. 6. Scattering amplitude (blue) and the quasiparti-
cle interaction (red) as a function of the angle θ between
two incoming momenta on the Fermi surface, for an unpo-
larized Yukawa Fermi liquid with rs = 4 and λ = k2

F . The
scattering amplitude is evaluated at zero transfer momentum
and frequency, whereas the quasiparticle interaction ampli-
tude is assessed at zero transfer frequency. The left and right
panels show the spin-symmetric and spin-antisymmetric com-
ponents, respectively, normalized against the Fermi surface’s
density of states. Compared to the bare interaction (yellow
solid curves), both the quasiparticle interactions and the scat-
tering amplitudes exhibit weaker angular dependence, indi-
cating emergent locality.

l As
l F s

l Aa
l F a

l

0 0.81(1) 4.3(3) -0.460(8) -0.315(4)
1 0.003(1) 0.003(1) -0.032(2) -0.031(2)
2 -0.0057(8) -0.0055(8) 0.0014(8) 0.0014(8)

TABLE I. Measured Legendre coefficients of the scattering
amplitude (Al) and the Landau quasiparticle interaction (Fl)
for an unpolarized Yukawa Fermi liquid with rs = 4 and λ =
k2
F .

To quantitatively analyze the amplitude of the scatter-
ing amplitude and the Landau quasiparticle interaction,
we present their Legendre coefficients, As,a

l and F s,a
l , in

Table I. The coefficients for l > 1 are vanishingly small,
providing further evidence for the emergent locality of the
four-vertex function. A striking observation is that the
spin-symmetric Landau quasiparticle interaction is sig-
nificantly larger than the bare coupling, with F s

0 reach-
ing a value of 4.3(3). This substantial enhancement high-
lights the strong many-body renormalization of the quasi-
particle interaction in the system.

In stark contrast, the scattering amplitude exhibits
a much smaller amplitude compared to the bare cou-
pling. To elucidate the underlying mechanisms respon-
sible for this suppression, we compute the contributions
to the scattering amplitude from different channels, in-
cluding the bare coupling (yellow), the particle-hole chan-
nel (red), the particle-hole-exchanged channel (blue), the
particle-particle channel (green), and the fully irreducible
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FIG. 7. Decomposition of the angle-resolved scattering am-
plitude into different channels for the spin-symmetric com-
ponent As(θ) (left panel) and the spin-asymmetric compo-
nent Aa(θ) (right panel). The channels include the bare cou-
pling (yellow), the particle-hole channel (red), the particle-
hole-exchanged channel (blue), the particle-particle channel
(green), and the fully irreducible channel (black). Significant
sign cancellations between different channels explains a sub-
stantially reduced overall scattering amplitude compared to
the bare coupling. Remarkably, the fully irreducible channel
remains negligibly small even in the presence of strong cou-
pling.

channel (black). The results, presented in Fig. 7, reveal
that the bare coupling is significantly cancelled out by
the particle-hole contribution, indicating a strong screen-
ing effect. Moreover, we observe a substantial cancel-
lation between the particle-hole-exchange channel and
the particle-particle channel, further contributing to the
small magnitude of the scattering amplitude. This extra
sign cancellation contributes to the Fermi liquid stability
by further reducing the quasiparticle interactions. These
findings shed light on the intricate interplay between var-
ious many-body contributions and their role in renormal-
izing the effective interaction strength in strongly corre-
lated systems.

The renormalized perturbation theory in this work
provides a systematic framework for studying nonlocal
quasiparticle interactions in Fermi liquids. By system-
atically generating high-order diagrams and efficiently
evaluating them using diagrammatic Monte Carlo tech-
niques, we accurately calculate the 4-vertex function and
its various momentum-frequency slices, capturing the es-
sential physics while maintaining a well-behaved pertur-
bative expansion. The emergent locality of the four-
vertex function, the substantial enhancement of the Lan-
dau quasiparticle interaction, and the significant suppres-
sion of the scattering amplitude through channel can-
cellations provide valuable insights into the fundamental
physics governing Fermi liquids.

VII. CONCLUSION

In conclusion, our work explores a novel approach for
investigating nonlocal effective interactions in quantum
many-body systems. By selectively resumming the es-
sential nonlocal contributions to the effective interaction
vertex, we have developed a systematic tool for unravel-
ing the complex physics of strongly correlated systems.
This approach offers a significant advantage over tradi-
tional skeleton diagrammatic methods, which encounter
the “vertex problem” when attempting to resum the full
interaction vertex. It opens up an alternative avenue for
exploring the rich phenomena emerging from nonlocal ef-
fective interactions across various fields, from electronic
structure [4] to ultracold atomic gases [75] and nuclear
matter [7, 52]. We anticipate that the proposed renor-
malization scheme will provide valuable insights into the
intricate interplay between nonlocality and strong corre-
lations, deepening our understanding of quantum many-
body systems.

The cornerstone of our approach is the introduction of
a projection-based renormalization condition that selec-
tively resums the most essential nonlocal contributions
to the effective interaction vertex. This condition allows
us to capture the crucial physics of interaction renormal-
ization while avoiding the computational complexity as-
sociated with the full vertex function. Building upon this
foundation, we have derived a renormalized perturbation
theory that generates Feynman diagrams in powers of
the renormalized nonlocal interaction. To efficiently gen-
erate the vast space of renormalized diagrams, we have
developed an algorithm utilizing a perturbative expan-
sion of the parquet equations [53]. This approach en-
ables the systematic construction of high-order diagrams
by combining lower-order building blocks. To address the
separate computational challenge of evaluating these di-
agrams, we have implemented a state-of-the-art DiagMC
algorithm that employs a computational graph represen-
tation to compute the high-dimensional integrands asso-
ciated with the diagrams.

The application of our renormalization scheme to a
3D Yukawa Fermi liquid has revealed significant insights
into the role of nonlocal quasiparticle interactions and the
importance of properly renormalizing them in quantum
many-body systems. By deriving the precise quasipar-
ticle interaction from the microscopic theory, we have
demonstrated that the renormalized perturbation the-
ory remains predictive even in the strongly correlated
regime where the bare perturbation theory fails. Re-
markably, our work uncovers significant cancellations be-
tween different channels contributing to the scattering
amplitude. In addition to the cancellation caused by the
particle-hole screening, we observe a substantial cancella-
tion between the particle-hole-exchange channel and the
particle-particle channel, providing a deeper understand-
ing of how Fermi liquids maintain their stability and ex-
hibit emergent weakly interacting behavior despite strong
bare couplings.
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Looking ahead, two exciting directions emerge from
our work. First, our renormalization scheme provides a
systematic framework for exploring nonlocal QFTs of a
wide range of quantum many-body systems, including
Fermi liquids, non-Fermi liquids, and beyond. Histori-
cally, the “vertex problem” has posed a formidable chal-
lenge in performing high-order calculations and deriv-
ing precise predictions of low-energy properties from first
principles in these theories. Combining the renormaliza-
tion technique with existing proposals of effective field
theories for Fermi liquids [14] and non-Fermi liquids [15]
may enable high-order calculations of experimentally rel-
evant observables. This could provide a rigorous test of
the validity of these theories and shed light on the under-
lying mechanisms governing the behavior of strongly cor-
related fermionic systems. Furthermore, our renormal-
ization scheme opens up new possibilities for construct-
ing nonlocal QFTs to model systems that are difficult to
capture using traditional local QFTs. A prime example
is the electron liquid, where the long-range Coulomb in-
teraction and the presence of a Fermi surface give rise
to complex nonlocal correlations. By designing nonlocal
QFTs specifically tailored to incorporate these correla-
tions and employing our renormalization scheme to sys-
tematically compute high-order corrections, it may be
possible to develop a more accurate and predictive the-
ory of the conduction electrons in real materials.

Second, our renormalization scheme can help to solve
the vertex problem in existing skeleton diagrammatic
techniques. One prominent example is the fRG ap-
proach [3], which has been widely used to study phase
transitions and critical phenomena in quantum many-
body systems. In some fRG implementations, the full
vertex function is typically stored in memory using a
discrete set of mesh points or basis functions, which in-
evitably introduces discretization errors. By defining the
projection operator as the discretization protocol, one
can establish a renormalization condition that gives rise
to a renormalized perturbation theory. This theory pro-
vides a systematic framework for computing corrections
to mitigate the discretization error. The renormaliza-
tion condition ensures that the discretized vertex func-
tion captures the essential physics, while the corrections
account for the discrepancies arising from the discretiza-
tion. We anticipate that this technique will prove valu-
able for fRG and other skeleton methods that involve the
manipulation of the full vertex function, enhancing their
accuracy and reliability.

In addition to the exciting applications of our renor-
malization scheme, there are several fundamental prob-
lems that warrant further investigation. From a theo-
retical perspective, it is crucial to explore how the pro-
jection renormalization condition can be designed to en-

sure that the resulting renormalized diagrammatic series
respects conservation laws and Ward identities, general-
izing the Baym-Kadanoff algorithm [27, 28] to our par-
tial renormalization scheme. Furthermore, the issue of
wrong convergence, which plagues the skeleton diagram-
matic series, may also affect our renormalized diagram-
matic series and demands further investigation. In this
regard, the homotopic action approach, as suggested by
recent findings [76], could potentially provide a more re-
liable mathematical structure for the diagrammatic ex-
pansion, ensuring convergence to physically correct re-
sults. Exploring the connections between our renormal-
ization scheme and the homotopic action approach may
yield valuable insights into the underlying mathemati-
cal structure and help address the problem of wrong
convergence. Comparing our nonlocal renormalization
scheme with the traditional local QFT approach reveals
additional avenues for exploration, such as extending the
Callan-Symanzik equation [38] to nonlocal QFTs to pro-
vide new insights into the RG evolution of nonlocal in-
teractions and the emergence of effective low-energy the-
ories. Addressing these challenges will deepen our un-
derstanding of the partial renormalization scheme and
shed light on the intricate interplay between nonlocality,
conservation laws, and RG flows in QFTs.

In conclusion, our work establishes a versatile frame-
work for investigating nonlocal effective interactions in
quantum many-body systems. By providing a system-
atic approach to renormalize the essential nonlocal con-
tributions to the effective interaction vertex, we have
opened new avenues for unraveling the complex physics
of strongly correlated systems. We anticipate that
our renormalization scheme will find broad applications
across various fields, from condensed matter physics to
ultracold atomic gases and nuclear physics, paving the
way for a deeper understanding of the fascinating phe-
nomena associated with nonlocal effective interactions in
quantum many-body systems.
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