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Abstract

It is imperative for Large language models
(LLMs) to follow instructions with elaborate
requirements (i.e. Complex Instructions Fol-
lowing). Yet, it remains under-explored how
to enhance the ability of LLMs to follow
complex instructions with multiple constraints.
To bridge the gap, we initially study what
training data is effective in enhancing com-
plex constraints following abilities. We found
that training LLLMs with instructions contain-
ing multiple constraints enhances their under-
standing of complex instructions, especially
those with lower complexity levels. The im-
provement can even generalize to composi-
tions of out-of-domain constraints. Addition-
ally, we further propose methods addressing
how to obtain and utilize the effective train-
ing data. Finally, we conduct extensive experi-
ments to prove the effectiveness of our methods
in terms of overall performance, training effi-
ciency, and generalization abilities under four
settings. The datasets and code are publicly
available at https://github.com/meowpass/
FollowComplexInstruction.

1 Introduction

Large language models (LLMs) have become the
backbone for real-world applications (Anil et al.,
2023; Touvron et al., 2023; Achiam et al., 2023).
Given natural language instructions, LLMs can
solve unseen tasks with few or no examples (Brown
et al., 2020). The capability of LLMs to accurately
understand instructions and convey the desired out-
put, known as Instruction Following (Lou et al.,
2024), is crucial for the safety (Mu et al., 2023)
and reliability (Zhou et al., 2023a) of LLMs.

It is imperative for LLMs to follow instructions
with elaborate requirements (Yin et al., 2023; Xu
et al., 2023) (i.e. Complex Instructions), such as
formatting specifications outlined in Fig. 1. On one
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Figure 1: Real-world applications generally involve
instructions with multiple constraints (i.e. Complex
Instructions), posing challenges for models.

hand, the ability to follow detailed instructions alle-
viates the need for annotating samples, which can
be costly and challenging for intricate tasks (Zeng
et al., 2023a). On the other hand, complex instruc-
tions hardly appear in the training data (Zhou et al.,
2024). Hence, the ability to follow complex in-
structions demonstrates models to have better gen-
eralization ability to unseen tasks (Yin et al., 2023).

Specifically, satisfying the multiple constraints
in the instructions simultaneously (i.e. Constraints
Following) poses a significant challenge in com-
plex instruction following (Jiang et al., 2023; He
et al., 2024). As shown in Fig. 1, whether models
can satisfy the multiple constraints in the instruc-
tions determines their ability to follow complex
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Figure 2: The framework of our study. We first study what training data is effective in enhancing complex instruction
following abilities via an empirical study. Then, we design a discrimination-based method to address how to obtain
the data. Finally, we propose a method for effectively utilizing positive and negative samples obtained through the

discrimination-based method.

instructions. Hence, in our work, we explore com-
plex instruction following by examining LLMs’
ability to follow instructions with multiple con-
straints (Yin et al., 2023; Lou et al., 2024). On one
hand, human instructions are subjective and am-
biguous, while constraints within these instructions
facilitate the automatic evaluation of instruction
following ability (Zhou et al., 2023a; Wang et al.,
2024). On the other hand, the compositional na-
ture of constraints enables the automatic creation
of instructions with unseen compositions of con-
straints (Zhou et al., 2023b; Yao et al., 2023). These
instructions hardly appear in the training data, thus
effectively assessing the model’s ability to general-
ize to unseen tasks (Aksu et al., 2023).

Complex constraints following is a challenging
task for LLMs (Jiang et al., 2023; He et al., 2024;
Qin et al., 2024). As shown in Fig. 1, even ad-
vanced LLMs struggle to meet the four specified
constraints in complex instructions. However, it
remains under-explored how to enhance LLMs to
follow multi-constraint complex instructions. First,
the existing works on constraints following mainly
focus on evaluation without proposing methods
for enhancement (Jiang et al., 2023; Chen et al.,
2024; Xiaetal., 2024). Additionally, even when the
improvement methods are proposed, they mainly
consider instructions with few constraints, thereby
failing to showcase the complexity of human in-
structions in practical applications (Chen et al.,
2022; Zhang et al., 2023; Wang et al., 2024). More-
over, although some studies construct complex in-
structions with multiple constraints and fine-tune
LLMs on them (Aksu et al., 2023; Sun et al., 2024),
one key research question remains under-explored:
What training data is effective in enhancing com-

plex constraint-following abilities? This leads
to two follow-up questions: (1) How to obtain the
effective training data? and (2) How to utilize
the data effectively?

In this work, we systematically study how to
enhance the ability of LLMs to follow complex in-
structions, with the framework shown in Fig. 2. We
initially explore the effective training data for this
purpose through an empirical study. We found that
training LLMs on instructions containing multi-
ple constraints (compositional data) enhances their
understanding of complex instructions more effec-
tively than training on atomic constraints (afomic
data). Moreover, the improvement in performance
is related to the number of constraints, the model
size (§3), and can even generalize to the composi-
tions of out-of-domain constraints found in §5.3.1.

To obtain high-quality compositional data, we
generate initial output via a student model (vanilla
model) and then correct via a teacher model (ad-
vanced model), termed the Discrimination method.
This approach yields higher-quality output than us-
ing the teacher model to generate directly. To lever-
age the positive and negative samples collected dur-
ing the Discrimination method, we introduce a con-
trastive method with reinforcement learning fine-
tuning (RLFT) (Rafailov et al., 2023). Our method
surpasses the SFT training paradigm on the instruc-
tion following benchmark (Zhou et al., 2023a) with
fewer training steps. It also demonstrates superior
generalization across out-of-domain, in-domain,
and adversarial settings while preserving overall
capabilities.

Overall, our contributions are mainly three-fold:
(1) We systematically improve LLMs’ instruction-
following ability by exploring effective training



data. (2) We design a discrimination-based method
to obtain effective training data. We also propose a
method for utilizing positive and negative samples
obtained through this approach. (3) We conduct
extensive experiments to prove the effectiveness
and efficiency of our method. We also validate its
generalization ability under four settings.

2 Related Work

2.1 Instruction Following

There are various perspectives for assessing the
ability of LLLMs to follow instructions. A line of
work perturbs the answer space to assess whether
the model truly understands instructions or recites
the answer (Zeng et al., 2023b; Li et al., 2023a;
Wu et al., 2023). Another line of work exempli-
fies models’ ability to follow instructions by incor-
porating verifiable constraints within them, such
as lexical, numerical, format, and semantic con-
straints (Sun et al., 2023; Jiang et al., 2023). These
constraints can be compositional, allowing one in-
struction to contain multiple constraints simultane-
ously (Aksu et al., 2023; Zhou et al., 2023b; Yao
et al., 2023). Such complex instructions containing
multiple user-specified constraints present greater
challenges for LLM:s to follow (He et al., 2024; Qin
et al., 2024). Our work falls into this latter category.
The existing works on constraints following solely
either focus on evaluation (Chen et al., 2024; Xia
et al., 2024) or only consider instructions with few
constraints (Chen et al., 2022; Zhang et al., 2023;
Chen and Wan, 2023; Wang et al., 2024). Different
from existing works, we systematically investigate
how to enhance complex instructions with multiple
constraints.

2.2 Complex Instruction Tuning

Complex Instructions can refer to instructions that
involve more reasoning steps (Mukherjee et al.,
2023), intricate input (Zhou et al., 2024), or mul-
tiple constraints (Luo et al., 2023a). Many studies
have demonstrated that fine-tuning with complex
instructions can boost performance in tasks such
as instruction following (Xu et al., 2023), reason-
ing (Mitra et al., 2023), or code generation (Luo
et al., 2023b). However, our work differs from
these studies in two main aspects. First, we fo-
cus on improving LL.Ms’ ability to follow com-
plex instructions containing multiple constraints,
which is crucial for the practicality and safety of
LLMs (Zhou et al., 2023a; Mu et al., 2023). Fur-

thermore, traditional supervised fine-tuning (SFT)
uses only positive samples, whereas we use both
positive and negative samples to enhance the com-
plex instruction-following ability of LLMs effec-
tively and efficiently.

3 Empirical Studies

A common approach to improve LLMs’ ability
to follow complex instructions is to construct cor-
responding instances and fine-tune the LLMs on
them (Aksu et al., 2023; Sun et al., 2024). Yet,
one key research question remains under-explored:
What training data is effective in enhancing com-
plex constraint-following abilities?

To enhance the LLM’s capacity to follow com-
plex instructions, two types of training data can be
utilized: (1) Initially train models to understand
atom constraints (atomic data), enabling them to
resolve compositional constraints (compositional
data) automatically. (2) Train models with composi-
tional data, leading them to understand instructions
with atomic or varying compositions of constraints
spontaneously. Examples are shown in Fig. 2.

To compare these training data types, we split
the instructions in existing instructions following
benchmarks (Zhou et al., 2023a; Jiang et al., 2023)
into training and test sets. The training set contains
atomic data (mostly with 1 constraint) and com-
positional data (mostly with over 3 constraints).
Original benchmarks lack corresponding outputs,
we first generate them via GPT-3.5-turbo. To im-
prove the quality of the training set, we further
filter the datasets to only keep outputs that satisfy
all instruction constraints using GPT-3.5-turbo and
rules for training. The remaining data forms the
test set. Details on data construction and statistics
are provided in the Appx. A.l.

We compare three methods: (1) Backbone, the
backbone model without further training. (2) Atom
and (3) Composition, continue training the back-
bone model with atomic data and compositional
data respectively. To prevent models from catas-
trophic forgetting (McCloskey and Cohen, 1989),
we mix training data with ShareGPT data (Chiang
et al., 2023) for Afom and Composition checkpoint.
We leverage two backbone models (Zheng et al.,
2024; Touvron et al., 2023) and adopt two accuracy
metrics (Zhou et al., 2023a; Jiang et al., 2023):
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Backbone Methods Levell Level2 Level3 Level4 Level5 Avg.
Backbone  39.07 44.71 37.28 30.93 19.06 34.21
Vicuna-7B-V1.5(Zheng et al., 2024) Atom 39.17 39.50 42.07 30.23 16.97  33.59
Comp 39.44 55.90 47.49 22.27 16.65  36.35
Backbone  33.10 41.71 42.26 23.89 22.07 32.61
LLaMAZ2-13B-Chat(Touvron et al., 2023)  Atom 38.99 39.78 36.61 20.74 14.83  30.19
Comp 37.02 44.66 42.55 21.62 2236 33.64

Table 1: The Instruction-level accuracy of backbone models without further training (Backbone), training with
atomic data (Atom), and compositional data (Comp) on FollowBench. Level x indicates there are x constraints
in the instructions. Avg. indicates the average performance across 5 levels. The results are evaluated by GPT-4
using the FollowBench prompt template. The bold and underlined represent the first and second rankings among

the open-source LLMs, respectively.

Backbone Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level
Backbone 27.87 15.91 74.07  44.09 48.57 80.00 30.69 10.71 40.00 2689 3747
Vicuna-7B-V1.5 Atom 29.50 31.82 48.14  63.44 36.19 25.00 31.68 16.07 40.00 27.17 37.29
Comp 37.70 50.00 40.74 5591 36.19 25.00 32.67 14.29 50.00 28.85 38.76
Backbone 42.62 11.36 81.48 5591 45.71 15.00 32.67 00.00 25.00 2577 36.38
LLaMAZ2-13B-Chat Atom 42.62 00.00 37.04  54.84 42.86 35.00 34.65 12.50 37.50 2633 35.83
Comp 40.98 02.27 66.67  54.84 38.10 50.00 36.63 16.07 40.00 26.05 37.84

Table 2: The performance of backbone models without further training (Backbone), training with atomic data
(Atom), and compositional data (Comp) on IFEval. The I-level and C-level denote the Instruction-level and

Constraint-level accuracy respectively.

where cZ equals 1 if the j-th constraint of the i-th
instruction is satisfied, otherwise 0. Overall, achiev-
ing Instruction-level accuracy (acciys) is more chal-
lenging than Constraint-level accuracy (acccon).

The performance of the three methods on the test
sets is shown in Tab. 1 and Tab. 2. First, with regard
to the overall performance, training with composi-
tional data generally surpasses both the backbone
model and atomic data training. This demonstrates
that training with compositional data can gener-
ally enhance models’ ability to follow complex
instructions. Surprisingly, according to Tab. 1,
training with atomic data (mostly with 1 constraint)
can generally decrease performance compared to
the backbone model for instructions with more than
1 constraint. Also, training with compositional data
(usually 3 to 5 constraints) boosts performance on
instructions with 1 to 3 constraints significantly but
shows less enhancement or even a decline for those
with 4 to 5 constraints. This suggests that training
with compositional data (instructions with multi-
ple constraints) can better generalize to lower-level
complex instructions (instructions with fewer con-
straints). Moreover, this effect is more pronounced
in smaller LLMs (7B), likely due to their weaker
generalization ability (Magister et al., 2022; Fu
etal., 2023). Later in §5.3.1, we found that training
with compositional data can even generalize to the
compositions of out-of-domain constraints.

We have found that training with compositional

data can better enhance LLM’s ability to follow
complex instructions compared with atomic data. A
follow-up research question is how to obtain high-
quality compositional data? Existing datasets
either only provide compositional instructions with-
out output (Zhou et al., 2023a; Jiang et al., 2023) or
directly generate responses using advanced LL.Ms
and refine them manually (Sun et al., 2024).

We compare the outputs generated by three
methods: (1) Vanilla: Output generated directly
using backbone model. (2) Generation: Out-
put generated directly using GPT-3.5-turbo. (3)
Discrimination: First, we identify the constraints
that Vanilla outputs failed to adhere to using test
scripts (Zhou et al., 2023a). Then, we rectify the
Vanilla outputs constraints by constraints using
GPT-3.5-turbo (The framework is shown in Fig. 2
and please refer to §4.2 for details). With regard to
the complex instructions, the instructions in IFE-
val (Zhou et al., 2023a) originally had only 1 to 3
constraints, which were not complex enough. We
construct 1500 complex instructions, each with 3
to 5 constraints from IFEval that are objective and
can be automatically verified (Please refer to §4.1
for details). We leverage LLaMA2-13B-chat (Tou-
vron et al., 2023) as the backbone and evaluate the
performance of the three methods using the test
script from Zhou et al. (2023a).

As shown in Tab. 3, using the generation method,
outputs from advanced LLMs (Generation) are



Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level
Vanilla 21.19 08.89 7726 56.67  61.60 10.60  30.85 00.26 16.84 0640 41.33
Generation 56.50 30.37 68.95 7496 72.29 33.01 5291 36.76 79.51 21.53 62.68
Discrimination  66.56 25.00 68.11 6827 77.32 81.95 5227 70.90 85.60 35.04 68.30

Table 3: The performance of different methods on IFEval.

of higher quality than those from weaker LLMs
(Vanilla). However, the outputs from weaker
LLMs then refined by advanced LLMs (Discrim-
ination) significantly outperform the outputs
generated by advanced LLMs directly (Genera-
tion). We believe this is because slight changes in
the instruction (i.e. constraint) can cause substan-
tial output differences, which the discrimination-
based method captures better than the generation-
based method.

4 Method

According to §3, we propose a discrimination-
based method to obtain effective training data. A
subsequent question is how to effectively ufilize
the data obtained through the discrimination-
based method? Hence, we introduce a reinforce-
ment learning fine-tuning (RLFT) based method
that leverages both positive and negative samples
to improve complex instruction following. The
framework is shown in Fig. 2.

4.1 Complex Instruction Synthesis

According to §3, the effective training data is com-
plex instructions with multiple constraints (com-
positional data). To obtain compositional data, we
first collect seed instructions from three widely
used instruction-tuning datasets. Then, we rewrite
the instructions to incorporate multiple constraints.

To ensure the coverage and diversity of the seed
instructions, we consider three sources: (1) Open
Assistant (Kopf et al., 2024): human-written in-
structions when interacting with chatbots. We only
consider rank 0 instructions (annotated by humans
as the highest quality) and the first turn of the con-
versation (Li et al., 2023b). (2) Self-Instruct (Wang
et al., 2022a): 175 manually written instructions
covering diverse topics to facilitate instruction gen-
eration for new tasks. (3) Super-Natural (Wang
et al., 2022b): A collection of natural language
processing (NLP) tasks formatted with human in-
structions. We first exclude tasks with finite output
sets using rules (e.g., classification, tagging), since
the outputs are too simple for the corresponding in-
structions to incorporate constraints. This leaves us

with 318 remaining tasks. Next, we randomly se-
lect one instruction for each task. From these three
sources, we finally gather 1500 seed instructions.

Subsequently, we integrate constraints into these
seed instructions. Initially, we randomly sample 3
to 5 constraints and utilize the provided scripts to
resolve conflicts among the constraints provided
by Zhou et al. (2023a). Next, given that, semanti-
cally equivalent but textually distinct instructions
can substantially affect model outcomes (Yan et al.,
2024; Chen et al., 2024), we employ eight diverse
expressions to describe each type of constraint.
Specifically, we manually select three common de-
scriptions from the test set as seed descriptions,
generate five similar descriptions using GPT-3.5-
turbo, and refine them manually. For each sampled
constraint ¢;, we randomly select one description
d; from the description pool and append it to the
instructions, formulated as:

I.=LLM(I;®&d; ® ... & dy),

where I, I. and d; denote the seed instruction,
its corresponding synthesized complex instruction,
and appended constraint using a specific descrip-
tion, respectively. The number of constraints n
ranges from 3 to 5.

4.2 Teacher Correction

As introduced in §3, we propose a discrimination-
based approach for obtaining the output, shown to
be more effective than directly generating output
with advanced LLMs. The details of this approach
are as follows.

Initially, we utilize LLaMA2-13B-Chat (Tou-
vron et al., 2023) (student model) to generate
results for our synthesized complex instructions.
Then, we utilize the test scripts from Zhou et al.
(2023a) to identify the constraints the model failed
to follow since the constraints are objective and au-
tomatically verifiable. Finally, we adopt advanced
LLMs (teacher model) GPT-3.5-turbo to correct
the failed constraints one by one.

Specifically, each complex instruction /. con-
tains multiple constraints. In §4.2, we utilize
the test script to pinpoint the f constraints C =



{c1,¢2, ..., ¢y} that the student model’s vanilla out-
put o, fails to follow. The teacher model sequen-
tially corrects these failed constraints, yielding an
output set O = {0,,01,02, ..., 07 }:

01 = LLM(oy, ¢1),...,0f = LLM(0f_1,¢y),

where GPT-3.5-turbo is employed as the teacher
model with prompts sourced from Tab. 9.

4.3 Contrastive Method

During §4.2, for each instruction I., we can
gather positive sample set {07} and negative sam-
ples set {o1,...,0r_1}. Supervised fine-tuning
(SFT) solely utilizes positive samples successfully
meeting constraints specified in complex instruc-
tions (Radford et al., 2019; Howard and Ruder,
2018). However, negative samples from §4.2, fail-
ing to meet certain constraints, also offer valuable
supervision signals. Hence, we leverage the pos-
itive and negative samples through reinforcement
learning fine-tuning (Rafailov et al., 2023).
Specifically, given the output set O =
{0v,01,09,...,07} for each complex instruction
1., we can form a training dataset D comprising
[ contrastive triplets: D = {Iﬁ”, ol(.z), 0 f}zle =
{(Ic,00,0¢), (e, 01,0¢), ..., (Ic,05—1,0¢)}.  In
each training triplet, the final corrected output oy
(positive sample) is preferred over o; (negative sam-
ple), as oy follows more constraints specified in the
complex instruction /.. Following this, Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023)
can be applied to model the preference informa-
tion. The loss function is a maximum likelihood
objective for the language model parameters 7y.

(05 |1e)
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where the reference model parameter 7 is set to

mp initially and remains fixed throughout training.
B is a hyperparameter and o is the sigmoid function.
The goal of Lppo is to maximize the log probability
of preferred output o relative to the dispreferred
output o;.

However, solely relying on Lppo may lead to
low probabilities for both chosen and rejected out-
puts, yet with a significant disparity between them.
Therefore, we additionally integrate the SFT loss
Lsrr to constrain my from deviating from the pre-
ferred data distribution (Xu et al., 2024; Hejna et al.,

2023):

Lsrr(mg) = —E(IC,Of)ND [log 779(0f 11c)].

Finally, our training procedure is to optimize Lppo
and Lgpr jointly:

Lours = Lopro + LsFT.

S Experiments

We conduct experiments to verify the effectiveness
of our method, focusing on overall performance,
training efficiency, and generalization ability.

5.1 Experiment Setup

Models. Our baselines comprise popular open-
source and close-source LLMs. With regard to
our framework, utilizing synthesized complex in-
structions (§4.1), we compare three methods: (1)
Ours-13B-Generation directly generates output
with GPT-3.5-turbo and trains the backbone model
via supervised fine-tuning (SFT). (2) Ours-13B-
Discrimination generates output via the backbone
model then refines with GPT-3.5-turbo (§4.2), and
trains the backbone model via SFT. (3) Ours-13B-
Contrastive utilizes DPO for training to model
positive and negative samples (§4.3). The back-
bone model for all three methods is LLaMA2-13B-
Chat, with the instructions of training data being
the same; only the output of training data and train-
ing paradigms differ. Specifically, continuous train-
ing may cause catastrophic forgetting (McCloskey
and Cohen, 1989). To address this, we utilize the
replay strategy (Ke and Liu, 2022), mixing the train-
ing data with 10000 ShareGPT data (Chiang et al.,
2023) to maintain the general abilities of models
during training.

Evaluation. We evaluate all models on IFE-
val (Zhou et al., 2023a), a widely-used instruction-
following benchmark. The test set consists of 541
samples, each containing 1 to 3 constraints. All the
constraints are objective and can be automatically
verified, such as length constraints and detectable
formats. The metrics are the same as §3.

5.2 Results

Overall Performance. The performance on IFE-
val is presented in Tab. 4. First, using the same
backbone model, Ours-13B-Generation performs
worse than many popular open-source models (Vi-
cuna, WizardLM), even when the constraints in the
test set have been seen in the instructions. This



Models

BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

LLaMA2-13B-Chat (Touvron et al., 2023) LLaMA2 37.08 07.69
LLaMA2-70B-Chat (Touvron et al., 2023) LLaMA2 42.70 24.62
Qwen-14B-Chat (Bai et al., 2023) Qwen 57.30 23.08
Vicuna-13B-V1.5 (Zheng et al., 2024) LLaMA2 56.18 32.31
WizardLM-13B-V1.2 (Xu et al., 2023) LLaMA2 49.44 16.92
OpenChat-13B-V3.2 (Wang et al., 2023) LLaMA2 49.44 26.15
Ours-13B-Generation LLaMA2 64.04 20.00
Ours-13B-Discrimination LLaMA2 60.67 06.15
Ours-13B-Contrastive LLaMA2 65.17 10.77
PaLM2-S* (Anil et al., 2023) PalLM N/A N/A
GPT3.5-turbo GPT 58.43 70.77
GPT4* (Achiam et al., 2023) GPT N/A N/A

83.02  60.51 57.06 25.81 37.76 00.00 2985 2994 4221
79.25 63.69 68.71 16.13  39.86 12.12 62.69 38.45 50.36
7547 57.96 58.28 83.87  33.57 21.21 68.66 37.89 51.08
7547 6242 57.06 93.55  42.66 16.67 64.18 4233 53.48
7547 67.52 66.26 83.87  46.85 15.15 64.18  43.07 54.56
88.68 68.15 66.26 87.10  47.55 19.70 71.64 46.03 57.43
66.04  70.06 53.99 3548  44.06 21.21 74.63 4122 52.88
79.25 6497 60.12 96.77  43.36 51.52 79.10 4621 57.43
8491 66.88 60.74 93.55 4755 43.94 86.57 48.24 59.71
N/A N/A N/A N/A N/A N/A N/A 43.07 55.76
88.68  88.54 71.17 98.35  53.85 18.18 76.12 5896 68.47
N/A N/A N/A N/A N/A N/A N/A  76.89 83.57

Table 4: The overall performance of models on IFEval (each with 1 to 3 constraints). The asterisk (*) indicates
that the results are directly sourced from IFEval. N/A denotes that IFEval does not provide the results for specific

constraints.

Models

ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

LLaMA2-13B-Chat 17.86 00.00 68.42 5854 6143 27.27 3443 00.00 27.03 09.50 4227
WizardLM-13B-V1.2 16.67 13.64 56.58 53.66 64.29 100.00  40.98 17.39 48.65 14.00 47.20
OpenChat-13B-V3.2 25.00 00.00 7632 56.71 6143 86.36  35.25 15.22 55.41 16.50 49.07
Ours-13B-Discrimination ~ 48.81 00.00 67.11 50.61  58.57 9091  36.89 60.87 67.57 15.00 53.33
Ours-13B-Contrastive 35.71 04.55 63.16 50.61 65.00 86.36  47.54 63.04 79.73  19.00 55.73

Table 5: The performance of models on instructions within the same constraint category (each with 3 to 5 constraints)
but with varying phrasing and detailed requirements, assessing our methods’ in-domain generalization ability.

Models ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level
LLaMA2-13B-Chat 25.71 08.70 67.44 4741 60.71 28.00 2692 02.38 21.90 01.00 40.15
WizardLM-13B-V1.2 28.57 00.00 54.26 50.00 66.67 72.00 34.62 15.48 52.38 07.00 46.60
OpenChat-13B-V3.2 31.43 04.35 62.79 56.03  60.71 72.00 31.73 23.81 49.52 07.30 47.64
Ours-13B-Discrimination ~ 51.43 04.35 57.36 3534  65.48 48.00 31.25 59.52 69.52 05.00 49.53
Ours-13B-Contrastive 40.95 08.70 50.39 45.69  72.22 64.00 37.50 55.95 7429 07.50 53.05

Table 6: The performance of models on more challenging complex instructions with 6 to 7 constraints. The
adversarial setting stress tests the generalization ability of LLMs in following complex instructions.
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Figure 3: The performance of training efficiency

(left) and out-of-domain generalization (right). D
and C denote Ours-13B-Discrimination and Ours-13B-
Contrastive respectively.

highlights the difficulty in obtaining high-quality
output for complex instructions. Next, Ours-13B-
discrimination achieves significant performance im-
provement, indicating that discrimination surpasses
the generative paradigm in achieving high-quality
output. Moreover, Ours-13B-contrastive performs
the best, proving that our method excels in captur-
ing subtle variations in complex instructions for the
output.

Training Efficiency.

We compare the training

efficiency of Ours-13B-Discrimination and Ours-
13B-Contrastive. Both use the same training data
but employ different training methods: the for-
mer uses the next-token-prediction generation ap-
proach, while the latter uses our contrastive ob-
jective. As shown in Fig. 3 (left), Ours-13B-
Contrastive achieves better performance with the
same training steps and ultimately outperforms bet-
ter than Ours-13B-Discrimination. This proves
that our method utilizing both positive and negative
samples can enhance complex instruction follow-
ing ability more effectively and efficiently.

5.3 Generalization Experiments

We investigate the generalizability of our frame-
work from four perspectives.

5.3.1 Out-of-Domain Generalization

We investigate whether the ability to follow com-
plex instructions extends to unseen constraints.
To achieve this, we evaluate models on an-



other instruction-following benchmark Follow-
Bench (Jiang et al., 2023), which has the following
features to outline: (1) It contains almost entirely
different constraints from IFEval, such as style sce-
nario, and example constraints. (2) It includes com-
plex instructions of five difficulty levels. The diffi-
culty level is denoted by incrementally increasing
the same type of constraint to a seed instruction at
each level. (3) Specifically, to mirror real-world
scenarios, it introduces a Mixed Category. Instruc-
tions within this category encompass multiple con-
straints, akin to the compositional data in our study
while incorporating different constraints.

As shown in Fig. 3 (right), first, the performance
of our methods generally drops compared to the
backbone model when tested on individual, unseen
constraints. This suggests that models training with
certain constraints can hardly generalize to unseen
constraints directly. However, surprisingly, our
methods show a remarkable 12.92% improvement
in performance in the Mixed Category. This proves
that tuning with compositional data enhances the
models’ capacity to follow instructions covering
multiple constraints, even if these constraints differ
greatly from those in the training set.

5.3.2 In-Domain Generalization

We construct a new test set to evaluate our methods’
in-domain generalization, focusing on the same
constraint but with varied wording and specific re-
quirements. First, we select 200 instructions from
the Open Assistant dataset (introduced in §4.1) not
in our training set. Next, we randomly choose 3
to 5 constraints from IFEval, pair them with de-
scriptions from our description pool (§4.1), and
utilize GPT-3.5-turbo to paraphrase them, ensuring
distinct descriptions from the training data. Addi-
tionally, we manually adjust specific requirements
in the instructions, changing symbols (e.g., "sepa-
rated by 6 asterisk symbols ******" tg "separate
the responses with 6 hash signs: ######") and for-
mats (e.g., "wrap the entire output in JSON format"
to "I want the entire output in XML format"). As
shown in Tab. 5, Ours-13B-Contrastive remains
the top performer. Additionally, the performance
gap between Ours-13B-Contrastive and the best
open-source model (OpenChat-13B-V3.2) has in-
creased from 2.28 to 6.66. These results highlight
the robustness of our method in handling complex
instructions across different phrasing and detailed
requirements within the same constraint category.

ARC HellaSwag MMLU  TruthfulQA

Models (25-shot)  (10-shot)  (5-shot)  (0-shot)

LLaMA2-13B-Chat 59.04 81.94 54.64 44.12 59.94
WizardLM-13B-V1.2 59.04 82.21 54.64 47.27 60.79
OpenChat-13B-V3.2 59.64 82.68 56.68 44.49 60.87
Ours-13B-Discrimination 56.74 78.39 53.01 48.17 59.08
Ours-13B-Contrastive 57.76 79.95 53.79 48.15 59.91

Table 7: The performance of models on general tasks.

5.3.3 Adversarial Setting

We compare models’ performance on more chal-
lenging complex instructions with increased con-
straints. This adversarial setting stress tests the gen-
eralization capacity of LLMs in following complex
instructions. Specifically, we utilize the same 200
seed instructions from §5.3.2 and the method intro-
duced in §4.1 to append 6 to 7 constraints to the
seed instructions. These new instructions are chal-
lenging since our training data contains 3 to 5 con-
straints. As shown in Tab. 6, Ours-13B-Contrastive
outperforms all other models and significantly per-
forms better than Ours-13B-Discrimination. This
demonstrates our method utilizing positive and neg-
ative samples generalizes better to complex instruc-
tions than SFT only utilizing positive samples.

5.3.4 General Ability

We test whether training with our synthesized com-
plex instructions compromises LLMs’ general abil-
ity. To achieve this, we evaluate models on four
widely adopted benchmarks, reflecting the mod-
els’ knowledge capability (MMLU (Hendrycks
et al,, 2020), TruthfulQA (Lin et al., 2021),
ARC (Clark et al., 2018)), complex reasoning (Hel-
laSwag (Zellers et al., 2019)). As shown in Tab. 7,
our methods perform on par with other open-source
LLMs, validating that our methods enhance the
complex instructions following ability while main-
taining the models’ general ability.

6 Conclusion

In this paper, we systematically study how to en-
hance the ability of LL.Ms to follow complex in-
structions. Initially, we study effective training
data and methods for obtaining high-quality data
through two empirical studies. Based on our find-
ings, we introduce a method utilizing positive
and negative samples to enhance LLMs’ complex
instruction-following capability. Our experiments
show that our method more effectively and effi-
ciently captures subtle instruction differences lead-
ing to significant output changes compared to the
traditional supervised fine-tuning (SFT). Addition-



ally, we evaluate the generalization capabilities of
our framework through extensive experiments.

7 Limitations

We analyze the limitations of our work as follows.
First, we investigate complex instruction-following
by testing LLMs’ ability to adhere to instructions
with multiple constraints. Even if the model meets
all the constraints simultaneously, it may not fully
follow complex instructions due to reasoning or
knowledge limitations. However, we see com-
plex constraint-following as a significant challenge
worth studying. In constructing the training data,
we primarily use hard constraints from IFEval, al-
though real-world scenarios often include soft con-
straints like semantic constraints. We focus on hard
constraints because they can be objectively and au-
tomatically evaluated, and we believe experiments
based on them can yield valuable insights into com-
plex instruction-following.
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Test Set
L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg.

Example 31 20 17 16 16 100 9 20 23 24 24 100
Content 16 1517 1512 75 9 10 8 10 13 50
Situation 14 13 13 13 13 66 8 9 9 9 9 44

Benchmark  Type Training Set

FollowBench Style 19 19 18 18 16 90 11 11 12 12 14 60
Format 20 19 17 18 16 90 10 11 13 12 14 60
Mixed 14 1011 7 6 48 3 7 6 1011 37
Total 114 96 93 87 79 469 50 68 71 77 85 351
One-cons - - - - - 92 - - - - - 213
[FEval Multi-cons - - - - - 92 - - - - - 14

Table 8: The statistic of the datasets constructed in the
empirical study

A Appendix

A.1 Details of Empirical Studies

In §3, we first investigate what training data is ef-
fective in enhancing complex constraints following
ability. To achieve this, we split the instructions in
the existing instruction following benchmarks, i.e.,
Followbench (Jiang et al., 2023) and IFEval (Zhou
et al., 2023a) into the training and test sets. The
training sets consist of two types of data: (1) Com-
positional data: From IFEval, we utilize all the
instructions with more than one constraint and all
level-4 and level-5 instructions from Followbench.
(2) Atomic data: From IFEval, we use only one-
constraint instructions. From Followbench, we use
all level-1 and part of level-2 instructions to ensure
an equal number of compositional and atomic data
for fair comparison.

After collecting the instructions, we first employ
GPT3.5-turbo to generate the answers to the cor-
responding instructions. To improve the quality
of the training data, we filter the samples from
Followbench by prompting GPT3.5-turbo (We use
the evaluation prompt from the original paper) and
those from IFEval via its provided test scripts.

The statistics of our training set and test set are
provided in Tab. 8. It can be seen that there is a
distribution shift between the training set and test
set from FollowBench. This may be because we use
outputs satisfying all instruction constraints judged
by GPT-3.5-turbo for training, with the rest as the
test set. Consequently, the test set can be more
challenging than the training data, especially for
instructions with more constraints (level 4, level 5).
This can partially explain the results that training
with compositional data boosts performance on
instructions with 1 to 3 constraints but lowers it on
those with 4 to 5 constraints.

A.2 Complex Structure Synthesis

As stated in §4.1, we employ GPT3.5-turbo to
diversify the description for the same constraint.
The corresponding prompt is shown in Tab. 10. It
is worth noting that, for the keyword constraint,
we prompt GPT3.5-turbo to brainstorm some key-
words related to the instruction, shown in Tab. 11.
Then, we randomly select one of them and incor-
porate it into the diversified description to form
the final instruciton, e.g., your response should not
include the word “architecture".

A.3 Case study

We present some cases of complex instruction fol-
lowing in Tab. 12 and Tab. 13. Given the com-
plex instructions with multiple constraints, we
present the outputs generated by GPT3.5-turbo and
LLaMAZ2-13B-Chat and a list to indicate whether
they have followed the specific constraint or not.
Constraints incorporated in the instruction are
underlined sequentially.

A.4 Implemention details

We utilize 2 NVIDIA A800 80GB GPUs to con-
duct all the experiments. DeepSpeed ZeRO stage
1 is adopted for both SFT and DPO training. We
set the batch size to 4 for each GPU. All the meth-
ods utilizing SFT are trained for 2 epochs with the
initial learning rate set to 3e-5 and the gradient ac-
cumulation step set to 4. The warm-up steps are
set to 300. As for the training of methods utilizing
DPO, the beta value is set to 0.1. DPO is trained for
2 epochs with the initial learning rate set to 5e-4
and the gradient accumulation step also set to 4.
We apply cosine learning rate scheduler and Adam
optimizer to both models, and their maximum se-
quence length is set to 2048.



/* Task prompt */

You are provided with a response which is generated by a LLM and a constraint that the response is asked to follow. Now, you
have known that the response does not follow the constraint. You are designated as a corrector to correct the response. You
should make as minimal revisions as possible so that it follows the constraint. For example, you should not change the case of
the word if you are not asked. To fulfil this task, you are expected to provide your analysis and a revised response which has
followed the constraint.

/* Example */

—INPUT—

Response:

«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code:
012». Andorra is a small, independent principality located in the Pyrenees mountains. The ISO code is a three-digit number
that represents countries. I hope this information is helpful! Do you agree?

Constraint:

The very last sentence of your response should be "Hope you agree with me."

—OUTPUT—

Analysis:

The last sentence of the response is "Do you agree?". I need to change it to "Hope you agree with me." to follow the constraint.
Revised response:

«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code:
012».Andorra is a small, independent principality located in the Pyrenees mountain. The ISO code is a three-digit number that
represents countries. I hope this information is helpful! Hope you agree with me.

/* Input */
—INPUT—
Response:
{Given_response}
Constraint:
{Given_constraint}
—OUTPUT—

Table 9: The prompts for correcting the response generated by the model to follow a specific constraint. The
information that requires manual input is highlighted.

/* Task prompt */

You are provided with a <constraint> in an instruction. As a prompt engineer, your task is to rephrase the provided <constraint>
to make it more diverse. You ought to provide five more variants of the <constraint>. Make sure your revision does not change
the meaning of the original <constraint>.

/* Example */

—INPUT—

<constraint>:

Your response should contain at least 3 sentences.
—OUTPUT—

variants:

. Respond with at least three sentences

. Use at least 3 sentences in your reply

. Your entire response should include at least three sentences
. Organize your entire response in at least 3 sentences

. Please make sure the response is at least 3 sentences long

DA W ==

/* Input */
—INPUT—
<constraint>:
{Given_constraint}
—OUTPUT—
variants:

Table 10: The prompts for diversifying the descriptions of a given constraint. We utilize one-shot in-context learning
to enhance the performance. The information that requires manual input is highlighted.



/* Task prompt */

You are provided with an <instruction>. Your object is to come up some keywords that may be used to answer the <instruction>.
They are usually related to the task described in the <instruction>. you should output your thinking process and the keywords
you come up with.

/* Example */

—INPUT—

<instruction>:

Explain Generative Adversarial Networks (GANs) to me using bullet points. Do not contain any commas in your response.
—OUTPUT—

Thinking process:

The <instruction> asks to explain GANSs, hence, ’architecture’, "training’ and ’generator’ may be appropriate keywords to use
in the answer.

Keywords:

[” architecture’, ’training’, ’ generator’ ]

/* Input */
—INPUT—
<instruction>:
{Given_instruction }
—OUTPUT—

Table 11: The prompts for brainstorming some related keywords of a given instruction. The information that
requires manual input is highlighted.

Instruction
Describe the content of the article in a brief manner. A study published earlier this year by Zee and her team exam-
ined the role of light in sleep for healthy adults in their 20s. Sleeping for only one night with a dim light, such as
a TV set with the sound off, raised the blood sugar and heart rate of the young people during the sleep lab experi-
ment. An elevated heart rate at night has been shown in prior studies to be a risk factor for future heart disease and
early death, while higher blood sugar levels are a sign of insulin resistance, which can ultimately lead to type 2 dia-
betes. (1) The answer should be in at least 4 sections with each section starting with section X (where X is 1, 2, 3,...). The an-
swer should be (2) written in English, with all letters lowercased. Respond with (3) less than 73 words.
GPT3.5-turbo

/* Output */

section 1: study by zee and team on light’s impact on sleep for young adults

section 2: sleeping with dim light raised blood sugar and heart rate

section 3: higher blood sugar levels indicate insulin resistance and risk of type 2 diabetes.

[* Followed list */
[False, True, True]
LLaMA2-13B-Chat

/* Output */

section 1: Introduction

the article discusses the impact of light on sleep and its effects on healthy adults in their 20s.

section 2: Experiment Findings

the study found that sleeping with a dim light, such as a TV with the sound off, raised blood sugar and heart rate levels during
the sleep lab experiment.

section 3: Risk Factors

elevated heart rate at night has been linked to future heart disease and early death, while higher blood sugar levels can lead to
insulin resistance and type 2 diabetes.

section 4: Conclusion

the study highlights the importance of a dark, quiet sleep environment for optimal sleep and overall health.

/* Followed list */
[True, False, False]

Table 12: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 1).



Instruction

Summarize a meeting from the given list of bullet points. Be sure to convert shorthand into a first-hand account. Rose: Analyze
data and presents findings
John: propose new idea
Jane: appointed to head project
Tom: need more time to fix a software bug.
(1) End it with a postscript starting with P.S.. (2) The very end of your entire response should read exactly like: That is all you need!.
Your answer must also (3) contain at least 2 placeholders (an example of a placeholder is [address]).

GPT3.5-turbo

/* Output */

During the meeting, Rose analyzed data and presented her findings. John proposed a new idea for the project, while Jane was
appointed to head the project. Tom mentioned that he needed more time to fix a software bug.

P.S. [Address] That is all you need!

[* Followed list */
[True, True, False]
LLaMAZ2-13B-Chat

/* Output */

Sure, I'd be happy to help! Here’s a summary of the meeting based on the provided bullet points:

The meeting began with Rose presenting her findings after analyzing the data. She shared some insightful observations and
conclusions, which were well-received by the team.

Next, John proposed a new idea that he believed would benefit the project. He explained his reasoning and provided some
supporting evidence for his proposal.

After John’s proposal, Jane was appointed as the head of the project. She expressed her gratitude for the opportunity and
outlined her vision for the project’s success.

Tom then reported that he needed more time to fix a software bug. He explained that the bug was more complex than initially
thought and required additional time to resolve.

In conclusion, the meeting was productive and successful. The team made progress on several fronts, including data analysis,
proposal development, and project leadership.

P.S. That is all you need!

[Address] - the physical location of the meeting [Data] - the specific data that Rose analyzed

[Software bug] - the technical issue that Tom is working to resolve

| Followed list |
[True, False, False]

Table 13: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 2).

Models ChangeCase Combination Content Format Keywords Language Length  Punctuation Startend  I-level C-level
LLaMA2-13B-Chat 51.69 15.38 83.02 67.52 67.48 41.94 47.55 9.09 58.21 41.22 53.00
Qwen-14B-Chat 5843 23.08 75.47 58.60 60.12 83.87 36.36 25.76 74.63 40.11 53.00
Vicuna-13B-V1.5 60.67 44.62 75.47 64.97 61.35 93.55 48.95 22.73 67.16 46.95 58.03
WizardLM-13B-V1.2 57.30 21.54 75.47 70.70 70.55 93.55 55.94 25.76 71.64 49.72 60.55
OpenChat-13B-V3.2 58.43 35.38 88.68 7134 68.10 90.32 58.04 24.24 74.63 51.02 62.59
Ours-13B-generation 66.29 26.15 66.04 73.25 59.51 35.48 49.65 27.27 82.09 46.03 57.31
Ours-13B-discrimination 69.66 12.31 79.25 67.52 62.58 96.77 49.65 54.55 80.60 50.83 61.27
Ours-13B-contrastive 69.66 16.92 84.91 68.15 66.87 93.55 51.05 57.58 88.06 52.13 63.91
GPT3.5-turbo 66.29 75.38 88.68 89.17 74.23 100.00 65.03 24.24 86.57 63.96 73.62

Table 14: The performance of models on different constraints of the IFEval. To alleviate this false negative problem,
following (Zhou et al., 2023a), we use three variants of the model response to calculate a more loose accuracy
score. Instruction-level accuracy and Constraint-level accuracy indicate the capacity of the model to follow the
whole instruction and each constraint, respectively. The bold and underlined denote the first and second rankings,
respectively.
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