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Exploring and understanding topological phases in systems with strong distributed disorder re-
quires developing fundamentally new approaches to replace traditional tools such as topological band
theory. Here, we present a general real-space renormalization group (RG) approach for scattering
models, which is capable of dealing with strong distributed disorder without relying on the renormal-
ization of Hamiltonians or wave functions. Such scheme, based on a block-scattering transformation
combined with a replica strategy, is applied for a comprehensive study of strongly disordered uni-
tary scattering networks with localized bulk states, uncovering a connection between topological
physics and critical behavior. Our RG scheme leads to topological flow diagrams that unveil how
the microscopic competition between reflection and non-reciprocity leads to the large-scale emer-
gence of macroscopic scattering attractors, corresponding to trivial and topological insulators. Our
findings are confirmed by a scaling analysis of the localization length (LL) and critical exponents,
and experimentally validated. The results not only shed light on the fundamental understanding
of topological phase transitions and scaling properties in strongly disordered regimes, but also pave
the way for practical applications in modern topological condensed-matter and photonics, where
disorder may be seen as a useful design degree of freedom, and no longer as a hindrance.

I. INTRODUCTION

Networks, discrete models comprising scatterers in-
terconnected by links, can capture the key physics of
phase transitions in complex physical systems involv-
ing the transport of waves or particles. Their use dates
back to the early days of scaling theory [1–3] and the
quantum Hall effect (QHE) [4–7]. They include seminal
models by Chalker and Coddington (CC) [8, 9], devel-
oped for describing the localization-delocalization transi-
tion in a quantum Hall system with a random potential.
In a CC network, the equipotential lines of the disor-
dered potential become unidirectional links over which
particles travel, experiencing random phase delays. The
probability to hop on another line is concentrated on the
saddle points of the potential, represented in the net-
work as nodes on which unitary scattering occurs. Such
discretization to a network provides opportunities for
quantitative predictions, especially via scaling analysis,
as exemplified by the prediction of critical exponents in
CC networks [7, 8] that agree with experimental data
[10, 11]. In the past several decades, fueled by the ad-
vent of topological physics, periodic unitary scattering
networks have been widely studied from the standpoint
of topology, demonstrating the possibility of obtaining
helical boundary transport in quantum spin-Hall insula-
tors [12, 13], or chiral edge states in Chern [14–16] and
anomalous Floquet insulators [14–22].

Remarkably, recent works demonstrated that some of
these chiral topological edge states can survive the ad-
dition of strong levels of distributed disorder in the net-
work, in the form of arbitrary phase fluctuations, or even
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a randomization of its structure [16, 23–26]. This obser-
vation was validated by direct evaluation and experimen-
tal measurements of topological invariants in strongly
amorphous cases [23]. Yet, predicting whether a given
periodic network will be topological or not when dis-
order is imparted remains a challenge [27–29], and the
reason why networks can retain a nontrivial topologi-
cal nature in drastically aperiodic settings is still poorly
understood. For example, some honeycomb topological
networks supporting chiral edge states in this clean limit
remain topological when adding disorder, whereas some
others do not and trivially localize [16, 23, 26]. This
behavior seems to be related to the networks being ei-
ther in the anomalous or Chern phases in the clean peri-
odic limit, although counter-examples can be found near
topological phase transition boundaries. Such phenom-
ena appear to indicate the existence of unexplored critical
topological transitions in disordered networks, which by
essence cannot be understood from standard approaches
relying on topological band theories.

The renormalization group (RG) [30–33], which offers
valuable insights on the connection between physical phe-
nomena occurring at very different scales, may provide
a way to probe the uncharted connection between scat-
tering processes occurring at the microscopic scale, and
macroscopic transport properties of large samples. The
later are related to the scaling of insulating phases and
their topology [34–38] in periodic or aperiodic scenarios
[39]. RG is a conceptual frame: it catches large-scale be-
havior, predicting macroscopic physical observables while
smearing out local fluctuations. Conceptual advances in
the use of RG in condensed matter physics have led to
important developments. For instance, recent works ap-
plied tensor-networks RG on state entanglement to de-
scribe symmetry-protected topological order [40, 41], per-
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FIG. 1. Block scattering transformations for a renormalization group of unitary scattering networks. Starting
with an arbitrary scattering network composed of three-port unitary scatterers connected by reciprocal phase links (left),
we perform block-scattering transformations to extract the key scattering properties of each triangular sub-blocks, which are
replaced by a three-port unitary scattering matrix (center). This results in a coarse-grained network. By iteratively applying
this transformation, we finally get to a single three-port scatterer described by a unitary 3 by 3 matrix SF , which we call the
scattering attractor of the network (right). If the RG procedure is successful, the scattering attractor SF summarizes whether
the initial network is a trivial insulator (if SF is a full reflection matrix) or a topological insulator (SF is a circulator).

turbative RG on Hamiltonians to deduce the topological
phase diagrams under local disorder [42], and momen-
tum space-RG on Berry curvatures to identify topologi-
cal transitions in periodic structures [43]. However, RG
approaches proposed in the context of topological physics
have focused on either periodic systems, or systems with
local disorder by renormalizing the Hamiltonians or the
wave function. The case of topological transitions and
scaling effects in systems with very strong non-local dis-
order, i.e. disorder of arbitrary strength distributed over
their entire area, is still largely unexplored [27, 44–46].
Moreover, despite much interest in topological scatter-
ing networks and their potential applications in photon-
ics [47–55] and electromagnetic systems [20, 56–58], a
unifying RG scheme to understand these topological sys-
tems is still crucially lacking. RG on strongly disordered
networks is expected to shed light on the competition
between localization and topology in a broad range of
scenarios, by revealing how microscopic scattering prop-
erties affect macroscopic topological transport.

In this article, we propose a real-space renormaliza-
tion group on unitary scattering networks, which un-
veils the intricate physical mechanisms behind the per-
sistence of topological edge states in systems with strong
distributed disorder. Instead of playing with Hamilto-
nians or wave functions, we focus on network models
and propose block-scattering transformations that pre-
serve the key scattering properties of each block during
scaling, namely flux conservation, reflection level, and
scattering chirality. The block-scattering transformation
(Fig. 1) is composed of three steps: partitioning the

original network triangularly, replacing each block sub-
network by a simpler three-port scatterer, and intercon-
necting together these three-port scatterers into a new
coarse-grained network, on which the procedure can be
repeated. The goal of the RG scheme is therefore to
leverage iterative block-scattering transformations until
one converges to a three-port scattering attractor that
captures the essential information about the macroscopic
scattering of the network, namely whether chiral trans-
port occurs on the edges or if incident waves coupled to
the edge are just reflected. Intuitively, we expect three
possible scattering attractors (Fig. 2), which should cor-
respond to stable fixed points of the RG flow. Chiral
topological systems would be attracted to unitary scat-
tering matrices that describe clockwise or counter clock-
wise perfect circulation. The clockwise circulator SCW

(matrix shown in the figure inset), and its transpose
SCCW are the only two possibilities compatible with edge
transport (we ignore transmission phases for now). On
the other hand, systems that trivially localize would be
attracted to the identity matrix SR (we ignore reflection
phases for now). This later case corresponds to full re-
flection as the input waves excite localized modes. We
apply this RG scheme on two examples of fully disordered
networks, either with a honeycomb structure subject to
arbitrary phase fluctuations on the hexagonal links, or
a fully random structure with arbitrary planar connec-
tivity. We obtain RG topological phase diagrams that
elucidate the intricate competition between microscopic
reflection and chirality. We unveil the critical phenomena
occurring at the transition between trivial and topolog-
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ical disordered networks, by exploring the evolution of
RG flows upon scaling and studying the critical prob-
ability distributions of microscopic scattering matrices.
This block-scattering RG approach leads to a better un-
derstanding of topological phase transitions and scaling
properties in scattering networks models with strong dis-
order, broadening the scope of renormalization group ap-
proaches to topological unitary systems.

FIG. 2. Trivial and topological systems and their scat-
tering attractors. We consider three matched probes (in
yellow) placed at arbitrary positions on the boundary of a 2D
insulator. This is the minimal number of probes allowing the
detection of chiral edge transport. For a topological insula-
tor (left, blue), we expect that as the system size increases,
the scattering matrix at the probes converges to the one of a
clockwise (SCW ) or counter clockwise (SCCW ) unitary circu-
lator. On the other hand, the probe scattering matrix for an
ideal trivial insulator (right, gray) would converge to a full re-
flection matrix SR. Therefore, we expect SCW (SCCW ) and
SR to represent possible scattering attractors in any valid RG
scheme.

To validate the accuracy of our scattering RG scheme,
we confront it to the results of a direct scaling analy-
sis of the localization length (LL), which provides crit-
ical boundaries together with their critical exponents.
The critical boundaries obtained from LL scaling anal-
ysis match well the phase transition boundaries indepen-
dently obtained from RG, confirming the accuracy of our
block scattering matrix transformations. The resulting
critical exponents ν exhibit two values on the boundary
(around 2.43 and 3.33), corresponding to different unsta-
ble fixed points/lines on the RG flows, originating from
disparate types of topological phase transitions. Further-
more, we perform experiments allowing us to directly
measure RG flows when scaling microwave scattering net-
works with phase-link disorder. The measured RG flow
is in agreement with the one predicted by theory. In the
case of structurally disordered networks, our RG analy-
sis evidences a slightly contracted topological phase re-
gion when compared to phase-link disordered honeycomb
networks, fully elucidating the puzzling examples of topo-
logical and trivial networks that initially motivated this
study.

The paper is organized as follows: In Sec. II, we in-
troduce different scattering network configurations and
distributed disorder types, and show examples introduc-
ing the problem of predicting the emergence of chiral edge
states upon scaling. Sec. III, IV, V focus on networks
with strong phase-link disorder, describing the scatter-
ing RG scheme and results (Sec. III), its validation by

scaling analysis of the localization length (Sec. IV), and
an experimental validation of RG flows (Sec. V). In Sec.
VI, we extend the RG analysis to structural network dis-
order. In Sec. VII, we conclude our results and discuss
their implications. Appendices give details on the block-
scattering transformation and how the RG scheme is nu-
merically implemented, as well as details on clean-limit
topological phase diagrams, critical behavior and local-
ization length calculations.

II. SCATTERING NETWORKS: FROM
MICROSCOPIC TO MACROSCOPIC SCALE

At the microscopic scale, the networks we consider are
formed of interconnected unitary scatterers with three
ports (Fig. 3(a)). Such structure is maintained through
renormalization iterations until converging to the attrac-
tor, which is again a three-port unitary scatterer. This
choice to work with three-port systems is motivated by
two reasons. First, at the microscopic scale, scatterers
with more than two ports are needed to construct com-
plex networks. Second, at the macroscopic scale of the
attractor, it wouldn’t be possible to detect chiral edge
transport with only two ports, and three-port appears
here as a minimal number to do so [59]. One could, of
course, build a theory based on four-port unitary scat-
tering, but this would only complicate the associated
mathematics without bringing any new advantage. Yet,
one could object the following: what if the initial net-
work contains scatterers with arbitrary numbers of ports?
Well, in this case, we can always make a first coarse-
grained iteration, and this operation would reduce all
subsequent iterations back to the three-port case. We
will also assume that the individual scatterers that com-
pose the initial networks obey three-fold rotational (C3)
symmetry. However, we will assume that C3 symmetry
is generally broken by the entire network, as the connec-
tions between the scatterers do not fulfill this symmetry.
This means that after the first RG iteration, the scatter-
ing matrices in the coarse grain picture are no longer C3

symmetric. Nevertheless, for representing the evolution
of these matrices during RG iterations, we will perform
ensemble averaging, which will restore C3 symmetry for
sufficiently large statistical ensembles. For all these rea-
sons, three-port scatterers described by a C3 and unitary
(U(3)) scattering matrix S0 play a crucial role in our
scheme. Such complex-valued matrices take the form

S0 =

 R TCCW TCW

TCW R TCCW

TCCW TCW R

 , (1)

where TCW and TCCW represent chiral clockwise (CW)
and counter clockwise (CCW) transmissions, respec-
tively, while R is the reflection. Such parametrization
is necessary to enforce C3 symmetry, but not sufficient
to guarantee unitarity, which implies additional orthogo-
nality constraints on these coefficients. Forgetting about
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FIG. 3. Scattering networks, from the microscopic to the macroscopic scale. (a) Unitary microscopic scatterers
with three ports and three-fold rotational symmetry are used as building blocks to form macroscopic networks. The scattering
detected at three scattering probes is described by the unitary matrix S0. (b) Reflection (contour lines) and nonreciprocity
(color map) of S0 in its parameter space, defined by the two angle parameters (ξ, η) ∈ [−π/2, π/2)× [−π/2, π/2). See the main
text for a definition of these quantities. Three special scattering matrices SR, SCW , SCCW , corresponding respectively to a
fully reflective scatterer, a clockwise perfect circulator, and a counter-clockwise perfect circulator, are located on this plane.
(c) Macroscopic scattering network made of microscopic three-port scatterers S0 interconnected by bidirectional phase-delay
links. Different types of distributed disorder can be present. A first class of disorder consists in taking a periodic network,
e.g. a honeycomb arrangement, and add random phase-delay fluctuations on each links (bottom left panel). A different kind
of disorder can take the form of deformations of the network structure, completely breaking the hexagonal structure (bottom
right panel, numbers count the number of sides forming each loop). The macroscopic scattering properties of networks are
defined at three external probes, and dictated by microscopic properties, in particular the value of S0.

a global phase, these constraints can be elegantly satis-
fied if one retains a parametrization of these coefficients
in terms of only two angles, ξ and η, both of which are
defined in the interval [−π/2, π/2) [16, 60]. With ξ and
η parameters, R, TCW , and TCCW are expressed by

R(ξ, η) = −1 +
2

3
cos ξeiξ +

2

3
cos ηeiη (2)

TCW (ξ, η) =
2

3

[
ei

2
3π cos ξeiξ + e−i 2

3π cos ηeiη
]

(3)

TCCW (ξ, η) =
2

3

[
e−i 2

3π cos ξeiξ + ei
2
3π cos ηeiη

]
. (4)

The possible scattering attractors SR and SCW

(SCCW ) are special cases that belong to this family of
matrices. For example, as shown in Fig. 3(b), the
fully localized matrix SR = I is obtained when ξ and
η are equal to ±π/2, whereas the chiral transport matrix
SCW (SCCW ) is achieved under ξ = −η = π/6 (−π/6).
By varying ξ and η, we can generate all C3 symmetric

U(3) scattering matrices S0(ξ, η) with variable reflection
R(ξ, η) and scattering chirality, which is quantified by the
nonreciprocity level NR(ξ, η) = TCW /TCCW . This fam-
ily of matrices is represented in Fig. 3(b), where the
coloured density map represents NR(ξ, η) in decibels,
and the grey contours are for R(ξ, η). The scattering
attractors are located at global extrema of R(ξ, η) and
NR(ξ, η) on this parametric plane.

Macroscopic planar networks are then built by con-
necting such S0 scatterers using bidirectional links. One
can think of these links as lossless monomode waveguides
characterized by the phase delay φ that they impart to
waves traveling one time along their length, in any direc-
tion. An example of a structurally disordered macro-
scopic network is shown in Fig. 3(c). Among other
possible macroscopic networks, a special configuration
is the one of periodic honeycomb networks, for which
identical phase-delay links are used. We will refer to
honeycomb networks as pristine or clean-limit scattering
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FIG. 4. Examples leading to trivial and topological macroscopic properties, under phase-link disorder and structural
disorder. (a) and (b) We choose two microscopic scattering matrices S1 (a) and S2 (b), located at ξ = −η = 2.8π/12 (gray
triangle) and ξ = −η = 3.8π/12 (blue triangle) on the parameter plane, as marked in Fig. 3(b), respectively. Scattering flows
are shown by coloured arrows, illustrating TCW (blue), TCCW (purple), and R (green), when a unity wave is incident from
port 1 (yellow arrow). S1 and S2 both exhibit clockwise chirality with some reflection, and are relatively close to each other
on the parameter plane. These matrices are then used to form networks with maximal phase-link disorder (c-d) or structural
disorder (e-f). We computed field maps when inputting a signal at port 1, and calculated the associated macroscopic scattering
matrices. S1 always leads to a trivial insulator with full external reflection, whereas S2 yields topological edge states in both
cases.

networks, because it is an archetypal case in which no
disorder is present. Such periodic clean limit has the ad-
vantage of exhibiting well-understood topological phases,
extensively described in prior arts [16]. In particular,
two regions centered on SCW and SCCW correspond to
anomalous Floquet topological phases with clockwise and
counter-clockwise chiral edge states, respectively (see Ap-
pendix C for details on the topological phase diagram of
pristine honeycomb networks).

In this paper, we focus instead on network models sub-
ject to disorder that is uniformly distributed over their
entire area. We consider two types of disorder. First,
phase-link disorder can be imparted on the bi-directional
links without changing the honeycomb structure of the
network, and is represented by a probability distribution
of phase-delay values P (φ). This is illustrated in the
bottom left inset of Fig. 3(c). Second, one can imag-
ine changing the structure of the network, creating in it

loops that are no longer regular hexagons, but arbitrary
irregular polygons (bottom right inset). Such structural
disorder can be continuously added to the honeycomb
clean limit, following known Voronoi tessellation tech-
niques [23, 61–63]. An important point is that this ad-
dition of structural disorder is controlled by a single pa-
rameter, the amorphous factor α. Both types of disorder
can be made maximally strong: phase disorder is purely
random when P (φ) is a uniform distribution in [0, 2π),
while the maximal amorphism attainable on a Euclid
plane is reached when α ≥ 6 [23]. In this work, we will
study both types of disorder, assuming always maximally
strong levels. The macroscopic scattering networks are
then probed via three external scattering probes (Fig.
3(c)), defining a macroscopic unitary scattering matrix

S
′

0. The first goal of RG is to establish a link between
the microscopic scattering S0 and the macroscopic one
S

′

0, and unveil the role of disorder in this mapping. The
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second goal of RG is identifying the limit of S
′

0 when
the macroscopic system gets infinitely large (we call this
limit the thermodynamic limit), to unveil the relation be-
tween scattering attractors and topological phases. This
is made possible by the fact that S

′

0 can contain the sig-
nature of topological edge transport, even under strong
disorder [64–66].

The connection between S0 and S
′

0 is by no mean triv-
ial. Some numerically tractable examples with relatively
large sizes are shown in Fig. 4. We start with panels (a-
b) in the center of the figure, by choosing two microscopic
building blocks, whose scattering matrices S1 and S2 are
given in the figure. We then build macroscopic scatter-
ing networks with either phase-link disorder (panels (c-d)
on the left) and structural disorder (panels (e-f) on the
right). Field maps are computed numerically assuming
input from the bottom port. Note that S1 and S2, which
are marked by grey and blue triangles in Fig. 3(b), are
both of the same chirality and differ only slightly in their
level of reflection and nonreciprocity. Despite of this, we
observe a completely opposite macroscopic scattering be-
havior in the networks originating from S1 and S2. In
the case of S1 (Fig. 4(c, e)), the input wave seems to lo-
calize around the input port and end up being reflected.
Conversely, with S2 a clear edge transport channel ap-
pears and connects the input port to the next port on the
left. If we could numerically access the thermodynamic
limit, we would expect a convergence of the macroscopic
scattering matrices S

′

1 and S
′

2 to SR and SCW (the val-

ues of S
′

1 and S
′

2 for the finite systems considered here
are shown within the figure). We also found even more
surprising examples of systems behaving oppositely for
the two types of disorder, when starting from scatter-
ing matrices with reflectance slightly lower than 1/3 (not
shown for brevity). Explaining the emergence or non-
emergence of unidirectional edge states in networks with
distributed disorder requires a unified scheme capable of
accessing the macroscopic properties of arbitrarily large
systems with no additional computational cost. In the
next section, we describe a RG scheme that sheds light
on these examples and unveils a microscopic competition
between reflection and chirality, that translates into a
macroscopic competition between disorder and topology,
explaining the emergence of critical behaviors associated
to topological transitions in the thermodynamic limit.

III. RG ON SCATTERING NETWORKS WITH
PHASE-LINK DISORDER

A. Iterative block-scattering transformations

The type of phase-disordered networks we focus on in
this section is shown in Fig. 5. They are composed of
identical scattering matrices S0(ξ, η) connected in a hon-
eycomb structure with phase-link disorder. The phase
φ of each link is drawn from a uniform distribution in
the range [φ0 − ∆φ/2, φ0 + ∆φ/2] (Fig. 5). We also

focus on the case of the strongest possible disorder level
∆φ = 2π, although any other range is in principle acces-
sible. As discussed in the introduction, the RG scheme
contains three steps. First, we subdivide the original
network into triangular blocks by applying a standard
Delaunay triangulation, whose generators are on a trian-
gular lattice. Second, each triangular block is replaced
by a single three-port scatterer, whose scattering matrix
S′ ∈ U(3) must be deduced from the scattering proper-
ties of the block. In the final step, by considering the
dual graph of the triangulation graph, we can form a
coarse-grained network by arranging the matrices S′ on
the nodes, and connect them with new phase links ran-
domly drawn from the same uniform distribution as the
original ones. The RG transformation is then iterated,
replacing the original network by the coarse-grained one.
Each iteration reduces the size of the network by a scal-
ing factor equal to the number of scatterers P in the
triangular blocks (P= 25 in panel a). After n iterative
transformations, a 3-port scatterer therefore represents
25n scatterers in the original network. At the end, we
get a single three-port attractor SF ∈ U(3).

The backbone of the RG scheme is therefore the block-
scattering transformation, namely the protocol of replac-
ing the large unitary scattering matrix of a triangular
block by a small one. Two pivotal questions arise when
trying to define such a protocol: “What scattering ma-
trix should be associated to a triangular block ?” and,
“What kind of physical information should be preserved
when this block scattering matrix is compressed into a
small 3×3 matrix?”. To address the first question, we
note that a triangular block may have a large number of
ports on its edges, which at the end should be concate-
nated into a single one. A simple proposition to achieve
this concatenation would be to close all edge ports with
full-reflections, leaving only three of them, one on each
edge. However, such a solution would not consider the
fact that the connections between adjacent triangular
blocks are actually distributed over many ports along
the edge, allowing to couple together various modes of
such triangles. To take this into account, we do not se-
lect only one, but Mi ports along the boundary of the
ith side of the triangle, as shown on the left of Fig. 5(b).
On each side, these open ports are chosen to be adjacent,
and we avoid choosing the ones around the corners. All
the other ports are closed with a fully reflective bound-
ary condition. This allows defining a unitary scattering
matrix S ∈ U(M), with M =

∑3
i=1 Mi, which summa-

rizes the transport and reflection at the scale of a block.
Therefore, the problem of replacing the block scattering
network by a three-port scatterer is equivalent to reduc-
ing the large unitary matrix S ∈ U(M) to a much smaller
one, S′ ∈ U(3).

This takes us to our second pivotal question. To pre-
serve the important physics while smearing out micro-
scopic details, such reduction of scale must carefully
maintain the scattering properties that matter in the
trivial or topological localization processes occurring dur-
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FIG. 5. Renormalization group of a unitary scattering network with phase-link disorder. (a) Schematic of the
block-scattering transformation. (b) Procedure for the replacement of a triangular block scattering network (described by a
large unitary scattering matrix S ∈ U(M)) by a single three-port scatterer (described by a 3×3 scattering matrix S′ ∈ U(3)).
The reduction of matrix size is performed by partitioning S into nine 3×3 blocks according to the three sides, then summarizing
some key dimensionless quantities, namely nonreciprocity and reflection into an energy matrix ES (center panel). Ai(i = 1, 2, 3)
are variables to be determined in order to restore unitarity. This is done using CKM matrix parameterization, and we recover
the corresponding unitary matrix S′ ∈ U(3) (rightmost panel).

ing scaling. Intuitively, the level of nonreciprocity and
reflection of a triangular block are important. We evi-
dence these two properties in S by partitioning it into
nine 3×3 blocks of sizes Mi, according to the side of the
triangle,

S =

SB
11 SB

12 SB
13

SB
21 SB

22 SB
23

SB
31 SB

32 SB
33

 . (5)

Next, we note that the reduction of S ∈ U(M) to
S′ ∈ U(3) should follow a few principles. The first one
is the fact that the quantities that we are trying to keep
during the reduction should not depend on the size of
the block network or the number of probes we choose.
The second principle is that we should reflect accurately
the way with which energy incident on one side of the
triangular block is reflected and transmitted to the other
two sides. One may start, following Landauer-Büttiker
formalism [67, 68], by expressing the overall energy trans-
port from side i to side j as

Tji = Tr(SB
ij (S

B
ij )

†), (6)

however this quantity depends on block size and number
of probes. Instead, we can consider the overall nonre-
ciprocity of the energy transport between side i and j,
represented by

NRji = Tji/Tij . (7)

The overall reflection Ri for the side i of a triangular
block may be represented by the quadratic mean of all
the reflection of the probes on this side, expressed as

Ri =

√√√√Mi∑
p=1

|SB
ii (p, p)|2/Mi. (8)

After extracting the nonreciprocity and reflection of the
block, NRji and Ri, we can summarize this information
about S into a 3×3 matrix ES (Fig. 5 (b), center), de-
fined as

ES =

 R1 A1 A3 ·NR13

A1 ·NR21 R2 A2

A3 A2 ·NR32 R3

 , (9)
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where NRji and Ri serve as the non-diagonal and diago-
nal terms respectively. Here, Ai(i = 1, 2, 3) are variables
to be determined so that we can recover a genuine unitary
scattering matrix fromES . Note thatES , by itself, is not
unitary and contains only amplitude information. The
recovery of a unitary matrix from the matrix ES is not a
trivial task. Indeed, the general parameterization of U(3)
matrices implies that we have to recover in general three
angle parameters ( 12n(n − 1)|n=3) and six phase param-

eters ( 12n(n+1)|n=3) [69–72]). Fortunately, the problem
of recovering a unitary scattering matrix from amplitude
measurements is a known problem in high energy physics,
solved by the Cabibbo–Kobayashi–Maskawa (CKM) ma-
trix parameterization [73, 74]. This method implies that
the recovery of a unitary matrix from an energy-related
matrix can focus on finding four parameters (three an-
gle parameters θ12, θ13, θ23 and one phase parameter δ),
as exemplified by the successful recovery of the quark-
mixing matrix from experimental measurements. Ap-
pendix A details how to adapt CKM parametrization to
the recovery of one possible candidate of a 3×3 unitary
matrix S′ ∈ U(3), by first transforming ES to a double
stochastic matrix. We stress that many different choices
for S′ ∈ U(3) are possible. However, they all differ by
different phases, whose particular choice does not mat-
ter for RG due to the fact that random phase disorder is
anyways present in the network at each iteration.

B. Replica scheme

Having explained how the block scattering transforma-
tion is implemented, we are in principle ready to look at
results from applying RG to large networks. Before do-
ing so, however, one needs to think about two important
practical aspects: (i) how to best describe the state of
the network at a given iteration; and (ii), how to ensure
that the iterative RG algorithm is computationally effi-
cient. The first point is addressed by remembering that
we want to track the convergence to a potential scatter-
ing attractor. Therefore, what matters is to monitor the
evolution of the set of U(3) scattering matrices

{
S′
n

}
dur-

ing RG. This can be performed by averaging them over
the network. This average is trivial to take for the ini-
tial network, which is composed of identical C3 and U(3)
matrices S0. At any other iteration number n, the S′

n

in the network are in principle all different and no longer
obey C3 symmetry. However, we remark that averaging
over a sufficiently large set would restore C3 symmetry,
since the choice of the port labels (1 , 2 and 3) for each
S′
n is arbitrary (as long as they are clockwise), eventually

allowing for the data to be tripled, making the average
invariant with respect to 120 degrees rotations. Thus, a
first way to represent the state of the network at a given
iteration is a point representing this average in the di-
agram of Fig. 3(b). This is equivalent to say that the
statistic average of the scattering properties

{
S′
n

}
in the

nth coarse-grained network takes the form of a C3 sym-

metric unitary matrix, namely

⟨S′
n⟩ ≡

 ⟨Rn⟩ ⟨TCCW,n⟩ ⟨TCW,n⟩
⟨TCW,n⟩ ⟨Rn⟩ ⟨TCCW,n⟩
⟨TCCW,n⟩ ⟨TCW,n⟩ ⟨Rn⟩

 . (10)

During the iterative RG procedure, the block-scattering
transformation of the system from one scattering state
⟨S′

n−1⟩ to the next ⟨S′
n⟩ can thus be represented by the

motion of this point, discretely jumping on the (ξ, η)
plane of Fig. 3(b). Starting from the point represent-
ing the original scatterer S0 on the (ξ, η) plane, we can
watch the trajectory formed by the successive locations
of ⟨S′

n⟩, which defines a renormalization-group flow [30].
Such flow can either lead the system towards a stable
fixed point (a scattering attractor), the only exceptions
being the cases that start on unstable fixed points. Such
fixed points reveal themselves by looking at the proba-
bility distributions of TCW,n, TCCW,n, and Rn, denoted
by P (TCW,n), P (TCCW,n), and P (Rn). For example, if
P (TCW ), P (TCCW ), and P (R) remain invariant under
the block-scattering transformation, we know that we
have reached a scale invariant point.

An attentive reader may object that such an averag-
ing procedure performed on the RG scheme of Fig. 5
may be unpractical: since the size of the system shrinks
at each iteration, the size of the set

{
S′
n

}
depends on

n, which is problematic to develop a rigorous statistical
study of the flow over many iterations. At the same time,
the numerical calculations of block networks and unitary
matrix transformations increase exponentially with sys-
tem’s size, preventing us from working with very large
systems. The problem of developing a consistent statis-
tical description of the network and the one of computa-
tional efficiency are therefore intertwined.

We handle this issue by enhancing the RG scheme with
a well-known strategy, which is able to successfully depict
the effect of disorder especially in spin glass, and known
as the replica scheme [75–79]. This way, we enforce the
invariance of the size P of the network during RG. In a
nutshell, it is implemented by (i) making L ≫ P replicas
of the network at the step n−1 (replicas in the sense that
their scattering matrices

{
S′
n−1

}
have identical statis-

tics, and the disorder statistics are also the same), (ii)
concatenate all the network replicas into U(3) matrices
(L members) by performing block scattering transforma-
tions, and finally (iii) use P of these U(3) matrices to
construct at least L new disordered networks that will
form the replicas at the step n (See Appendix B). One
iteration therefore corresponds to an effective scaling of
the network by a factor P ′ < P , yet without changing
the number of scatterers at each iteration. The size P
can be maintained relatively small, as long as accurate
statistics can be performed, making it possible to look at
arbitrarily large numbers of RG iterations at relatively
low computational cost, and explore the physics occur-
ring at scales with largely different orders of magnitude.
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FIG. 6. Two examples of RG on scattering networks with random phase-link disorder. (a) and (e) Two opposite
scattering attractors are reached for S1 (a) and S2 (e). During RG, macroscopic disordered networks built from S1 and S2

converge to the trivial attractor SR, and the clockwise chiral one SCW , respectively. (b) and (f) Evolution of the distributions
P (TCW ), P (TCCW ), and P (R) upon RG, for the case of S1 (b) and the case of S2 (f). These distributions represent how the
macroscopic scattering properties continuously evolve when scaling up the networks. In panel (c) and (g), we summarize the
distinct behaviors of S1 and S2 networks by plotting the statistic averages of these distributions upon scaling, ⟨TCW ⟩, ⟨TCCW ⟩,
and ⟨R⟩. (d) and (h) RG flows. The averaged scattering properties of networks at each iteration are mapped to a point on
the parameter space introduced with Fig. 5(b). The trajectory of the point forms the RG flow, showing the evolution of the
macroscopic scattering properties as the network is repeatedly scaled up during RG.

C. Results for random phase-link disorder

Taking the matrices S1 and S2 used in Fig. 4 as ex-
amples, we use the replica scheme and go through seven
RG iterations. The results are presented in Fig. 6. Con-
sistent with the finite-size simulations of Fig. 4, S1 and
S2 are found to converge to different attractors: SR for
S1 (Fig. 6a), indicating a trivial insulator, and SCW

for S2 (Fig. 6(e)), indicating a topological insulator.
To see how the macroscopic scattering properties change
upon scaling up the disordered networks, we track the
evolution of P (TCW ), P (TCCW ), and P (R) during iter-
ations. As shown in Fig. 6(b) and (f), after five iter-
ations the attractors are almost reached: although both
systems are initially clockwise chiral, only disordered sys-
tems based on S2 maintain high values of TCW at large
scales. Conversely, for large enough disordered networks
based on S1, TCW and TCCW gradually disappear, while
the probability of observing full reflection is close to unity
after the fifth iteration. These distinct behaviors are fur-
ther confirmed by the evolution of the averages ⟨TCW ⟩,
⟨TCCW ⟩, and ⟨R⟩, exhibited in Fig. 6(c) and (g). A vi-

sual summary of this process is obtained by plotting the
RG flows, starting from the initial point S2 ( S1) in the
parameter space, and going through a discrete trajectory
to reach SCW (SR).

This procedure, performed so far for only two initial
scatterers S1 and S2, can be repeated for all possible ini-
tial scatterers that belong to the (ξ, η) plane, obtaining
a RG phase diagram for phase-link disorder. The RG
phase diagram summarizes, for each S0(ξ, η), the attrac-
tor reached by large disordered networks built from S0

(Fig. 7(a)). There are two topological phases of opposite
chirality, depending on whether large systems converge
to SCW or SCCW . They are separated by the trivial
phase, composed of systems that converge towards the
full-reflection attractor SR upon scaling. At the inter-
faces between systems converging to SCW (or SCCW ),
and systems converging to SR, a topological phase tran-
sition occurs, which is related to the presence of a critical
metal with infinitely long field correlations. As a result,
the RG approach requires more iterations around these
transition lines before choosing an attractor, consistent
with the observation of a extremum of the number of RG
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FIG. 7. RG phase diagram. (a) Phase diagram obtained
by summarizing, for each network built from S0(ξ, η), which
RG scattering attractor is reached after convergence of RG
flow. (b) Number of RG iterations required to reach a fixed
level of convergence to the scattering attractor. Local maxima
are obtained at the phase transition, which is a signature of
scaling invariant behaviors.

FIG. 8. RG flow diagram. Arrows in the flow diagram
indicate the effect of successive RG transformations on the
macroscopic scattering properties of scaled networks. Non-
zero flow divergence confirm that the points SCW , SCCW ,
and SR located at the centers of three phases are stable fixed
points (a zoomed in view is provided by the two bottom in-
sets). Six saddle points (green) define unstable fixed points
located on the topological phase boundary.

iterations required for convergence at the boundary, as
shown in Fig. 7(b).

To better represent the process of converging towards
stable fixed points, we plot the associated RG flow di-
agram, shown in Fig. 8. Any initial value of (ξ, η) in
the blue (purple) region leads to a trajectory heading
to the clockwise chiral attractor SCW (SCCW ). How-

ever, any point starting in the grey region goes to the
fully reflective attractor SR. The interface between the
two regions are critical lines connecting six unstable fixed
points (saddle points) of the RG flow. Any point with
arbitrary small deviations from the critical lines will flow
away from the critical condition, and eventually converge
to a stable fixed point. In such disordered systems, a
topological phase transition is equivalent to the crossing
of a critical line, which represent systems that reach an
exact balance between nonreciprocity and reflection upon
scaling.

FIG. 9. Critical scattering properties. (a-c) Evolution
of P (TCW ), P (TCCW ), and P (R) of the scattering matrix at
the point ξ = −η = 0.92, which is close to the critical point
between S1 and S2, but on the side of SCW . The probability
distributions of TCW , TCCW , R are invariant over the first ten
RG scaling iterations, consistent with critical behavior. (d)
Corresponding critical probability distributions at the topo-
logical phase transition in phase-disordered honeycomb scat-
tering networks.

To complete the picture, we explore RG as close as
possible to the critical scattering matrix located on the
line between S1 and S2 in the parameter space. For this,
we choose a point very close to the critical scattering ma-
trix Sc, but on the side of SCW . We expect that such a
point would behave similarly as Sc during RG, at least
during the first iterations, before it starts moving toward
the attractor. As shown in Fig. 9, the probability dis-
tributions P (TCW ), P (TCCW ), and P (R) are invariant
in the first eleven iterations, which is indeed a symp-
tom of the scale invariance expected for critical phenom-
ena. Furthermore, the critical probability distributions
of TCW , TCCW , and R represented in Fig. 9(d) establish
a reference to determine whether a disordered network
with arbitrary disorder will be topological or trivial in
the thermodynamic limit. We emphasize that the above
critical distributions for phase transitions between triv-
ial and topological insulators describe a totally different
physical situation from the metal- insulator transition of
quantum Hall effect already captured by CC networks
[3, 7, 8, 36, 37, 80–82]. For CC networks governed by
quantum percolation, the phase diagram consists instead
of two phases, metal and insulator, and is described by
a single scalar quantity T . In contrast, disordered topo-
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logical scattering networks are described by the distri-
butions of the three quantities TCW , TCCW , R required
to describe the topological criticality, which would no be
possible with a single scalar quantity T that contains no
information about the chirality of the transport.

IV. SCALING ANALYSIS OF THE
LOCALIZATION LENGTH

In this section, we confront the phase transition bound-
ary obtained from RG in the previous section to the one
obtained from a different, computationally more inten-
sive method based on calculating the localization length.
The agreement between these independent results con-
firm the quantitative accuracy of the RG scheme. As
a by-product of the localization length study, we ob-
tain insights on the topological phase diagram of phase-
disordered networks and shed light on the associated crit-
ical phenomena.

A. Localization length and critical exponents

Localization and correlation lengths play a central role
in analyzing phase transitions and critical behaviors in
disordered condensed matter systems [7, 12, 83–89] and
photonics [68, 90–93]. Benefiting from the direct avail-
ability of transfer matrices, network models are particu-
larly suited to quantitative scaling analysis and the de-
scription of phase transitions. Early arts focused on the
scaling theory of localization [94, 95] and the study of
metal-insulator transitions in QHE [8, 11, 96], exhibit-
ing precise critical exponents. In recent years, these net-
works have been widely applied on disordered topological
systems, to quantitatively characterize topological phase
boundaries and their universality, including topological
systems protected by time reversal symmetry [12, 13, 97],
in 2D or 3D [98]. In this section, we apply the transfer
matrix method to study localization processes and topo-
logical phase transitions in unitary scattering networks
with random phase-link disorder.

To derive the localization length, we work on a quasi
one-dimensional (1D) network, whose total longitudinal
size Mx is much larger than its transverse size Ly. Both
lengths are defined by counting the number of ports on
the x and y directions, respectively. The number of ports
on any opposite sides are equal. We look at the properties
of the transfer matrix T connecting the fields of the ports
on the right boundary to the fields of the ports on the left
boundary, i.e. in the x direction. T is then a 2Ly × 2Ly

pseudo unitary matrix [99], defined by the scattering re-
lations among the 2Ly ports located on on the lateral
sides. Due to the pseudo unitary of T , the eigenvalues
of the 2Ly × 2Ly Hermitian matrix T †T can be written
as exp(±2Xj) with eigenstates |Ψ±

j ⟩, where Xj are Lya-
punov exponents such that 0 < X1 < X2 < · · · < XLy

.
As the wave transport counted over 2Ly eigenchannels is

dominated by the contribution of the smallest Lyapunov
exponent X1 (⟨Ψ−

1 |T †T |Ψ−
1 ⟩), the localization length λ is

defined as the inverse of the smallest Lyapunov exponent
[7, 83, 95] as

λ = lim
Mx→∞

Mx

X1
. (11)

Calculating and decomposing T leads to large numerical
errors when Mx is large (> 20), yet Mx should be at
least millions to ensure Mx > λ. To reduce numerical
errors in the determination of the localization length, we
uniformly slice the long quasi-1D network along the x
direction, with a slice width Lx, and get slices indexed
from i = 1 to Mx/Lx. We calculate the transfer matrix
Ti of each slice, and then multiply them by iterative QR
decomposition [100]:

T =

Mx/Lx∏
i

Ti;

T1 = Q1R1;

Ti+1Qi = Qi+1Ri+1, i > 1.

(12)

Therefore, we get

T = QMx/Lx

Mx/Lx∏
i

Ri

 ≡ QTRT , (13)

where RT ≡
∏Mx/Lx

i Ri and QT ≡ QMx/Lx
. As Lya-

punov exponents are exactly the diagonal elements of the
upper triangular matrix RT , we can therefore get

λ = lim
Mx→∞

Mx

min
j

|ln RT (j, j)|
. (14)

In this way, we maintain a good accuracy on the eigen-
value with modulus closest to unity. Generally, the
smaller Lx is, the more accurate T is. Here, we take
Lx ∈ {4, 8, 12, 16}. In Fig. 10(a), we show a slice of such
a system of length Lx = 4 (Lx ≪ Mx ), and of trans-
verse size Ly = 8. We consider open boundary conditions
(OBC) in the y-direction, namely edges with unitary re-
flection. As indicated by Eq. 14, calculating the exact lo-
calization length λ requires takingMx to infinity. Also, in
disordered networks, Ti is taken from a statistical ensem-
ble of finite quasi-1D network slices which are composed
of specified microscopic scatterers and under prescribed
disorder statistics. Therefore, it seems that one should
take Mx very large and average λ over many calculations.
Fortunately, as localization length λ is a finite and self-
averaging quantity [100], we can approximate λ by only
one calculation on a finite, but long enough, quasi-1D
network with Mx ∈ [5× 105, 2× 106].
One can identify whether a system is in an insulating

or metallic phase by analysing how the normalized local-
ization length Λ(Ly) = λ/Ly scales when increasing the
width Ly, as demonstrated in prior arts [101]. This is tra-
ditionally done by checking the dependence of Λ(Ly) on
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FIG. 10. Topological phase transitions and critical be-
haviors by a scaling analysis of the localization length.
(a) A slice of a quasi-1D network with width Ly = 8 is
used for iteratively calculating the transfer matrix. The lon-
gitudinal dimension contains four elementary slices, there-
fore Lx = 4. (b) Evolution of the normalized localization
length Λ(Ly) = λ/Ly with the width Ly on the segment of
ξ = −η ∈ [0.73, 1.18]. Ly is increased from 8 to 128. Er-
ror bars are smaller than the markers. The left and right
parts of the plot are topological and trivial phases, respec-
tively, and are separated by the critical point ξc ≈ 0.93
(dashed lines) characterized by scale invariance. (c) Criti-
cality can be numerically identified as the local minimum of
the standard deviation of the normalized localization length,
σΛ(Ly).(d) Zoomed-in results of Λ(Ly) scaling in the vicinity
of ξ = −η = ξc (marked as yellow region in panel (c)). The
dashed lines mark the critical point ξ = −η = ξc = 0.9301
and Λc = 0.7020. (e) Single parameter scaling function Λ
fitted from the data in (d). We obtain a critical exponent
ν1 = 2.4246 ± 0.0970. The error bars correspond to the 95%
confidence intervals estimated from the Monte Carlo simula-
tions.

the transverse width Ly, when applying periodic bound-
ary condition (PBC) in the y direction (thus in a setting
with no top and bottom edges). For a metal, Λ(Ly) in-
creases with Ly, and Λ(Ly) → ∞ as Ly → ∞. On the
contrary, for an insulator, Λ(Ly) decreases upon scaling
Ly, and Λ(Ly) → 0 as Ly → ∞. At a critical transition,
Λ should be invariant upon scaling. This method, how-
ever, is not sufficient to distinguish topological and triv-
ial insulators. To this end, one should repeat the study
in the presence of edges, namely with PBC replaced by
OBC [102]. Since nontrivial topology manifests itself by
the existence of chiral edge states, Λ(Ly) should increase
monotonically, like for a metal. On the other hand, the
behavior of a topologically trivial insulating phase would

be insensitive to the modification of the boundary condi-
tion [102], due to the absence of edge states.
In Fig. 10(b), we show the results of such scaling anal-

ysis, with OBC applied in the y direction (Fig. 10(a)).
We vary the network parameters along the line ξ = −η,
ranging from 0.73 to 1.18, expecting to cross the phase
transition. We observe a monotonically increasing Λ(Ly)
in the range 0.73 < ξ < ξc ≈ 0.93, where ξc denotes the
critical value for which Λ(Ly) is scale-invariant, marked
by a dashed line. Conversely, ξc < ξ < 1.2 exhibits
an insulator behavior. To determine whether the range
0.73 < ξ < ξc corresponds to a metal or a topolog-
ical insulator, we changed the boundary conditions to
PBC, which reversed the scaling behavior of the localiza-
tion length, excluding the metal (See Appendix E, Fig.
21). Therefore, we conclude that disordered networks
with 0.73 < ξ < ξc are topological insulators, whereas
ξc < ξ < 1.2 are trivial insulators. Numerically, the
topological criticality at ξc ≈ 0.93 can be identified by a
local minimum in the standard deviation of Λ(Ly) for a
set of Ly, represented as σΛ(Ly) in Fig. 10(c).
The behaviors near phase transition are known to fol-

low power laws, where the critical exponent ν is of prime
interest to characterize their universality class. To ex-
tract the critical exponent ν, we focus on a smaller range
around the transition, shaded in orange in Fig. 10(c).
The scaling of Λ in the vicinity of the critical point
ξ = ξc ≈ 0.93 is shown in Fig. 10(d). If the localiza-
tion length λ diverges following the power law

λ ∼ |ξ − ξc|−ν , (15)

with the single parameter scaling ansatz, the normalized
localization length Λ(Ly, ξ) can be expanded as

Λ = Λc +

Q1∑
q=1

aq

[
(ξ − ξc)L

1
v
y

]q
+

Q2∑
q=0

bq

[
(ξ − ξc)L

1
ν
y

]q
Lz
y,

(16)
where the third term is a finite-size effect correction [103],
with z defined as a negative exponent. Therefore, in the
limit of Ly → ∞, Eq. (16) recovers the standard form of
single-parameter scaling as

lim
Ly→∞

Λ := Λc +

Q1∑
q=1

aq

[
(ξ − ξc)L

1
ν
y

]q
. (17)

With the help of Eq. (16) and using Q1 = 5 and
Q2 = 2, we fit the data in Fig. 10(d) and obtain
all the parameters ν, ξc,Λc, z, as well as the coefficients
a1, a2, a3, a4, a5, b0, b1, b2. To reduce the statistical error,
we averaged the result over 100 disorder realizations. Fig.
10(e) plots the single parameter scaling function Λ(Ly, ξ)
(solid line) together with the data (dots) as a function of
Ly. Our estimation lead to the critical exponent ν1 =
2.4246± 0.0970 and critical length Λc = 0.7020± 0.0077
for the critical boundary at ξ = −η ≈ 0.9301. We ob-
serve that the value of ν1 and and Λc are very close to the
ones reported for QHE [11], which is not surprising since
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they are both topological insulators belonging to class A
[11, 87, 96].

B. Topological phase diagrams comparisons and
two critical exponent values

The study of the previous section can be repeated for
any point of the phase diagram, in order to directly con-
front the topological boundary predicted by RG to the
one obtained from the scaling analysis of the localization
length. The later can be obtained by looking at the lo-
cation of local minima of σΛ(Ly) in the parameter space,
plotted in Fig. 11(a). In Fig. 11(b), we show the direct
comparison of the phase boundaries obtained from lo-
calization length calculations (dashed line) and from RG
(solid lines). We observe a very good agreement between
the two, validating the validity of our RG scheme, with
percent-level quantitative accuracy. In terms of numer-
ical efficiency, the time cost of RG calculation for one
point of the phase diagrams is a few seconds, (minutes
very close to critical points), versus several hours for the
corresponding localization length calculations, performed
on Intel(R) Xeon(R) Platinum 8360Y processors.

Surprisingly, we found that the critical behaviors vary
discretely on the topological phase boundaries. More
specifically, they are of two kinds, and change at the RG
flow saddle points. The values of the two distinct critical
exponents are ν1 ≈ 2.43 and ν2 ≈ 3.33, and their loca-
tions are shown in Fig. 11(c). A detailed example for
ν2 ≈ 3.33 in the vicinity of ξ = −η ≈ 0.0947 is shown in
Appendix E, Fig. 22, which is also found on the segment
ξ = −η ∈ [0, π], on the other side of the phase diagram. A
given segment connecting two unstable fixed points (sad-
dle points) in the RG flow diagram exhibits a constant
critical exponent value, which changes when crossing sad-
dle points. We conjecture that such distinct critical be-
haviors nucleate from distinct types of topological phase
transitions, the origin of which can be clearly seen on
the clean-limit topological phase diagram. The critical
segments with v1 are associated to the topological phase
transition between the anomalous and Chern phases in
the clean limit (Appendix C, Fig. 16), whereas the ones
with v2 can be attributed to more complex phases tran-
sitions at the semi-metal points in the clean limit, where
three topological phases meet: anomalous, Chern, and
trivial insulators.

V. EXPERIMENTS

We performed experiments with microwaves in scat-
tering networks with random phase-link disorder, built
using off-the-shelf ferrite circulators. The disordered
phase-delay links with ∆φ = 2π are experimentally
achieved by serpentine microstrip lines, whose phase de-
lay φ under a length L at the frequency f is expressed as

φ =
2πfL

√
ϵeff

c , with ϵeff being the effective permittiv-

FIG. 11. Comparisons of the topological phase dia-
grams and critical behaviors obtained from RG and
localization length (LL) analysis. (a) In LL analysis,
the boundaries of topological phases are revealed by the local
minima of σΛ(Ly). (b) Direct comparison of the RG and LL
topological phase diagrams. They agree with percent-level
accuracy. (c) Critical exponent distribution on the phase
boundaries. Two values of critical exponents - ≈ 2.43 (or-
ange) and ≈ 3.33 (red)- emerge along the critical boundary,
and change only at the RG unstable fixed points, which are
saddle points of the RG flow.

ity of the microstrip, obtained from standard microwave
design formulas. We built five prototypes with differ-
ent disorder realizations, and show a picture of one of
them in Fig. 12(a). In the frequency range of inter-
est, f ∈ [3, 5] GHz, these circulators are nearly identi-
cal, and the experimentally measured scattering matrix
S0(f) is well approximated by a C3-symmetric unitary
matrix (Fig. 12(b)). S0(f) therefore corresponds to a
point on the (ξ, η) parameter plane, whose precise loca-
tion depends on frequency. At each frequency, we can not
only measure the microscopic scattering properties of a
single circulator S0(f), but also the macroscopic scat-
tering properties of the networks S′

1(f), taken at three
external probes located on the boundary. The difference
between S0(f) and S′

1(f) is the experimental RG flow,
shown by coloured arrows in Fig. 12(c). As the mea-
surements of networks involve one probe per side, we
compare the measured flow with the numerical RG flow
obtained for Mi = 1, i = 1, 2, 3, shown by smaller arrows
in the background. Clearly, the measured RG flow in
the blue region points toward the center of blue region,
namely the SCW attractor, consistent with the numeri-
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FIG. 12. Experimental validation of renormalization group flow. (a) Photograph of one of our 5 prototypes. We exper-
imentally validate the scattering RG flow by using microwave networks made of ferrite circulators interconnected by microstrip
lines. The ferrite circulators serve as microscopic three-port scatterers, and their scattering matrix depends continuously on
frequency, allowing us to access a continuous family of networks with different attractors simply by varying the frequency of
operation. The random phase-link disorder is realized by varying the length of the meandering microstrips that connect the
circulators together. The 5 prototypes correspond to different realizations of disorder. At each frequency, we can measure the
microscopic scattering properties of a single circulator, as well as the macroscopic scattering properties of the networks, taken at
three external probes located on the boundary. This allows us to experimentally extract the RG flow. (b) Experimentally mea-
sured eigenvalues of the scattering matrix of the circulators, confirming the quasi-unitarity of the microscopic scattering process
over the experimental frequency band (3.5 − 5 GHz). (c) Measured RG flow (colored arrows) averaged over the five different
disorder realizations. The arrows composing the background are numerical predictions of the RG flow (Mi = 1, i = 1, 2, 3).
Each color corresponds to a particular frequency.

cal RG predictions. On the contrary, the flow measured
in the grey region heads to the fixed point of SR, as
expected from theory. Slight discrepancies between mea-
sured and predicted flows are observed nearby the critical
boundary. They are attributed to the limited number of
disorder realizations, as well as the limited size of the net-
works, which is not large enough to capture accurately
the thermodynamic limit near critical boundaries. Nev-
ertheless, our experiments substantiate the predicted RG
flow and the convergence of large networks towards scat-
tering attractors by confirming experimentally the accu-
racy of block-scattering transformations. We are able to
confirm that the presence of phase-link disorder enhances
the chirality of the transport when comparing S′

1(f) to
S0(f), when the networks fall in the region of attraction
of SCW . Such results shed light on the origin of topolog-
ical chiral edge states in samples with strong distributed
disorder.

VI. RG ON SCATTERING NETWORKS WITH
STRUCTURAL DISORDER

In the past several years, various works have demon-
strated amorphous systems with nontrivial topology
[23, 61, 63, 104–106]. This includes amorphous scattering
networks supporting chiral topological edge states, which
we recently observed experimentally [23].

In this section, we therefore turn our attention to an-
other type of disordered scattering networks with struc-
tural disorder. We implement our RG scheme to ex-

plore topological phase diagram and RG flows in such
amorphous scattering networks. Technically speaking,
these networks are generated by implementing a weighted
Voronoi tessellation, with random weights on a triangu-
lar generator set lattice. This tessellation is the dual
graph of the Delaunay triangulation. Its level of amor-
phism can be quantitatively described by the structural
disorder factor α, defined as the standard deviation of
the random weights. The factor α is able to describe the
continuous deformation of networks from pristine honey-
comb (α = 0) to the strongest possible level (α = 8).
In the following, we focus on scattering networks at the
strongest level of structural disorder α = 8, although any
other value of α can be chosen. More information about
network statistics as a function of α can be found in re-
cent works [23, 60].

The RG of amorphous networks is essentially similar
to the one of phase-disordered honeycomb lattices. The
implementation of the RG scheme on structurally disor-
dered networks still relies on the same three steps (block
division, transformation, and reconstruction). However,
the Delaunay triangulation yielding the block division
comes with a twist. Since we are dealing with networks
with structural disorder at level α, the Delaunay trian-
gulation is no longer regular, but also at level α (Fig. 13,
leftmost). Following this, the dual graph that is used to
interconnect the newly generated scatterers into a coarse-
grained network (Fig. 13, center) is also at disorder level
α.

The topological phase diagram obtained from RG is
shown in Fig. 14(a). It exhibits slightly smaller topo-
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FIG. 13. Renormalization group of a unitary scattering network with structural disorder. As for the case of phase-
disorder, the block-scattering transformation follows the three key steps of block division, transformation and reconstruction.
The only difference is that the Delaunay triangulation is no longer regular. The transformation is used iteratively until one
obtains a U(3) attractor SF . In practice, this scheme is implemented via the replica scheme described in the section III B

.

FIG. 14. RG topological phase diagram and flow diagram for networks under the strongest structural disorder.
(a) Topological phase diagram obtained from RG, representing the RG scattering attractor SF for all possible choices for the
microscopic scattering matrix in the parameter space. (b) Corresponding number of RG iterations required to converge to the
attractor. (c) RG flow diagram, showing the transformation of networks upon iterative application of RG.

logical phase regions than the phase diagram observed
in honeycomb networks with random phase-link disorder
(Fig. 7). The phase boundary is confirmed by looking
at the number of RG iterations needed for convergence
into SF (Fig. 14(b)), whose local maxima indicates the
scale invariance of networks located at the phase transi-
tion. Albeit with a slightly different topological range,
the structure of the RG flow is very similar to the one
found in the previous section, and exhibits the same land-
scape of stable and unstable fixed points as in Fig. 8,
highlighting some for of critical universality between the
two different kinds of disordered networks.

VII. CONCLUSIONS AND OUTLOOK

We have presented a real-space renormalization group
(RG) theory for unitary scattering network models,
which offers significant insights into the emergence of
topological edge states in large systems with strong dis-
tributed disorder. The method can reduce the scattering
processes occurring in any unitary network into a 3x3 uni-
tary scattering attractor that summarizes the key macro-
scopic scattering properties emerging at large scales. By
introducing the block-scattering transformation, we fo-
cus on preserving key information about transport chiral-
ity and reflection, smearing out microscopic fluctuations
into a macroscopic description of the scattering process.
The combination of block scattering transformations and
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the replica strategy was shown to lead to a numerically-
efficient RG scheme, capable of handling simultaneously
an arbitrary number of RG iterations while performing
Monte-Carlo simulations on disorder realizations. Our
RG scheme is capable of discerning between topological
and trivial disordered networks, since they correspond to
distinct scattering attractors. Its implementation on two
types of disordered networks not only clarifies the neces-
sary microscopic conditions for constructing macroscopic
topological networks, but also uncovers the unique crit-
ical phenomena occurring at topological phase bound-
aries, as well as the physics of disorder-resilient chiral
edge transport. In addition, the quantitative accuracy of
our RG framework is demonstrated through an indepen-
dent scaling analysis of the localization length of quasi-
1D networks, which predicts the same topological phase
diagram as the RG scheme, with percent-level accuracy.
As a by-product, we were able to elucidate the intricate
critical phenomena occurring at the transition between
disordered topological and trivial insulators, with crit-
ical exponents that take discrete values on the bound-
ary, only changing at the RG flow saddle points. Fi-
nally, these theoretical advances are complemented by
experimental verifications performed on microwave scat-
tering networks, which are consistent with the calculated
RG flow. We believe that such a scattering-based RG is
general, and largely enhances a theoretical toolbox that
may find direct applications in networks models used in
condensed-matter and disordered topological physics. It
also provides a computationally efficient method to pre-
dict the robustness of topological edge states in disor-
dered systems. On the longer term, we envision that the
block scattering transformation introduced in this work
may also be useful in the study and understanding of
large network models in communication systems, or in
the development of physical neural-like networks based
on scattering. With our methodologies and numerical
frame, a potentially interesting future direction may be
to explore other complex systems in the spirit of scatter-
ing, by grid discretization into networks or even by de-
veloping a continuous form of scattering RG that would
address physical systems beyond networks. This could
potentially unravel new aspects of the intricate interplay
between topology, disorder and scaling. Practically, this
research paves the way for designing more resilient and
versatile devices in photonic, electromagnetic, and quan-
tum computing networks, by establishing disorder as a
general degree of freedom instead as a hindrance in the
management and design of topological properties.
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Appendix A: Recovery of one S′ ∈ U(3) from 3 by 3
non-negative matrix ES

As seen in the main text, when transforming S ∈
U(M) to S′ ∈ U(3), a key step is the recovery of a uni-
tary matrix S′ from the non-negative matrix ES . As in-
dicated by the recovery of the quark-mixing matrix from
experimental data [73, 74], a prerequisite for the U(3)
matrix recovery is to have a double stochastic matrix
ADS . Double stochasticity is defined as

ADS(i, j) ≥ 0,

3∑
i=1

ADS(i, j) = 1,

3∑
j=1

ADS(i, j) = 1,

(A1)
which forms the Birkhoff polytope. The matrix AU with

AU (i, j) := |S′(i, j)|2, defined as the energy part of a
unitary matrix S′, belongs to the set of double stochas-
tic matrices {ADS}. As a result, our recovery contains
two steps. Firstly, with ES in Eq. (9), we obtain the cor-
responding ADS . Secondly, we apply the same method
as in CKM parameterization [74], and transform ADS

into a unitary matrix S′.
For the first step, as there are three variables A1, A2,

and A3 in ES and six equations to fulfill for double
stochastic matrices, we form the following underdeter-
mined system of equations

M A⃗ = R⃗, (A2)

where

M =


1 0 NR2

13

NR2
21 1 0

0 NR2
32 1

NR2
21 0 1

1 NR2
32 0

0 1 NR2
13

 , (A3)

A⃗ =

A2
1

A2
2

A2
3

 , R⃗ =


1−R2

1

1−R2
2

1−R2
3

1−R2
1

1−R2
2

1−R2
3

 . (A4)

To minimize the differences min
A⃗

∥M A⃗−R⃗∥, we adopt the

ordinary least square solution

A⃗a = (M †M)−1M †R⃗. (A5)

Once A⃗a is calculated, we define the energy part of the
new matrix ES |A⃗=A⃗a

as AE

AE(i, j) := |ES |A⃗=A⃗a
(i, j)|2. (A6)
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Due to the underdetermined nature of Eq. A2, AE is not
in general an exact double stochastic matrix, but is close
to one ADS . Therefore, we introduce a perturbation ma-
trix ϵ, which satisfies AE−ϵ ∈ {ADS}. To keep the level
of nonreciprocity and reflection small, the perturbation
matrix ϵ should be small enough. As a result, we reshape
the goal into a simple optimization problem:

min
ϵ
∥ϵ∥2 (A7)

s.t.AE − ϵ ∈ {ADS}. (A8)

Once ϵa has been solved, we obtain one ADS correspond-
ing to ES .

In the second step, we look for a CKM matrix SCKM

parameterized by c12 c13s12 s12s13
c23s12 −c12c13c23 − eiδs13s23 −c12c23c13 + eiδc13c23
s12s23 c23s13e

iδ − c12c13s23 −c13c23e
iδ − c12s13s23

 ,

(A9)
where cij = cos θij , sij = sin θij , θ12, θ13, θ23 are an-
gle parameters to be determined, and δ is a phase pa-
rameter. We define the short-hand notations a :=√
ADS(1, 1), b :=

√
ADS(1, 2), c :=

√
ADS(2, 1), and

d :=
√
ADS(2, 2). Following [74], the four parameters

are then given by

cos θ12 = a (A10)

cos θ13 =
b√

1− a2
(A11)

cos θ23 =
c√

1− a2
(A12)

and

cos δ =
−(1− a2)2(1− d2)

2abc
√
1− a2 − b2

√
1− a2 − c2

+

(1− a2)(b2 + c2)− b2c2(1 + a2)

2abc
√
1− a2 − b2

√
1− a2 − c2

. (A13)

In a few unfortunate cases, for which | cos δ| > 1, we
approximate the matrix by taking δ = 0 (cos δ > 1) or π
(cos δ < −1) . In practice, the averaged value of ∥ϵ∥2 is
always less than 0.05.

Appendix B: Numerical RG scheme with replicas for
disordered networks

The replica scheme employed in our work is detailed
in Fig. 15. Let us assume that the disorder (phase-link
or structural) imparted to the scattering networks con-
forms to a specified statistical distribution, denoted as
Pdisorder. At the first RG iteration, we generate L repli-
cas of triangular block networks, each of which contains
P microscopic scatterers described by S0(ξ, η) and gen-
erated following the statistics Pdisorder. Each replica is
then transformed into a U(3) scatterer, by applying the

block-scattering transformation. The scattering matrix
set of these L scatterers forms the U(3) matrix set

{
S′
1

}
.

To go to the next iteration, we build L new replicas by
randomly drawing P elements of

{
S′
1

}
and constructing

L new block scattering networks following the disorder
statistics prescribed by Pdisorder. To make sure the sam-
pling is random enough, we set L ≫ P . This procedure
is then iterated.
In a sum, what our numerical RG scheme performs is

visually represented in the horizontal and vertical exes
of Fig. 15. Horizontally, we take the statistic average
over replicas, whose number is constant at each iteration.
Vertically, we iterate the procedure to approach the ther-
modynamic limit (under large enough P ). The number
of calculation steps is reduced to a linear function of n,
expressed as nL, as opposed to replica-free schemes like
the one of Figs. 5 and 13, which grows as Pn. The con-
stant size of the sets

{
S′
n

}
also allows us to perform con-

sistent statistical analysis as we iterate (Figs. 6 and 9).
This leads to a coherent description of how the scattering
properties of disordered network are transformed when
networks are scaled up. The numerical RG results shown
in this paper assume the settings L = 4000, P = 100 and
M1 = M2 = M3 = 3 or 5. The only restriction on P
is the fact that the block networks indeed have a bulk,
namely a network depth of at least 3, as topological edge
transport originates from bulk topology. The selections
of P and L only affect the resolution of the boundary.
A brief study on the effect of the replica number L is
performed around the critical point ξ = −η ≈ 0.93, and
shown in Fig. 20.

Appendix C: Topological phases in the clean-limit
network

In this part, we review the topological phases and their
observables in the clean-limit network. The clean-limit
network is defined as a periodic honeycomb network,
whose three-port scatterers are identical and all the phase
links impart the same phase-delay value φ, as shown in
Fig. 16. Based on the Bloch theorem and the scattering
process in the unit cell [14–16], we describe the infinite
network by a momentum-space eigen-problem involving
a unitary scattering matrix S(k),

S(k)|b(k)⟩ = e−iφ(k)|b(k)⟩, (C1)

where unitarity leads to a real-valued eigen-phase delay
φ. Plotting the eigen-phases φ(k) versus momentum
k = (kx, ky) forms band structures, where the vertical
axis is a compact space, namely the circle spanned when
φ goes through the interval [0, 2π). The above equation
evidences the analogy with Floquet band theory defined
on unitary time-evolution operators [107], allowing for
a clear classification of topological phases in scattering
networks. Note that φ takes the role of the quasi-energy
[14–17, 22, 81, 108, 109]. The most important new fea-
ture found in unitary or Floquet systems, when com-
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FIG. 15. Numerical RG scheme of disordered scattering networks. We assume scattering networks subject to disorder
(phase-link or structural, left inset) described by specified statistics Pdisorder. To start with, by taking the microscopic three-
port scatterer S0(ξ, η) as building blocks, we construct L replicas of triangular block networks (red triangles) for the RG
iteration 1. Each replica follows the same network disorder statistics Pdisorder, and contains P (P ≪ L) microscopic scatterers.
Second, we apply block scattering transformations, which turn each block network into a U(3) scatterer (blue triangles). The
scattering matrix set

{
S′

1

}
of these U(3) scatterers represents the scattering properties of RG iteration 1. Third, to generate

block scattering networks of the iteration 2, we construct L replicas of triangular block networks in the disorder statistics
Pdisorder, and most importantly each replica is composed by P scatterers randomly selected from the set

{
S′

1

}
. By iteratively

performing the above three-step process, we obtain the sequence of
{
S′

n

}
, the flow of probability distributions (P (TCW,n),

P (TCCW,n), and P (Rn)), and the averaged scattering properties ⟨S′
n⟩.

pared to topological systems described by a Hermitian
eigenvalue problem, is the existence of an extra nontrivial
topological phase in the A class, called anomalous. The
anomalous phase exhibits topologically protected chiral
edge states propagating along system boundaries, albeit
they cannot be predicted from the Chern numbers of the
bands. Actually, the topology of two-dimensional unitary
networks is revealed by the homotopy π3(U(N)) = Z,
whose elements are the topological gap invariants

Wgap(φ) = (24π2)−1

∫
tr(V −1

φ dVφ)
3 ∈ Z. (C2)

In the panel (b) of Fig. 16, with the help of the band
structures and topological invariants, we show the topo-
logical phase diagram for any possible scatterer S0(ξ, η)
in the parameter space of (ξ, η). As shown in Fig. 16,
periodic scattering networks can support three phases:

anomalous topological phase (blue), Chern phase (pink),
and trivial phase (gray). Remarkably, the points cor-
responding to SCW and SCCW are at the centers of
anomalous topological phases, while the trivial phase is
centered on SR. In addition, there are special points,
the crossing points of three phases, which exhibit semi-
metal band structures, represented by red triangles in
Fig. 16. We take S1 and S2 used in the main text as
examples, which are marked in Fig. 16 as gray and blue
triangles, respectively. As shown in the Fig. 17 (a), the
clean-limit network made of S1 is in the Chern phase,
due to the non-zero Chern number of several bands. Its
bulk bands in specified ranges of φ are consistent with
two-port transmissions and high density of states (DOS)
evaluated in finite networks, while the topological band
gaps are consistent with the unity transmission and the
DOS. Its trivial band gap is associated with a blocked



19

FIG. 16. Clean-limit scattering network and topologi-
cal phase diagram. (a) Periodic honeycomb network, with
zoomed unit cell. We label the waves propagating in the unit
cell, from which an unitary matrix can be derived to describe
the scattering process. This unitary matrix in the momen-
tum space leads to an eigen-equation, analogous to the eigen-
equation in a Floquet system, with phase delay φ taking the
role of the quasi-energy. (b) Topological phase diagram in the
(ξ, η) plane, showing anomalous, Chern, and trivial phases.
The semi- metal cases, marked by red triangles, are the phase
transition points of three phases.

transmission and zero DOS. Contrarily, the periodic S2

network is in the anomalous phase, evidenced by the van-
ishing Chern numbers and the existences of topological
edge states in every band gap. There is no trivial gap in
the anomalous phase. In a sum, although the periodic
S1 network and the periodic S2 network are of distinct
topological phases, both networks can support diffusive
waves in the bulk, and most importantly both exhibit
topological unidirectional edge waves.

Appendix D: RG criticality around ξ = −η ≈ 0.92

This section presents supplementary results that ex-
plore the critical renormalization group (RG) behavior
around ξ = −η ≈ 0.92. We examine a quite narrow seg-
ment in the parameter plane defined by ξ = −η within
0.916 < ξ < 0.926. This range includes the critical point
at approximately ξ = −η ≈ 0.92. Three-port scatter-
ers S0(ξ, η) on this segment just differ from each other
slightly. However, as shown in Fig. 18(a), the phase-link
disordered networks built by these S0(ξ, η) at the left and
right parts on this segment converge to opposite attrac-
tors: SCW (topological) and SR (trivial), respectively.
To see how the scattering properties of their networks
evolve when increasing the network scale, we iteratively
perform scattering RG for the disordered scattering net-
works built by these S0(ξ, η). As the number of renor-
malization group (RG) iterations increases, correspond-
ing to a scaled-up network size, we check the evolution
of the averaged reflection ⟨R⟩ and chiral clockwise trans-

FIG. 17. Topological phases and observables. Band
structures of a supercell, two-port transmissions, density of
states (DOS) for the periodic S1 (a) and S2 (b) networks.
The numbers on the bands represent the calculated Chern
numbers. S2 network is in anomalous phase, which features
zero Chern numbers and topological gapless edge states in
each band gap. As a contrary, S1 network is in Chern phase,
as demonstrated by the non-zero Chern numbers. In the finite
honeycomb networks, we can identify the band structure by
checking DOS (rightmost) and two-port transmission (center)
versus quasi-energy (namely, phase delay value, φ). The unity
transmission is mediated by topological edge states with low
DOS, while the fluctuating finite transmission along with high
DOS indicates bulk states in bands.

FIG. 18. Evolution of ⟨TCW ⟩ and ⟨R⟩ near the critical
point (ξ = −η = 0.921) with increasing renormalization
steps. Panel (a) displays a detailed view of the topological
phase transition within the narrow parameter range ξ = −η ∈
[0.916, 0.926], precisely centered at the critical point. Panels
(b) and (c) show the flows of ⟨TCW ⟩ and ⟨R⟩, respectively.
Initially, the scattering properties of single 3-port scatterers
are similar, but as renormalization proceeds iteratively, they
diverge, signaling distinct phase transitions. This divergence
is characteristic of a saddle point in the RG flow diagram,
indicating that the identified phase boundary aligns exactly
with the critical point. Replicas used in these RG calculations
were L = 8000 for a clear phase transition.



20

mission ⟨TCW ⟩ defined in Eq. 10. ⟨R⟩ and ⟨TCW ⟩ exhib-
ited in Figs. 18(b-c) show that the scattering properties
which are nearly identical before performing RG, eventu-
ally diverge significantly, aligning with distinct scattering
attractors as the number of RG iterations grows. This
divergence is indicative of the saddle-point dynamics ob-
served at the critical point in the RG flow diagram.

FIG. 19. Collapse to SR near the critical point ξ =
−η = ξc ≈ 0.921. (a) RG transformations of the normal-
ized distributions P (TCW ), P (TCCW ), and P (R) of the mi-
croscopic scattering matrices at ξ = −η = 0.923 , namely on
the side converging to SR. The small variation of the proba-
bility distributions in the first five iterations is characteristic
of critical behavior. Dramatically, the distributions change
at iteration 10, and converge to the attractor SR. (d) Nor-
malized P (TCW ), P (TCCW ), and P (R) at iteration 10. The
fact that P (TCW ) ≈ P (TCCW ) indicates that the blocks are,
on average, reciprocal. This means that networks behave like
metals, therefore breaking down quickly under strong disor-
der.

In addition, compared with Fig. 9 which shows the
probability distributions P (TCW ), P (TCCW ), and P (R)
with the convergence to SCW (left part in Fig.18(a)),
we here provide another RG example to show the col-
lapse to the trivial phase for a point nearby the critical
point but on the side of SR. Figs. 19(a-c) exhibit the
evolution of these probability distributions by perform-
ing scattering RG for the disordered scattering networks
made of S0(ξ, η) at ξ = −η = 0.923. The slow evolu-
tion in the first several iterations indicates the point is
around the critical point. Remarkably, chiral transports
quickly break down at the 10th iteration, and the net-
work at this scale converges to the trivial phase (SR)
suddenly. This fast collapse can be explained by the oc-
currence of “averaged reciprocal distributions” [89]- in
which P (TCW ) ≈ P (TCCW ) (Fig. 19(d)). Once arrived
there, the system behaves like a metal which quickly get
trivially localized under strong disorder.

As discussed in Appendix B, a higher resolution around
the critical point requires more replicas (larger L) in the
numerical RG. This is evidenced in Fig. 20.

FIG. 20. Effect of increasing the number of replicas L
on the probability of scattering attractor around the
critical point ξ = −η = ξc ≈ 0.921. With the increasing L,
the transition from unity probability of SCW to zero becomes
sharper, indicating a clearer phase boundary. At the critical
point, this probability is independent of L.

Appendix E: Boundary conditions in localization
length calculations and scaling analysis at the other

type of critical point: ξ = −η = 0.0947

FIG. 21. Scaling of Λ(Ly) under y-periodic boundary
conditions in the vicinity of the critical point ξc ≈ 0.93
on the line of ξ = −η. (a) The periodic boundary condi-
tion along the y direction eliminates edge effects, including
topological edge states. (b) On both sides of the dashed line,
Λ(Ly) decreases when increasing the width Ly from 8 to 128,
indicating an insulator-insulator transition without revealing
the topological nature of one of the insulators.

When approaching the critical point, especially in the
case of insulator- insulator transitions, to reduce the fi-
nite size effects, it is better to apply open boundary
conditions [110]. In fact, a study of Λ of quasi-1D net-
works under periodic boundary conditions (PBC) makes
it much more difficult to identify a scale-invariant criti-
cal point between the two insulating phases, as shown in
Fig. 21. As PBC eliminates edges, topological and triv-
ial insulating phases both show a decrease of the func-
tion Λ(Ly) when the width Ly is increased, and the peak
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of this function is relatively flat due to the finite size
effect. Therefore, it is not easy to precisely locate the
scale-invariant point under PBC, at which the transition
between two insulating phases occurs. This is why the
main text used open boundary conditions, as in the pres-
ence of edges the transition behaves as a metal–insulator
crossover, due to the presence of the chiral edge states in
the topological insulating networks.

FIG. 22. Scaling analysis in the vicinity of the other
type of critical point: ξc ≈ 0.0947 on the line of
ξ = −η. (a) Λ(Ly) at different parameters versus Ly, which
is increased from 8 to 64. (b) Fitted curved and criti-
cal parameters with the ansatz of single parameter scaling.
Critical exponent ν2 is estimated to be 3.3138 with critical
Λc ≈ 0.9500, distinct with the critical exponent v1 in the
vicinity of ξc ≈ 0.9301.

For a segment defined by ξ = −η ∈ [0, pi/2] in the pa-
rameter space, the segment starts from the trivial region,
crosses the topological region, and ends in the trivial re-
gion, therefore containing two critical points of topologi-
cal phase transitions. Apart from the one at ξc ≈ 0.9301,
we can also turn our view to the other one at ξc ≈ 0.0947.
We perform the same scaling analysis as in Fig. 10, and
find a distinct critical exponent, ν2 ≈ 3.3138.
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[10] W. Li, G. A. Csáthy, D. C. Tsui, L. N. Pfeiffer, and
K. W. West, Scaling and Universality of Integer Quan-
tum Hall Plateau-to-Plateau Transitions, Physical Re-
view Letters 94, 206807 (2005).

[11] K. Slevin and T. Ohtsuki, Critical exponent for the
quantum Hall transition, Physical Review B 80, 041304
(2009).

[12] H. Obuse, A. Furusaki, S. Ryu, and C. Mudry, Two-
dimensional spin-filtered chiral network model for the
Z 2 quantum spin-Hall effect, Physical Review B 76,
075301 (2007).

[13] H. Obuse, S. Ryu, A. Furusaki, and C. Mudry, Spin-
directed network model for the surface states of weak
three-dimensional Z 2 topological insulators, Physical
Review B 89, 155315 (2014).

[14] M. Pasek and Y. D. Chong, Network models of photonic
Floquet topological insulators, Physical Review B 89,
075113 (2014).

[15] P. Delplace, M. Fruchart, and C. Tauber, Phase rota-
tion symmetry and the topology of oriented scattering
networks, Physical Review B 95, 205413 (2017).

[16] Z. Zhang, P. Delplace, and R. Fleury, Superior ro-
bustness of anomalous non-reciprocal topological edge
states, Nature 598, 293 (2021).

[17] G. Q. Liang and Y. D. Chong, Optical Resonator Analog
of a Two-Dimensional Topological Insulator, Physical
Review Letters 110, 203904 (2013).

[18] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H.



22

Lindner, Anomalous Floquet-Anderson Insulator as a
Nonadiabatic Quantized Charge Pump, Physical Re-
view X 6, 021013 (2016).

[19] W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and
Y. Chong, Measurement of a Topological Edge Invariant
in a Microwave Network, Physical Review X 5, 011012
(2015).

[20] F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D.
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