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Abstract

We introduce a new generalization of relative entropy to non-negative vectors with sums >1.
We show in a purely combinatorial setting, with no probabilistic considerations, that in the pres-
ence of linear constraints defining a convex polytope, a concentration phenomenon arises for
this generalized relative entropy, and we quantify the concentration precisely. We also present
a probabilistic formulation, and extend the concentration results to it. In addition, we provide
a number of simplifications and improvements to our previous work, notably in dualizing the
optimization problem, in the concentration with respect to ℓ∞ distance, and in the relationship to
generalized KL-divergence. A number of our results apply to general compact convex sets, not
necessarily polyhedral.

Table of contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The generalized relative entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Combinatorial setting, count vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Maximization under linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Dualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 The optimal count vector and tolerances on constraints . . . . . . . . . . . . . . . . . . . . 11

3 Relationship to I-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Concentration around the maximum relative entropy value . . . . . . . . . . . . . . . . . . . 14

5 Concentration around the maximum relative entropy vector . . . . . . . . . . . . . . . . . . . 16

6 Large problems: scaling and concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 The effects of scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 The concentration threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Probabilistic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.1 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Concentration threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

∗. Visiting Research Scientist, Rutgers University Winlab, North Brunswick NJ, 08902 USA.

1



8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Appendix A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Proof of Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Proof of Proposition 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Proof of Lemma 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Proof of Proposition 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Proof of Proposition 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Proof of Proposition 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Proof of (6.9) and (6.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendix B Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B.1 The case u∈C1
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.1.1 Minimization w.r.t. a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.1.2 Minimization w.r.t. t≠0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.2 The case u∈C1
− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.3 Generalization to Cj
+,Cj

− for j>1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.4 Proof of (B.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1 Introduction
In previous work, [OG16], we studied the concentration of Shannon entropy for probability vec-
tors, and in [Oik17] the concentration of a generalized entropy for count vectors, i.e. vectorswhose
elements are natural numbers. In this paper we extend the work of [Oik17] to the concentra-
tion of a generalized relative entropy for count vectors. Roughly speaking, when the concentration
phenomenon can be established, it shows that the solution to an under-specified problem found
by optimizing some entropy measure is the “most likely to be realized” by a large factor. Some
may find a result of this kind more satisfying than other arguments, including axiomatic jus-
tifications of entropic inference.

The logical strength of the concentration property is that it follows from a purely combinatorial
argument, with minimal assumptions. Notably, it need not involve any notion of probability or
randomness. This notion of concentration has similarities, but is not to be confusedwith, the prob-
abilistic notion of concentration of measure1.1. [OG16] and [Oik17] provide more background
to our combinatorial approach to entropy concentration, and Example 2.1 below gives a concise
overview.

1.1. But see below about §7.
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The generalized relative entropy G(x ∥ y) presented here is an extension of the generalized
entropy G(x) of [Oik17]. Since G(x ∥y) is a new function[KOSTAS: but see 3.51 of [RW09]], §2 is
devoted to it. We first define some terminology and notation, and then introduce a two-dimen-
sional extension of the combinatorial setting used in [Oik17] to interpretG(x∥y). Nextwe establish
a number of the function's basic properties such as non-negativity, concavity, etc. Finally, we
look at its maximization subject to linear constraints, including the dualization of the optimization
problem. In §3 we explore the relationship between G(x ∥ y) and the commonly-used I-diver-
gence (generalized KL-divergence), and show a new correspondence between optimizing these
two measures. §4 and §5 are devoted to the concentration property of the generalized relative
entropy: around its maximum value, and around the vector which maximizes it, respectively.
§6 examines how the concentration increases as the problem becomes larger in a certain way
which we call ‘scaling’. Our main results in these sections are of two kinds: Lemmas 4.2 and
5.4 which apply to problems of a given, fixed size, and Theorem 6.1 which shows that when the
problem size is increased by scaling, either type of concentration increases exponentially with
the scaling factor. Lastly, in §7 we show that the purely combinatorial formulation of §4 and
§5 easily extends to a probabilistic one1.2: Theorem 7.1 shows that the count vector withmaximum
generalized relative entropy under the specified prior (a probability vector) has exponentially
greater probability than the set of all other count vectors far from it, either in entropy value or
in distance. Some numerical examples illustrating the major results of the paper are given in §8.

The generalized relative entropy presented here contains the generalized entropy of [Oik17]
as a simple special case, so we point out some important new or improved results. We give a
much simpler definition of the optimal count vector 𝜈∗, and explore new aspects of the relation-
ship with I-divergence. We formulate, and solve, the dual of the problem of maximizing G(x ∥y).
We give a much tighter, and more intuitively-satisfying definition of the sets of vectors that are
close to or far from in ℓ∞ distance to the vector whichmaximizesG(x∥y). Finally, our treatment of
concentrationwith scaling unifies both the ‘value' and ‘distance’ cases in a single result, Theorems
6.1 and 7.1, for the combinatorial and probabilistic formulations respectively.

2 The generalized relative entropy
Here we introduce the generalized relative entropy G(x ∥y) between two real non-negative vec-
tors and present its basic properties. First we clarify some terminology and explain some notation.
Terminology. The terms relative entropy, cross-entropy, divergence, and KL-divergence have
all been used to refer to the function∑i xi ln

xi
yi
. This function has been variously denoted D(x ∥y),

H(x ∥ y), DKL(x ∥ y), or KL(x ∥ y). And sometimes “cross-entropy” is used for the function H(x,
y)=−∑i xi ln yi. For our generalized relative entropy we use the innovative notation G(x ∥y).

When we want to avoid probability connotations, we refer to what is usually called a proba-
bility vector as a “density vector”, i.e. simply normalized to 1. Here we deal extensively with non-
density or un-normalized vectors: sets of non-negative vectors, all of the same dimension m⩾2,
for which there is no single constant s>0 such that all vectors in the set sum to s. E.g. with m=3,
both (2, 0, 4) and (1, 7.3, 17) can belong to such a set. If the elements of a non-density vector are
natural numbers we refer to it as a ‘count’ vector, and if they are rational numbers with the same
denominator we call it a ‘frequency’ vector.

1.2. For those who feel that simple combinatorial arguments leave something to be desired.
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Notation. When x is a vector, which should be clear from the context, we use ⩾ etc. in the ele-
ment-wise sense; likewise, if a is a scalar, a x denotes element-wise multiplication, as usual. x,y,
z,u, v will denote vectors in ℝ+

m, whereas 𝜇, 𝜈 will denote vectors in ℕm. Density vectors corre-
sponding to x,y, i.e. x/∑i xi, y/∑i yi, are denoted 𝜒,𝜓.

2.1 Combinatorial setting, count vectors
Consider the process of allocating n identical balls, one-by-one, to the r bins shown in Fig. 2.1. The
“balls and bins” paradigm is well-known in discussions of the combinatorial aspects of Shannon
entropy, and we have used it in previous papers [Oik17], [OG16]. The array of bins is normally
taken to be one-dimensional, but the idea of bins of varying sizes appeared in [SS06] in connection
with relative entropy. Here we elaborate on this by making the array explicitly two-dimensional.

µ1

1

1 2 3 i m

µi

1

µm

1

µ3

1

µ2

1

Figure 2.1. A 2-dimensional array of r bins arranged in m columns of sizes 𝜇1,…, 𝜇m, ∑i 𝜇i= r. The bins are
identical and have unlimited capacity. The shape of the array represents a ‘prior’ 𝜇=(𝜇1,…,𝜇m).

The balls are indistinguishable, but the bins are distinguishable, numbered 1 to r. So an ‘allo-
cation' is a sequence 𝜎 =(𝜎1,…,𝜎n) with 𝜎q∈{1,…, r}; 𝜎q= j means that the qth ball goes into bin j.
The number of all possible allocations is rn. The number of allocations such that 𝜈1 balls end up
in the bins of column 1, 𝜈2 in the bins of column 2, ..., and 𝜈m in those of column m is

#𝜇 𝜈 = �𝜈1+⋯+𝜈m
𝜈1,…,𝜈m

�𝜇1
𝜈1⋯𝜇m

𝜈m, (2.1)

where 𝜈=(𝜈1,…, 𝜈m) is the vector of column occupancies. We will also refer to 𝜈 as the “column
sum count vector”, and to the sequences 𝜎 that give rise to it as its ‘realizations'. The vector 𝜇
specifies the shape of the array of bins; if we think in terms of Bayesian inference, we may view it
as a prior. There are two other ways of viewing the allocation process that are helpful in under-
standing the role of the prior 𝜇:
• We have r distinguishable objects, the bins, which are of m kinds, 𝜇1 of kind 1, 𝜇2 of kind 2, ...,

with ∑i 𝜇i= r. In how many ways can we choose 𝜈1 objects of kind 1, 𝜈2 of kind 2, ..., and 𝜈m
of kind m? (A particular object can be chosen many times.)

• There arem bins (not r), each of which is divided into sub-bins, 𝜇i for bin i. First 𝜈1,…,𝜈m balls
are allocated to the bins, i.e. the columns of Fig. 2.1, and then each 𝜈i is further allocated to the
sub-bins of bin i.

The following very simple example, adapted from [Oik17], clarifies some points that are funda-
mental to the rest of the paper.
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Example 2.1. Indistinguishable balls are to be placed one-by-one in a 3-column array of bins,
colored red, green, and blue respectively. The final totals (𝜈r, 𝜈g, 𝜈b) of the columns must satisfy
𝜈r+𝜈g=4 and 𝜈g+𝜈b⩽6. Any number of balls satisfying these constraints can be used. If each
column consists of just one bin, i.e. 𝜇=(1,1,1), the top part of Table 2.1 lists all the count vectors
that satisfy the constraints, their sums n, and their number of realizations #𝜇 𝜈 given by (2.1). What
can be said about the “most likely” final content of the bins, i.e. the vector 𝜈∗(𝜇)with largest #𝜇 𝜈?
And what if the bin array has columns of sizes 𝜇(2)=(3,3,3) or 𝜇(3)=(1,3,1)?

𝜈r 𝜈g 𝜈b n #𝜇(1)𝜈
0 4 0 4 1
4 0 0 1
1 3 0 4
2 2 0 6
3 1 0 4
3 0 1 4
0 4 1 5 5
1 3 1 20
2 2 1 30
3 1 1 20
4 0 1 5

𝜈r 𝜈g 𝜈b n #𝜇(1)𝜈
0 4 2 6 15
1 3 2 60
2 2 2 90
3 1 2 60
4 0 2 15
1 3 3 7 140
2 2 3 210
3 1 3 140
4 0 3 35

𝜈r 𝜈g 𝜈b n #𝜇(1)𝜈
2 2 4 8 420
3 1 4 280
4 0 4 70
3 1 5 9 504
4 0 5 126
4 0 6 10 210

𝜈r∗ 𝜈g∗ 𝜈b∗ #𝜇 𝜈
𝜇(1) 3 1 5 504
𝜇(2) 4 0 6 12400290
𝜇(3) 1 3 3 3780

2 2 4 3780

Table 2.1. TOP: the column sum count vectors 𝜈=(𝜈r, 𝜈g, 𝜈b) satisfying 𝜈r+𝜈g=4, 𝜈g+𝜈b⩽6, their sum n, and
their number of realizations #𝜇 𝜈 under the prior 𝜇(1)=(1,1, 1). BOTTOM: the optimal count vectors under 𝜇(1),
𝜇(2)=(3,3, 3),𝜇(3)=(1,3, 1).

The example makes three fundamental points. First, it is not possible to find a single frequency
vector that can be naturally associated with the problem; without that, one cannot think about
maximizing the Shannon entropy, or minimizing the ordinary relative or relative entropy if the
bin array is not ‘flat'2.1. Second, the fact that we don't know exactly how many balls are allocated
may not seem terribly exciting: using the largest possible number of balls, 10 in this case, should
lead to the answer. But this is not so: 𝜈∗(𝜇(1))=(3,1, 5) sums to 9, and even 𝜈 summing to 8 have
more realizations than the 𝜈 summing to 10. Finally, the shape 𝜇 of the array, which wemay think
of as a prior in Bayesian terms, behaves as intuitively expected: 𝜇(2) shifts the inference to larger
n, with 𝜈∗(𝜇(2))=(4,0,6), whereas 𝜇(3) biases it toward 𝜈g, with 𝜈∗(𝜇(3))=(1,3,3) and (2,2, 4).

2.2 Definition and basic properties
The generalized entropy G(x) of a real m-vector x, introduced in [Oik17], is

G(x) ≜ −�
i
xi ln xi+��

i
xi� ln��

i
xi� = ��

i
xi�H(𝜒), x⩾0, (2.2)

2.1. For example, in the usual MAXENT problem we have a single n, and the distinction between count and frequency vectors
doesn't really matter, there is a 1-1 correspondence; but this is not true here.
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where H(𝜒) is the Shannon entropy of the normalized or density version 𝜒=x/∑i xi of x. Here
we are using the convention 0 ln 0≜02.2.

For m-vectors x,y we define the generalized relative entropy G(x ∥y) of x with respect to y as

G(x ∥y) ≜ −�
i
xi ln

xi
yi
+��

i
xi� ln��

i
xi�, x⩾0, y>0. (2.3)

[The first term can be thought of as −D(x∥y), the relative entropy or divergence, formally extended
to non-density vectors.] To interpret G(x ∥y), recall that the probability of a frequency vector f =
𝜈/n, n=∑i 𝜈i, under a p.d. q is approximately exponential in the relative entropy D( f ∥q)

Prq( f )≈ e−nD( f ∥q),

where the ≈ means within a factor polynomial in n (see e.g. [CT06], Theorem 11.1.4). Likewise,
the number of realizations of a column sum count vector 𝜈with the array of bins of Fig. 2.1 of shape
𝜇 is

#𝜇 𝜈≈ eG(𝜈∥𝜇).

Further, if we divide both sides of (2.1) by rn the number of realizations becomes the probability
of the count vector 𝜈 under the (rational) p.d. 𝜇/r; this is explored further in §7. Finally, whereas
we are usually interested in minimizing the ordinary relative entropy/divergence D(⋅∥⋅), we will
generally want to maximize the generalized relative entropy G(⋅∥⋅).

The following proposition lists some basic properties of G(x∥y). Its proof, as well as the proofs
of all other formal statements, is in the Appendix.

Proposition 2.2.

1. For y⩾1, G(x ∥y)⩾0, and if at least one element of x is non-zero then G(x ∥ y)>0. For any y>0,
G(𝟎 ∥y)≜0.

2. When y is a density vector, i.e. ∑i yi=1, G(x ∥y)⩽0.
3. Special values: G(x ∥𝟏)=G(x), G(y ∥y)=�∑i yi� ln �∑i yi�.
4. When y⩾1, G(x ∥y) is a monotone increasing function of x, i.e. x′⩾x ⇒ G(x′ ∥y)⩾G(x ∥y). If there

is one strict inequality in the l.h.s., there is strict inequality in the r.h.s.

5. G(x ∥y) is positively homogeneous in x, i.e. G(𝟎 ∥y)=0 and for any 𝛼>0, G(𝛼x ∥y) = 𝛼G(x ∥y).
6. G(x ∥y) is a concave function of x, but it is not strictly concave.

7. G(x ∥z) is superlinear in x, i.e. ∀x,y⩾0, ∀a, 𝛽⩾0, G(𝛼x+𝛽y ∥z)⩾𝛼G(x ∥z)+𝛽G(y ∥z).
8. For any y>0, G(x ∥y) is bounded as

�∑i xi� ln �mini yi�⩽ G(x ∥y) ⩽�∑i xi� ln �∑i yi�.

9. Grouping of x and y increases G(x ∥y), i.e. for any i, j,

G�(x1,…,xi+xj,…,xm) ∥(y1,…,yi+yj,…,ym)�⩾G(x ∥y).

2.2. And are being somewhat sloppy by defining G(x) for all x⩾0 instead of x>0; our definition makes it not differentiable on
the boundary.
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Aconsequence of (1), (2), (4) is that when y⩾1,G(x∥y) increaseswithout bound as x increases;
but when y is a density vector, G(x ∥ y) is bounded above by 0. These facts play a role in the
maximization of G(x ∥y) in §2.3.

The positive homogeneity property (5) has many important consequences that will be seen in
the sequel. One of them is that if we have a point x at which G has the value g1 and we want to
find a z where it takes the value g2, this is z=𝛼x with 𝛼= g2/g1, if 𝛼>0.

Property (7), so-called by analogy with sublinearity2.3, is more general than concavity. For
property (9), note that the multinomial expression (2.1) behaves likewise2.4.

Now we note some analogies with ordinary (Shannon) entropy H(𝜒)=−∑i 𝜒i ln 𝜒i and ordi-
nary divergence or relative entropyD(𝜒 ∥𝜓)=∑i 𝜒i ln(𝜒i/𝜓i). We use x,y to denote general vectors
and 𝜒,𝜓 to denote the corresponding density or probability vectors:

−D(𝜒 ∥𝜓) = H(𝜒)+�
i
𝜒i ln 𝜓i,

G(x ∥y) = G(x)+�
i
xi ln yi,

G(𝜒 ∥𝜓) = −D(𝜒 ∥𝜓),

(2.4)

The last line follows from the first and the fact that for density vectors 𝜒 the generalized entropy
G(𝜒) of (2.2) coincides with the Shannon entropy H(𝜒). So for density vectors, minimizing the
relative entropy/divergence D(⋅∥⋅) corresponds to maximizing the generalized relative entropy
G(⋅∥⋅). [Two density vectors are equal iff the corresponding general vectors are proportional, i.e.
𝜓=𝜒 ⇔ ∃𝛼>0:y=𝛼x.]

Remark 2.3. Expressions involving 𝜒, 𝜓 together with x, y such as (2.2), (2.4) above, or (2.5)
below, are useful only in a context where the sums of x and y can be treated as known constants.
Otherwise each 𝜒i is a function of all of x1,…,xm, and similarly for 𝜓i. E.g., if i≠ j we have ∂𝜒i/
∂xj=xi/(x1+⋯+xm)2.

There is also a relationship between the generalized relative entropy of two vectors and the
relative entropy of their normalized (density) versions, as well as bounds involving the ℓ1 dis-
tance between the density vectors:

G(x ∥y) = s ln t− sD(𝜒 ∥𝜓),
G(x ∥y) ⩽ s ln t− s

2 �𝜒−𝜓�12,

G(x ∥y) ⩾ s ln t− s
𝜓min

�𝜒−𝜓�12,
(2.5)

where s≜∑i xi, t≜∑i yi, and 𝜒≜x/s,𝜓≜y/t, and 𝜓min is the smallest element of 𝜓. [Multiplying
both sides of the first line in (2.4) by s and using the fact that G(x)= sH(𝜒), we get −sD(𝜒 ∥𝜓)=
G(x)+∑i xi ln 𝜓i. Substituting 𝜓i=yi/t in the r.h.s., and using the 2nd line of (2.4) we obtain the
first line of (2.5). The second line follows from Pinsker's inequality D(𝜒 ∥𝜓)⩾ /1 2 ‖𝜒−𝜓‖12, and the
third line from the “reverse Pinsker” inequality D(𝜒 ∥𝜓)⩽ /1 𝜓min ‖𝜒−𝜓‖12 appearing in eq. (10) of
[Sas15].]

2.3. We call G ‘superlinear’ instead of saying that −G is sublinear. In either case we assume that G(x∥z) is suitably extended to ℝ̄.
2.4. However, recall that the Shannon entropy decreases under grouping ([CT06], Ch. 2). And so does the generalized entropy

G(x).
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Finally, we can consider changing the prior. We then have

G(x ∥y)−G(x ∥z) = �
i
xi ln

yi
zi
,

G(x ∥𝛼y) = G(x ∥y)+�∑i xi� ln 𝛼, 𝛼>0.
(2.6)

These follow from (2.4) and (2.6) respectively.

2.3 Maximization under linear constraints
Suppose we have linear equality and inequality constraints Ax=b,Cx⩽d, where A,b,C,d are real
matrices and vectors. We assume that these constraints define a convex bounded polyhedron
(convex polytope) inℝ+

m. For fixed y>0, G(x ∥y) is a concave function of x, so the problem

max
x∈𝒞(0)

G(x ∥y), 𝒞(0)≜{x∈ℝ+
m |Ax=b,Cx⩽d� (2.7)

is is a concave program (i.e. concave objective, convex inequality constraints, linear equality con-
straints) and any local maximum is global. The Lagrangian is

L(x, 𝜆, 𝜉) = G(x ∥y)−𝜆⋅ (Ax−b)−𝜉 ⋅ (Cx−d),

where ⋅ denotes the dot product2.5. Further, assuming all functions are differentiable2.6, the KKT
conditions

Ax∗=b, Cx∗⩽d,
xj∗ = yj �∑i xi

∗� e−(𝜆∗⋅A.j+𝜉 ∗⋅C.j), 1⩽ j⩽m,
𝜉k∗(C.k ⋅x∗−dk)=0, 𝜉k∗⩾0,

(2.8)

where A⋅j is the jth column of A and k indexes the inequality constraints, are necessary and suffi-
cient for the triple (x∗, 𝜆∗, 𝜉 ∗) to solve (2.7), irrespective of concavity. [See e.g. [BV04], §5.5.3.].

The expression in the second line of (2.8) determines the density vector 𝜒∗ as a function of y
and of the optimal multipliers or dual variables 𝜆∗, 𝜉 ∗. WhenG∗ is known,∑i xi

∗, hence the xi∗, can
be found from 𝜒∗ by using the first line of (2.5).

Remark 2.4. On zeros in the solution: if the multipliers are to be finite, the expression for xj∗ above
does not admit xj∗=0. To avoid introducing special cases for handling 0s in the sequel, we will
assume that all elements of x∗ that are forced to 0 by the constraints are removed from the solu-
tion. (See Example 8.1, and Remark 2.1 in [Oik17] for more details on this issue.) A consequence
of the assumption that x∗>0 is that by Proposition 2.2(1), we can assume that if y⩾1, G(x∗ ∥y) is
strictly positive.

In the sequel we use the notation

G∗(y)=G(x∗ ∥y)≜ max
x∈𝒞(0)

G(x ∥y), y>0. (2.9)

2.5. We normally denote the dot product of x,y by xTy, but sometimes also by x ⋅y, especially when the T becomes cumbersome,
as in (2.8) below.

2.6. There is a technicality here, already noted in connection with (2.2).
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In view of Proposition 2.2(4), for a maximum to exist when y⩾1 it is necessary that all elements of
x be bounded from above; this is equivalent to requiring an upper bound on the sum of x. (Again
equivalently, the polyhedron 𝒞(0) is bounded, i.e. it is a polytope.) It is easy to see that condition
(2.8) is unsatisfiable if this is not so. Wewill therefore assume that when y⩾1, which will be the case
in §4, §5, and §6, the constraints on x impose (finite) bounds s1, s2 on its sum, which can be found
by solving linear programs:

s1 ≜ min
x∈𝒞(0)

x1+⋯+xm, s2 ≜ max
x∈𝒞(0)

x1+⋯+xm, s1, s2>0. (2.10)

How do these bounds depend on A,b,C,d? See §3.3 of [Oik17].
By putting the second line of (2.8) in (2.3), and noting that x∗ satisfies the equality constraints

and some of the inequality constraints with equality (the ‘binding' or ‘active' inequalities at x∗),
we find that the maximum value of the generalized relative entropy over 𝒞(0) can be expressed
in terms of the optimal multipliers/dual variables 𝜆∗, 𝜉 ∗ and the data b,d as

G∗(y) = 𝜆∗ ⋅b+𝜉 ∗ ⋅d, (2.11)

where we recall that the 𝜉j∗ corresponding to non-binding/inactive inequalities are 0 2.7. This
expression will re-appear in §2.4.

Below we list some basic facts about maximizing G(x ∥y) with respect to x. Concerning y, we
restrict attention to the two cases for which we have applications: y⩾1, and y is a density vector.

Proposition 2.5.
1. When y⩾1, G(x ∥y) is unbounded unless every element of x (equivalently its sum) is bounded above.
2. When y is a density vector and there are no constraints, G(x ∥y) attains its maximum of 0 at any point

x such that 𝜒=y, equivalently x=𝛼y for some 𝛼>0.
3. For any y>0, the maximum of G(x∥y) under just the constraint∑i xi⩽s or∑i xi=s is G∗(y)=s ln r,

and occurs at x∗=(s/r)y, where r is the sum of y.
4. In general, where the constraints Ax=b and Cx⩽d imply s1⩽∑i xi⩽ s2, we have G∗(y)⩽ s2 ln r. If

x∗ is known, then G∗(y)⩽ s∗ ln r.

Part 1, which follows from Proposition 2.2(4), accords with the combinatorial interpretation
of G(𝜈 ∥𝜇). Parts 2 and 3 say that G(⋅∥⋅) shares a fundamental property of the divergence D(⋅∥⋅): when
the prior is a density and there is no extra information, the ‘posterior’ is any vector with the same
density; when the prior is ⩾1 and the posterior's sum is bounded above, the posterior is just a
(scalar) multiple of the prior; further, the only dependence of the posterior on the prior is through
the prior's density. These are fundamental, intuitive consistency properties of the posterior, or of
the inference process. Finally, part 4 gives some easy bounds on G∗(y).

Up to this point the issue of the uniqueness of the maximizer x∗ has been left open. In fact, as
can be seen from part 2 of the proposition in some situations the maximizer is clearly not unique.
Although G(x ∥ y) is concave, recall Proposition 2.2(5), it is not strictly concave: e.g. consider
G((x1,x2) ∥ (1, 1)). It is therefore not immediate that there is only one x∗ of the form in (2.8) that
maximizes G. Nevertheless, this is almost always the case. The following result applies to 𝒞(0),
and to its generalization 𝒞(𝛿) introduced in §2.5, but is more generally valid, so we state it in its
general form:

2.7. This is a property shared with the generalized entropy G of [Oik17], as well as with the Shannon entropy H (see [KK92]).
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Lemma 2.6. Let 𝒞 be a compact convex set. Then
1. If y⩾1, G(x ∥y) is maximized at a unique point x∗∈𝒞.
2. If y is a density vector, the maximizer x∗ is unique if there is no x∈𝒞 such that G(x ∥y)=0.
3. Further, in case 1, x∗ lies on the boundary of 𝒞2.8.

The uniqueness of x∗ is used in the proofs of some of the subsequent results. It is also useful
when it comes time to adopt a specific optimal solution for a given problem.

Finally, suppose we scale by 𝛼>0 the data vectors b,d appearing in the maximization problem
(2.7). The fundamental property of this procedure is that all aspects of the solution scale by the
same factor 𝛼:

Proposition 2.7. Let x∗ maximize G(x ∥y) under the linear constraints Ax= b,Cx⩽d, and let 𝛼>0 be
any constant. Then the vector 𝛼x∗ maximizes G(x ∥y) under the scaled constraints Ax=𝛼b,Cx⩽𝛼d, the
maximum value of G is 𝛼G(x∗ ∥y), and the new bounds on ∑i xi are 𝛼 s1, 𝛼 s2.

This result is basically due to the positive homogeneity of G(x ∥y) with respect to x, and will
play a central role in §6.

2.4 Dualization
In general, dualization of an optimization problem may have computational advantages for its
solution; here it is also useful for theoretical reasons, as will be seen in §5.

We refer to [RW09], [BV04] for terminology and background. In keeping with these refer-
ences, our discussion of dualization is in terms ofminimizing a function rather than ofmaximizing
it2.9. So we will use

F(x ∥𝜇) ≜−G(x ∥𝜇) = �
i
xi ln (xi/𝜇i)−��

i
xi� ln��

i
xi�. (2.12)

Our original, primal, problemmaxx∈𝒞(0)G(x ∥𝜇) is then equivalent tominx∈𝒞(0) F(x ∥𝜇)with G∗=
−F∗. Here we show that the Lagrange dual of this is the problem

max
(𝜆,𝜉)∈ℰ,𝜉⩾0

−bT 𝜆−dT 𝜉,

where ℰ=�(𝜆,𝜉)∈ℝl � ∑i 𝜇i e−�AT𝜆+CT𝜉�i⩽1�,
(2.13)

with l being the total number of constraints2.10. This is a concave problem, see (2.15) below.
We also show that there is no duality gap, i.e. if 𝜆∗, 𝜉 ∗ solve (2.13) then

F∗ ≜ min
x∈𝒞(0)

F(x ∥𝜇)=−bT 𝜆∗−dT 𝜉 ∗. (2.14)

2.8. But not necessarily on its relative boundary; see the proof.
2.9. Further, in this section we adopt the matrix-vector notation of [BV04], i.e. all vectors are column vectors and T denotes

transpose. On the other hand, we use the convention of [RW09] that all functions are defined over the extended real numbers ℝ̄,
rather than specifying their effective domains as [BV04] do.

2.10. The different notations used here and in (2.8) can become confusing: note that (AT 𝜆)i=𝜆⋅A⋅i.
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Modulo the difference in notation for the dot product, the negative of the r.h.s. above equals the
r.h.s. of (2.11). This explains the provenance of (2.11): it is a consequence of dualization with no
duality gap (strong duality).

Typicallym≫ l, i.e. there will be many more variables than constraints in the primal problem,
so when m is large the dual (2.13) will have significantly fewer variables than the primal
minx∈𝒞(0) F(x ∥𝜇) and should be easier to solve.

The solution x∗ of the primal problem (2.7) is unique, so it can be recovered from 𝜆∗, 𝜉 ∗, and
F∗=−G∗ by first using (2.8) to determine 𝜒∗ and then the first line of (2.5) to find s∗=∑i xi

∗. Also,
by adding both sides of (2.8) over j we see that the solution 𝜆∗, 𝜉 ∗ of (2.13) satisfies the defining
condition of the set ℰ with equality.

We now turn to establishing (2.13). The Lagrangian for the problem minx∈𝒞(0) F(x ∥𝜇) is

L(x, 𝜆, 𝜉) = F(x ∥𝜇)+𝜆T (Ax−b)+𝜉 T (Cx−d), x∈ℝm

so the Lagrange dual function is

ℓ(𝜆, 𝜉) ≜ inf
x∈ℝm

L(x, 𝜆, 𝜉)

= inf
x∈ℝm

�F(x ∥𝜇)+�𝜆TA+𝜉 TC�x�−𝜆Tb−𝜉 Td

and by setting yT=−�𝜆TA+𝜉 TC�,
= − sup

x∈ℝm
�yTx−F(x ∥𝜇)�−𝜆Tb−𝜉 Td

= −F†(y ∥𝜇)−bT 𝜆−dT 𝜉,

where F† denotes the conjugate of F. Next, recalling that the indicator function of a set is 0 for
elements in the set and ∞ otherwise,

Proposition 2.8. The conjugate F†(u ∥𝜇) of F(x ∥𝜇) is the (convex) indicator function of the set {u∈ℝm |
∑i 𝜇i eui⩽1}.

Consequently the dual of L(x, 𝜆, 𝜉) is the concave function

ℓ(𝜆, 𝜉) = −𝛿ℰ(𝜆, 𝜉)−bT 𝜆−dT 𝜉 (2.15)

where 𝛿ℰ is the indicator function of the set ℰ in (2.13). The dual problem is to maximize this
function, and this can be expressed as (2.13).

That there is strong duality, or 0 duality gap, i.e. (2.14), follows either from (2.8) with the
differentiability assumption, or, without it, from the fact that the primal problem is convex, is
assumed feasible, and involves only affine constraints, so Slater's constraint qualification is satis-
fied (see e.g. [BV04], §5.2.3).

2.5 The optimal count vector and tolerances on constraints
We introduce tolerances in the constraints appearing in (2.7) for three reasons. First, they are nec-
essary to guarantee the existence of integral solutions (count vectors) to a problem whose data is
arbitrary real numbers. Second, to ensure that the results in §6 on concentration in large problems
hold for all scale factors larger than a certain “concentration threshold”. Third, they may be used
to reflect some uncertainty in the data. More details on this subject are in [Oik17] and [OG16].
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We regard the matrices A,C in (2.7) as specifying the structure of the constraints, and the
vectors b,d as specifying their values. Our tolerances ares only on the values, not on the structure
of the constraints. Accordingly, a simple generalization of the set 𝒞(0) in (2.7) is

𝒞(𝛿) ≜ {x∈ℝ+
m |b−𝛿 b̃⩽Ax⩽b+𝛿 b̃,Cx⩽d+𝛿 d̃�, 𝛿⩾0, (2.16)

where the ‘error’ vectors b̃, d̃ are |b|, |d|, except that any elements that are 0 are replaced by appro-
priate small positive constants. Although the definition does not require it, in any applications
one would most likely want 𝛿<1.

Given the solution x∗∈𝒞(0) of problem (2.7), we want to define an approximately optimal
integral vector 𝜈∗∈ℕm. An obvious choice is to round x∗ element-wise to the nearest integer2.11,
and it can be seen that

Proposition 2.9. The optimal count vector 𝜈∗≜[x∗] with ∑i 𝜈i
∗≜n∗ is such that

|n∗− s∗|⩽m
2 , ‖𝜈∗−x∗‖∞⩽ 1

2, ‖𝜈∗−x∗‖1⩽
m
2 , ‖ f ∗−𝜒∗‖1⩽

m
n∗ .

The main point about tolerances is that for suitable 𝛿, the integral vector [x] obtained by
rounding any x∈𝒞(0) belongs to 𝒞(𝛿):

Proposition 2.10. ([Oik17]) With b̃, d̃ as in (2.16), set

𝜌∞ ≜ min (b̃min/⫴A⫴∞, d̃min/⫴C⫴∞),

or ∞ if there are no constraints2.12. Then for any x∈𝒞(0),
1. For any 𝛿>0,y∈ℝ+

m, if ∥y−x∥∞ ⩽𝛿𝜌∞, then y∈𝒞(𝛿).
2. In particular, if 𝛿⩾1/(2𝜌∞), the integral vector [x] is in 𝒞(𝛿).

Now let s1(𝛿),s2(𝛿) generalize the s1,s2 of (2.10). By considering the x∈𝒞(0) that achieve s1,s2
it follows from part 1 of the proposition that

s1(𝛿)⩽ s1−m𝛿𝜌∞, s2 (𝛿)⩾ s2+m𝛿𝜌∞, (2.17)

which we will use in §4.

3 Relationship to I-divergence

The relative entropy or divergence D(⋅∥⋅) between density vectors has a well-known generaliza-
tion to arbitrary non-negative vectors

𝒟(u ∥v) ≜ �
i
ui ln

ui
vi
−�

i
ui+�

i
vi, u,v∈ℝ+

m, (3.1)

2.11. This definition of 𝜈∗ is much simpler than the one in [Oik17].
2.12. Recall that the infinity norm ⫴ ⋅⫴∞ of a matrix is the maximum of the ℓ1 norms of the rows.
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known as I-divergence ([Csi91], [Csi96]), and sometimes as generalized KL-divergence; it reduces
to D(u ∥v) when u,v are density vectors. Minimizing this function is extensively used for infer-
ence or approximation ([KF09], [Mur12]). It also appears in the entropic prior for non-negative
real vectors [Ski89], [SS06], [vDv14]. The minimization of 𝒟(u ∥ v) with respect to u is known
as ‘I-projection’, and with respect to v as ‘M-projection’ (‘information' and ‘moment' projection
respectively). These two minimizations produce qualitatively different results ([KF09], Ch. 8,
[Mur12], Ch. 21), and M-projection does not have the axiomatic justification [Ski89], [Csi91],
[Csi96] that I-projection does. Nevertheless, it is quite commonly used in applications involving
density vectors. In this section we establish a relationship between minimizing 𝒟(u ∥v) w.r.t. u,
to which we refer as MINIDIV, and maximizing G(x ∥y) w.r.t. x, which we call MAXGRENT.

First we observe that given a prior 𝜇, if u and v have the same sum, the difference between the
values of G at u,v is the same as that of 𝒟:

G(u ∥𝜇)−G(v ∥𝜇)=𝒟(v ∥𝜇)−𝒟(u ∥𝜇), if ∑i ui=∑i vi.

Second, since𝒟(u ∥v) is a convex function of u and it is bounded from below by 0, if there is a u∗

and multipliers 𝜌∗, 𝜎 ∗ such that

Au∗=b,
uj
∗ = vj e−(𝜌∗⋅A.j+𝜎 ∗⋅C.j), 1⩽ j⩽m,

𝜎k∗(C.k ⋅u∗−dk)=0, 𝜎k∗⩾0, 1⩽k⩽ lI,
(3.2)

then u∗ minimizes 𝒟(u ∥v) under the constraints Au= b,Cu⩽d. The similarity of the expression
for uj

∗ in (3.2) to that for xj∗ in (2.8) suggests some relationship between the two. Indeed, by using
suitable priors, and in one case adding a constraint, the MAXGRENT and MINIDIV (I-projection)
methods can be made to produce the same solution:

Proposition 3.1. Consider linear constraints on a vector inℝ+
m of the type in (2.7), and let x∗=x∗(y) be

the solution of the MAXGRENT problem with prior y and these constraints on x. Likewise, let u∗=u∗(v)
be the solution to the MINIDIV problem with prior v and the same constraints on u. Then
1. Using the prior ṽ=�∑i xi

∗�y in MINIDIV makes u∗(ṽ)=x∗(y).
2. Using the prior ỹ=v/∑i ui

∗ inMAXGRENT, and adding the constraint∑i xi=∑i ui
∗, makes x∗(ỹ)=

u∗(v).

The proposition shows a certain correspondence, but must be interpreted with care: it does
not imply that the two methods are ‘equivalent’. Part 1 does not say that “for any problem that
MAXGRENT can solveMINIDIV can get the same solution, if only one uses the right prior”; finding
the “right prior” for MINIDIV requires solving the problem byMAXGRENT (we only need the sum
of the MAXGRENT solution). An analogous comment applies to part 2: the prior to be used in
MAXGRENT requires having the MINIDIV solution, or at least its sum.

There is also a fundamental conceptual difference: in our discrete setting, the classicalMAXENT
method can be viewed as always maximizing the uncertainty, equivalently the number of real-
izations, and classical MINXENT as minimizing a directed distance from the prior; when the prior
expresses maximal uncertainty (is uniform) this coincides with maximizing the uncertainty. Our
MAXGRENT always maximizes the number of realizations (uncertainty) irrespective of the prior3.1
whereas MINIDIV behaves like MINXENT but also applies to non-density vectors.

3.1. In §7 where the prior is a density vector, the number of realizations becomes the probability.
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An equally important difference has to do with concentration, which is the subject of the next
few sections: I-divergence does not concentrate in our combinatorial sense, i.e. by maximizing the
number of realizations of the count vector that minimizes it. [Csi96] §7 points out that such an
interpretation does not seem to apply to I-divergence. If I-divergence doesn't concentrate, neither do
its many generalizations, e.g. the 𝛼, 𝛽-divergences of [CCA11]. However its specialization D(⋅∥⋅)
to density vectors does concentrate, [Gr8].

4 Concentration around the maximum relative entropy value

In this section we show that with suitable parameters 𝛿, 𝜀,𝜂, the MAXGRENT vector 𝜈∗ dominates
with respect to the number of realizations #𝜇 the entire set of count vectors that have entropy 𝜂-
far from G∗. This concentration result is elaborated further in §6.

For a given n, we partition the domain 𝒞(𝛿) of (2.16) into two sets, defined by proximity to the
maximum value of the relative entropy:

𝒜n(𝛿,𝜂) ≜ �𝜈∈Nn∩𝒞(𝛿) :G(𝜈 ∥𝜇)⩾(1−𝜂)G∗(𝜇)�
ℬn(𝛿,𝜂) ≜ �𝜈∈Nn∩𝒞(𝛿) :G(𝜈 ∥𝜇)<(1−𝜂)G∗(𝜇)�

, 𝜂∈(0,1). (4.1)

Next, we want an approximation (subset) of the set of all integral vectors in 𝒞(𝛿); for simplicity,
it should be independent of 𝛿. We do this by bounding the sums of these vectors by

n1≜⌈s1⌉−m/2, n2≜⌈s2⌉+m/2, (4.2)

which we get by putting 𝛿= /1 2𝜌∞ in (2.17); then Proposition 2.10(2) says that 𝜈∈ℕm with sums in
[n1,n2] are in 𝒞(𝛿), and ensures that n1⩾0. We are interested in the (disjoint) unions of the sets
(4.1) over n∈{n1,…,n2}:

𝒜n1:n2(𝛿,𝜂) ≜ �𝜈 :∑i 𝜈i=n,n1⩽n⩽n2, 𝜈∈𝒞(𝛿),G(𝜈 ∥𝜇)⩾(1−𝜂)G∗(𝜇)�,
ℬn1:n2(𝛿,𝜂) ≜ �𝜈 :∑i 𝜈i=n,n1⩽n⩽n2, 𝜈∈𝒞(𝛿),G(𝜈 ∥𝜇)<(1−𝜂)G∗(𝜇)�.

(4.3)

The union of these two sets equals Nn1:n2∩𝒞(𝛿). We will derive an upper bound on the number
of realizations ofℬn1:n2(𝛿,𝜂) and then a lower bound on the number of realizations of𝒜n1:n2(𝛿,𝜂).
[The number of realizations of a set X of count vectors is simply #X=∑𝜈∈X #𝜈.]

Eq. (4.7) of [Oik17] bounds the multinomial coefficient in terms of G(𝜈):

e−
m
12 S(𝜈) eG(𝜈) ⩽ �𝜈1+⋯+𝜈m

𝜈1,…,𝜈m
� ⩽ S(𝜈) eG(𝜈), where S(𝜈) ≜ n√

(2𝜋)(m−1)/2
1

𝜈1⋯𝜈m√ , (4.4)

where we assume that all 𝜈i>0, recall Remark 2.4. Multiplying all sides of the inequality by
𝜇1
𝜈1⋯𝜇m

𝜈m and using (2.1) and the middle equation in (2.4) we bound #𝜇 𝜈:

e−
m
12 S(𝜈) eG(𝜈∥𝜇) ⩽ #𝜇 𝜈 ⩽ S(𝜈) eG(𝜈∥𝜇). (4.5)

Therefore

#𝜇ℬn(𝛿,𝜂) ⩽ �
𝜈∈ℬn(𝛿,𝜂)

S(𝜈) eG(𝜈∥𝜇) < e(1−𝜂)G∗(𝜇) �
𝜈∈Nn

S(𝜈),
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and so
#𝜇ℬn1:n2(𝛿,𝜂) = �

n1⩽n⩽n2

#𝜇ℬn(𝛿,𝜂) < e(1−𝜂)G∗(𝜇) �
n1⩽n⩽n2

�
𝜈∈Nn

S(𝜈).

The bound

�
n1⩽n⩽n2

�
𝜈∈Nn

S(𝜈) ⩽ 𝜋√
(m+1)2(m−3)/2Γ(m/2)

�� s2+ /m 2+2� + m√ �m+1−� s1− /m 2� + m√ �m+1�
≜ C1(s1, s2)

(4.6)

was derived in §4.2 of [Oik17]. Using it in the expression for #𝜇ℬn1:n2(𝛿,𝜂) above,

#𝜇ℬn1:n2(𝛿,𝜂) < C1(s1, s2) e(1−𝜂)G∗(𝜇) . (4.7)

Now for the lower bound on #𝜇𝒜n1:n2(𝛿,𝜂) we use the lower bound (4.5) on #𝜇 𝜈∗:

#𝜇 𝜈∗ ⩾ S(𝜈∗) e−m/12 eG(𝜈
∗∥𝜇). (4.8)

We also have bounds on G(y ∥𝜇) when y is inside a hypercube centered at x and of side 2𝜁 :

Proposition 4.1. Given 𝜁 >0 and x,y∈ℝ+
m, if ‖y−x‖∞⩽𝜁,

−g(x)𝜁− 1
2 h�x, 𝜁�𝜁

2 ⩽ G(y ∥𝜇)− G(x ∥𝜇) ⩽ g(x)𝜁− 1
2 h�x,−𝜁�𝜁 2

where g(x)≜∑i ln
𝜇i
𝜒i
, h(x, 𝜁)≜∑i

1
xi−𝜁−

m
∥x∥1/m−𝜁 , and assuming that x>(𝜁,…,𝜁) for the lower bound.

Further, h(x, 𝜁)>0 unless all xi are equal, in which case it is 0.

Since ‖𝜈∗−x∗‖∞⩽ /1 2 by Proposition 2.9, taking x=x∗,y=𝜈∗,𝜁 = /1 2 in the lower bound of Propo-
sition 4.1 we obtain

x∗> /1 2 ⇒ G(𝜈∗ ∥𝜇) ⩾ G(x∗ ∥𝜇)− 1
2�

i
ln 𝜇i

𝜒i
∗ −

1
8 ��

i

1
xi∗− /1 2

− m
s∗/m− /1 2

�. (4.9)

Putting (4.9) in (4.8) together with a lower bound on S(𝜈∗) obtained by using 𝜈i∗⩽xi∗+ /1 2 in (4.4),
we find that if x∗> /1 2

#𝜇 𝜈∗ ⩾ eG
∗(𝜇) e−m/12 s∗�

(2𝜋)(m−1)/2
1

∏i 𝜇i�
�
i=1

m 𝜒i
∗

xi∗+ /1 2
� e

−1
8��

i=1

m 1
xi∗− /1 2

− m
s∗/m− /1 2

�

≜ C0(x∗,𝜇) eG
∗(𝜇)

(4.10)

where G∗(𝜇) is defined in (2.9). Finally from Proposition 2.10 and (4.9), and from (4.10) and
(4.7), we obtain a lower bound on the ratio of the number of realizations of 𝜈∗ to that of the set
ℬn1:n2(𝛿,𝜂):

Lemma 4.2. Let x∗ be the solution to the maximization problem (2.7) with y=𝜇⩾1, assume that x∗> /1 2,
and let G∗(𝜇) be the maximum generalized relative entropy (2.9). Then for any 𝛿>0 and 𝜂∈(0,1)

#𝜇 𝜈∗

#𝜇ℬn1:n2(𝛿,𝜂)
> (m+1)Γ(m/2) e−m/12

2𝜋m/2
1

∏i 𝜇i�
C2(x∗)C4(x∗)
C3(s1, s2)

e𝜂G
∗(𝜇),
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where ℬn1:n2(𝛿,𝜂) is defined in (4.3), and the constants are

C2(x∗) ≜ ((((((((((s∗�
i=1

m 𝜒i
∗

xi∗+ /1 2))))))))))
/1 2,

C3(s1, s2) ≜ � s2+ /m 2+2� + m√ �m+1−� s1− /m 2� + m√ �m+1,

C4(x∗) ≜ e
−1
8��

i=1

m 1
xi∗− /1 2

− m
s∗/m− /1 2

�
,

where s∗≜∑i xi
∗. Lastly, if 𝛿,𝜂 satisfy

𝛿⩾ 1
2𝜌∞

, 𝜂 ⩾ 1
2G∗(𝜇) �

1⩽i⩽m
ln 𝜇i

𝜒i
∗ +

1
8G∗(𝜇) (((((((((((((( �

1⩽i⩽m

1
xi∗− /1 2

− m
s∗/m− /1 2)))))))))))))),

where 𝜌∞ is defined in Proposition 2.10, the count vector 𝜈∗=[x∗] is in the set 𝒜n∗(𝛿,𝜂) of (4.1).

The C2,C4 above and the C0 in (4.10) are related by C0=e−m/12(2𝜋)−(m−1)/2∏i 𝜇i
−1/2C2C4. The

second claim of the theorem follows from (4.1) and the last line of (4.9).
The dependence of the lower bound on the constraints of the problem is implicit, via G∗ and

𝜌∞. The constant C3(s1, s2) shows that, as intuitively expected, the bound becomes weaker as the
range of the allowable sum of x increases.

5 Concentration around the maximum relative entropy vector
In this section we establish a lower bound on the ratio of the number of realizations of 𝜈∗ to that of
the setℬn1:n2 analogous to that of §4, but exponential in (the square of) a parameter 𝜗 that governs
the ℓ∞ distance of a vector from x∗.

For fixed n, we partition the set Nn∩𝒞(𝛿) of count vectors that satisfy the constraints into two
subsets, according to the distance from the optimal vector x∗ measured by the ℓ∞ (max) norm:

𝒜n(𝛿,𝜗) ≜ �𝜈∈Nn∩𝒞(𝛿) : ∥𝜈−x∗∥∞⩽𝜗 ‖x∗‖∞�
ℬn(𝛿,𝜗) ≜ �𝜈∈Nn∩𝒞(𝛿) : ∥𝜈−x∗∥∞>𝜗 ‖x∗‖∞�

, 𝜗>0. (5.1)

These definitions are both significantly stronger, and more intuitively-satisfying than the ones
given in [Oik17]. Because both 𝜈 and x∗ are ⩾0, it is always the case that ‖𝜈−x∗‖∞⩽max�‖𝜈‖∞,
‖x∗‖∞�.

The (disjoint) unions of the sets (5.1) over n∈[n1,n2], defined in (4.2), are

𝒜n1:n2(𝛿,𝜗) ≜ �𝜈 :∑i 𝜈i=n,n1⩽n⩽n2, 𝜈∈𝒞(𝛿), ∥𝜈−x∗∥∞⩽𝜗 ‖x∗‖∞�,
ℬn1:n2(𝛿,𝜗) ≜ �𝜈 :∑i 𝜈i=n,n1⩽n⩽n2, 𝜈∈𝒞(𝛿), ∥𝜈−x∗∥∞>𝜗 ‖x∗‖∞�.

(5.2)

To understand the geometry of G(x ∥𝜇) around x∗ consider the sets

K∗(𝜗)≜�x : ‖x−x∗‖∞⩽𝜗 ‖x∗‖∞�, D∗(𝜗)≜�x : �∑i xi− s∗�⩽𝜗 ‖x∗‖∞�, (5.3)

a hypercube centered at x∗, and the region in the first orthant between the two hyperplanes∑i xi=
s∗±𝜗 ‖x∗‖∞. Their importance is that

Proposition 5.1. Let x∗ be the unique maximizer of G(x ∥𝜇) over a compact convex set 𝒞. Then
1. For every x∈𝒞 outside K∗(𝜗), there is a y∈𝒞 and on the surface of K∗(𝜗) s.t. G(y ∥𝜇)>G(x ∥𝜇).
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2. For every x∈𝒞 outside D∗(𝜗), there is a y∈𝒞 and in D∗(𝜗) s.t. G(y ∥𝜇)>G(x ∥𝜇).

The proposition applies to the polyhedral set 𝒞(𝛿), 𝛿⩾0 5.1, and its additional generality will
be useful later. Part 1 tells us that to maximize G(x ∥𝜇) over Bn(𝛿,𝜗) we can restrict our attention
to points in 𝒞(𝛿) that lie on the surface of K∗(𝜗). Whereas neither Bn(𝛿,𝜗) nor this set are convex,
the latter is easier to deal with. So the proposition provides the starting point for a central result
of this section, again valid for more general sets than 𝒞(𝛿):

Lemma 5.2. Let 𝒞 be a compact convex set, let x∗ be the unique maximizer5.2 of G(x ∥𝜇) over 𝒞, assume
that ‖x∗‖∞<2‖x∗‖1, and fix 𝜗∈�0, 12

‖x∗‖1
‖x∗‖∞

−1�. Then for any x∈𝒞 with ∥x−x∗∥∞>𝜗 ‖x∗‖∞,

G(x∗ ∥𝜇)−G(x ∥𝜇) ⩾ 𝜗 2

2(1+𝜗)
1

1− (1+𝜗)‖x∗‖∞/‖x∗‖1
‖x∗‖∞.

The applicability of the lemma is restricted by the condition ‖x∗‖∞<2‖x∗‖1; clearly one can for-
mulate problems where ‖x∗‖1/‖x∗‖∞⩽2, e.g. the one in Example 2.1. Otherwise, it can be shown
that for a fixed ratio ‖x∗‖∞/‖x∗‖1 the coefficient of ‖x∗‖∞ in the lower bound of the lemma increases
monotonically with 𝜗∈�0, 12

‖x∗‖1
‖x∗‖∞

−1�. Lemma 2.6 provides conditions for the uniqueness of x∗

and then Lemma 5.2 applies to 𝒞(𝛿), 𝛿⩾0. Its proof is in Appendix B, and the restriction on x∗ is
(B.14) there; it might be possible to weaken this restriction with more work on the proof. Despite
the fact that 𝜇 does not appear in the bound, it is implicit in x∗.

Lemma 5.2 says that if x is far enough from x∗ then G(x ∥𝜇) is far from G(x∗ ∥𝜇), the distances
beingmeasured by ‖x∗‖∞. To provide some context around this, if x∗maximizes a functionG over
a set 𝒞, a statement that there is a 𝜅>0 s.t. G(x∗)−G(x)⩾𝜅‖x−x∗‖ is known as a growth condition
for G around x∗, and the related statement that there is a 𝜅′ s.t. ‖x− x∗‖⩽ 𝜅′ �G(x∗)−G(x)� is
known as an error bound on x. In both statements x may be restricted to lie in a subset of 𝒞; see
[FP03] for a detailed treatment. With this inmind, the following negative results help in assessing
that of the lemma:

Proposition 5.3. Let 𝒞⊂ℝ+
m be a convex set, x∗ be the maximizer of G(x ∥𝜇) over 𝒞, and let ‖⋅‖ be the ℓ∞,

ℓ1, or ℓ2 norm. Then
1. Given 𝜉 >0, there is no constant 𝜅>0 such that the growth condition

G(x∗ ∥𝜇)−G(x ∥𝜇)⩾𝜅‖x−x∗‖
holds for all x∈𝒞 with ‖x−x∗‖⩽𝜉.

2. Given 𝜗>0, there is no 𝜅>0 independent of 𝜗 such that

G(x∗ ∥𝜇)−G(x ∥𝜇)⩾𝜅𝜗 ‖x∗‖
holds for all x∈𝒞 with ‖x−x∗‖⩾𝜗 ‖x∗‖.

Returning to Lemma 5.2, to proceed as as in §4 and derive a lower bound on the ratio #𝜇 𝜈∗/
#𝜇ℬn1:n2(𝛿, 𝜗) we need the maximum value of G(x ∥ 𝜇) over 𝒞(𝛿), which may be larger than the
one over 𝒞(0). This was not a problem in §4, because such larger values belonged by definition to
the ‘good’ set𝒜n(𝛿,𝜂) of (4.1), but here we cannot guarantee that the maximizer of G over 𝒞(𝛿) is
in some𝒜n(𝛿,𝜗), as defined in (5.1) in terms of x∗. An upper bound onmaxx∈𝒞(𝛿)G(x∥𝜇) suffices
for our purposes.

5.1. and actually holds for any ℓp norm, see the proof.
5.2. Here we are re-using the x∗ of (2.9) with an extended meaning, to avoid introducing more new notation.
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To derive the bound we view C(𝛿) as a additive perturbation of 𝒞(0) parameterized by �̃�

𝒞(𝛿, �̃�) = � x∈ℝ+
m ∣Ax=b+𝛿�̃�,Cx⩽d+𝛿 d̃�, − b̃⩽�̃�⩽ b̃,

so x∈𝒞(𝛿) iff ∃�̃� :x∈𝒞(𝛿, �̃�). A well-known result (e.g. [BV04] §5.2.6) relates the solution of the
perturbed problemmaxx∈𝒞(𝛿,�̃�)G(x∥𝜇) to that of the original, unperturbed problemmaxx∈𝒞(0)G(x∥
𝜇) via the dual of the unperturbed problem: if strong duality holds and the solution of the dual
is (𝜆∗, 𝜉 ∗,G∗), then the optimal value of the perturbed primal obeys

max
x∈𝒞(𝛿,�̃�)

G(x ∥𝜇) ⩽ G∗(𝜇)+𝛿𝜆∗⋅�̃�+𝛿𝜉 ∗⋅d̃

for all perturbations 𝛿�̃�,𝛿 d̃ for which the perturbed primal is feasible. In our case 𝜆∗,𝜉 ∗were found
in §2.4 and the perturbed primal has the same form as the unperturbed one, so we know from §2.4
that strong duality holds. It follows from the above that with

G̃ ≜ |𝜆∗|⋅b̃+𝜉 ∗⋅d̃ (5.4)
we have

max
x∈𝒞(𝛿)

G(x ∥𝜇) ⩽ G∗(𝜇)+𝛿 G̃, where G̃⩾G∗(𝜇) (5.5)

Now we can proceed as in §4 after (4.5): to bound #𝜇ℬn(𝛿, 𝜗) we apply Lemma 5.2 to 𝒞(0), and
using (5.5) we get

#𝜇ℬn(𝛿,𝜗) = �
𝜈∈ℬn(𝛿,𝜗)

#𝜇(𝜈) ⩽ eG
∗(𝜇)+𝛿G̃−𝜗 2K(𝜗,x∗)‖x∗‖∞ �

𝜈∈Nn

S(𝜈)

where
K(𝜗,x∗) ≜ 1

2(1+𝜗)�1− (1+𝜗)‖x∗‖∞/‖x∗‖1�
, (5.6)

and again continuing as in §4 we have an analogue of (4.7):

#𝜇ℬn1:n2(𝛿,𝜗) ⩽ C1(s1, s2) eG
∗(𝜇)+𝛿G̃−𝜗 2K(𝜗,x∗)‖x∗‖∞. (5.7)

Combining (5.7) with (4.10) we get a lower bound on the ratio #𝜇 𝜈∗/#𝜇ℬn1:n2(𝛿,𝜗) analogous to
that of Lemma 4.2. However here the parameters 𝛿 and 𝜗 are intertwined, unlike 𝛿 and 𝜂 which
were independent:

Lemma 5.4. Let x∗ be the solution to the maximization problem (2.7) with y=𝜇⩾1. Assuming that
x∗> /1 2 and ‖x∗‖∞<2‖x∗‖1, if 𝛿,𝜗 are such that

𝛿⩾ 1
2𝜌∞

, 𝜗⩾ 1
2‖x∗‖∞

,

where 𝜌∞ is defined in Proposition 2.10, the vector 𝜈∗=[x∗] is in the set 𝒜n∗(𝛿,𝜗) of (5.1). Further, if

𝜗⩽ 1
2
‖x∗‖1
‖x∗‖∞

−1, 𝛿< 𝜗 2K(𝜗,x∗) ‖x
∗‖∞
G̃

,

where G̃ and K(𝜗,x∗) are defined in (5.4) and (5.6), then

#𝜇 𝜈∗

#𝜇ℬn1:n2(𝛿,𝜗)
⩾ (m+1)Γ(m/2) e−m/12

2𝜋m/2
1

∏i 𝜇i�
C2(x∗)C4(x∗)
C3(s1, s2)

e𝜗 2K(𝜗,x∗)‖x∗‖∞−𝛿G̃,

where the set ℬn1:n2(𝛿,𝜗) is defined in (5.2), and the constants C2,C3,C4 are as in Lemma 4.2.
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Apart from the exponential factor the lower bound is identical to that of Lemma 4.2, but is
subject to the restriction ‖x∗‖∞<2‖x∗‖1. It shows that the number of realizations of the vector 𝜈∗,
which does not belong to 𝒞(0) but to 𝒞(𝛿)with 𝛿>0, dominates that of the setℬn1:n2(𝛿,𝜗). The first
set of conditions on 𝛿 and 𝜗 ensures that 𝜈∗∈𝒜n∗(𝛿,𝜗) by Propositions 2.9 and 2.10. The second
set comes from Lemma 5.2, and of these the condition on 𝛿 is not needed for the bound to hold,
but for it to be useful: if 𝛿 is too large, the maximizer of G(x ∥𝜇) over 𝒞(𝛿) may be far from x∗ so
we cannot expect concentration to occur in a region of size 𝜗 ‖x∗‖∞ around x∗.

6 Large problems: scaling and concentration
To study concentration in ‘large’ problems we regard the matrices A,C as defining the struc-
ture of the problem's constraints and the vectors b, d as defining their data or values. So here we
assume that we have a problem with a given, fixed structure, but whose size, defined as that of
the elements of the data, can become as large as we please while the structure remains invariant.
Example 2.1 shows a very simple case, and Example 8.1 a more complex one. Recall that Lemmas
4.2 and 5.4 apply to problems of a given structure and given size.

We will consider the simplest way of increasing the problem's size: multiplying b,d by a factor
c⩾1, a process we call scaling; its properties are described in Proposition 2.7. In this section we
derive a concentration threshold ĉ= ĉ(𝛿, 𝜀, 𝜂, 𝜗), which is such that if the problem is scaled by a
factor c⩾ ĉ, concentration around G∗ or 𝜈∗ will occur to the degree specified by 𝜀: the number of
realizations of 𝜈∗ will dominate by the factor 1/𝜀 the realizations of the set of all vectors whose
generalized relative entropy is 𝜂-far from G∗ or that are 𝜗-far from x∗ w.r.t. ℓ∞ distance. This is
Theorem 6.1 below.

6.1 The effects of scaling
We look at how the results of Lemmas 4.2 and 5.4 change when the original problem is scaled by
c⩾1. We begin with the constants and exponents.

The constants C2,C3,C4 in Lemma 4.2 are common to both lemmas and behave as follows.
With x∗↦↦↦↦↦↦↦↦↦

c
cx∗ from Proposition 2.7,

C2(cx∗) =
s∗�

cm/2−1 (((((((((((((( �
1⩽i⩽m

𝜒i
∗

xi∗+1/(2 c)))))))))))))))
/1 2
⩾

s∗�
cm/2−1 (((((((((((((( �

1⩽i⩽m

𝜒i
∗

xi∗+ /1 2))))))))))))))
/1 2
, c⩾1, (6.1)

since 𝜒∗ is invariant under scaling, and the first product above increases as c↗ . Next, for C4(cx∗),

−1
8 (((((((((( �

1⩽i⩽m

1
cxi∗− /1 2

− m
cs∗/m− /1 2))))))))))> − 1

8 c (((((((((( �
1⩽i⩽m

1
xi∗− /1 2

−m2

s∗ ))))))))))
since x∗> /1 2 and c⩾1. This implies that

C4(cx∗) > e
−1
8((((((((((((�i=1

m 1
xi∗− /1 2

−m2

s∗ )))))))))))). (6.2)
For C3 we have

C3(c s1, c s2) = c(m+1)/2�� s2+ /m 2c+2/c� + m/c� �m+1−� s1− /m 2c� + m/c� �m+1�
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and the function of c multiplying c(m+1)/2 above decreases as c↗ 6.1, so

C3(c s1, c s2) ⩽ c(m+1)/2�� s2+ /m 2+2� + m√ �m+1−� s1− /m 2� + m√ �m+1�, c⩾1. (6.3)

For the exponents in the two lemmas we have, respectively,

𝜂G∗(𝜇) ↦↦↦↦↦↦↦↦↦
c

c𝜂G∗(𝜇),
𝜗 2K(𝜗,x∗) ‖x∗‖∞−𝛿 G̃ ↦↦↦↦↦↦↦↦↦

c
c�𝜗 2K(𝜗,x∗) ‖x∗‖∞−𝛿 G̃�.

(6.4)

The first follows from Proposition 2.7. The second follows from G̃↦↦↦↦↦↦↦↦↦
c
c G̃, as (2.13) shows that the

dual solution 𝜆∗, 𝜉 ∗ is invariant under scaling, and from the fact that K(𝜗,x∗) is likewise invariant.
Now we look at the conditions on 𝛿,𝜂 in Lemma 4.2. These will hold after scaling if

𝛿⩾ 1
2 c𝜌∞

, 𝜂 ⩾ 1
2 cG∗(𝜇) �

1⩽i⩽m
ln 𝜇i

𝜒i
∗ +

1
8 c2G∗(𝜇) (((((((((( �

1⩽i⩽m

1
xi∗− /1 2

−m2

s∗ )))))))))).
[For the first condition, Proposition 2.10 shows that b̃↦↦↦↦↦↦↦↦↦

c
c b̃ implies 𝜌∞↦↦↦↦↦↦↦↦↦

c
c𝜌∞, and for the second

condition we used the simplification that led to (6.2).] These bounds are equivalent to the scaling
factor satisfying

c ⩾ 1
2𝛿𝜌∞

, c ⩾ 1
2𝜂G∗(𝜇) �

1⩽i⩽m
ln 𝜇i

𝜒i
∗ +

1
8 c𝜂G∗(𝜇) �

1⩽i⩽m
(((((((((( 1
xi∗− /1 2

− m2

4 s∗)))))))))) (6.5)

where the 2nd condition leads to a quadratic in c.
For Lemma 5.4, the conditions for 𝛿 and 𝜗 will hold after scaling if

𝜗 ⩽ 1
2
‖x∗‖1
‖x∗‖∞

−1, 𝛿 < 𝜗 2K(𝜗,x∗) ‖x
∗‖∞
G̃

, (6.6)

whose right-hand sides are invariant under scaling, and if

c ⩾ 1
2𝜗 ‖x∗‖∞

, c ⩾ 1
2𝛿𝜌∞

. (6.7)

6.2 The concentration threshold
Putting (6.1) to (6.7) together we see that whether we consider concentration in the sense of §4
around G∗ or in the sense of §5 around x∗, when the problem data b is scaled by c⩾1, there is a
lower bound on the ratio #𝜇 𝜈∗/#𝜇ℬn1:n2 of the form Kc−𝛽 e𝛼c, where the constants are

K ≜ (m+1)Γ(m/2) e−m/12

2𝜋m/2 𝜇1⋯𝜇m�

�s∗∏1⩽i⩽m
𝜒i∗

xi∗+ /1 2
� /1 2exp �−1

8 �∑i=1
m 1

xi∗− /1 2
− m2

s∗ ��

� s2+ /m 2+2� + m√ �m+1−� s1− /m 2� + m√ �m+1 ,

𝛼 ≜{{{{{{{{{{{{{{{{{{{{{{{{{{{{
𝜂G∗, G∗-case
𝜗 2K(𝜗,x∗) ‖x∗‖∞−𝛿 G̃, x∗-case

, 𝛽 ≜ m− /1 2, 𝛾 ≜ln 1
𝜀K .

(6.8)

Provided that 𝛼>0, Kc−𝛽 e𝛼c will increase without limit as c increases, establishing the concentra-
tion phenomenon. To ensure that Kc−𝛽 e𝛼c⩾1/𝜀 for some 𝜀>0, c must satisfy 𝛼 c−𝛽ln c−𝛾=0.

6.1. After some algebra, its derivative can be shown to be negative if s2⩾ s1.
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It is shown in the Appendix that if f (c) = 𝛼c−𝛽ln c−𝛾with 𝛼,𝛽,𝛾 as in (6.8), then 𝛼,𝛾>0,and
Kc−𝛽 e𝛼c⩾1/𝜀 will hold for all c⩾c3 where

c3 ≜ {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{
1, 𝛼⩾𝛾,
max(1,𝛽/𝛼), 𝛼<𝛾, f (𝛽/𝛼)⩾0,
the unique root of f (c)=0 in �max(𝛽/𝛼,1),∞�, otherwise.

(6.9)

Further, c3 is bounded as

𝛾
𝛼 ⩽ c3 ⩽

𝛾
𝛼 +{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{ 2 𝛽
𝛼 ln

𝛽+𝛾
𝛼 , 𝛼⩽𝛽+𝛾,

ln 𝛾
𝛼 , otherwise.

(6.10)

We have now established a main result of the paper:

Theorem 6.1. Let x∗> /1 2 be the solution of the MAXGRENT problem (2.7) with y=𝜇. In the x∗-case,
further assume that ‖x∗‖∞<2‖x∗‖1. Let c1, c2 denote the right-hand sides of the inequalities (6.5) in the
G∗-case and (6.7) in the x∗-case. When the problem is scaled by a factor c,
1. If c⩾max(c1, c2), the count vector 𝜈∗=[cx∗] is in the set 𝒜n∗(𝛿,𝜂). If, in addition, 𝛿,𝜗 satisfy (6.6)

then 𝜈∗ is in 𝒜n∗(𝛿,𝜗).
2. The concentration threshold is ĉ≜max(c1,c2,c3)where c3 is as in (6.9) and (6.10). Then for any c⩾ ĉ,

in the G∗-case of §4 we have
#𝜇 𝜈∗

#𝜇ℬn1:n2(𝛿,𝜂)
⩾ 1

𝜀 and #𝜇𝒜n1:n2(𝛿,𝜂)
#𝜇 �Nn1:n2∩𝒞(𝛿)� ⩾1−𝜀,

and in the x∗-case of §5, if 𝛿,𝜗 satisfy (6.6),

#𝜇 𝜈∗

#𝜇ℬn1:n2(𝛿,𝜗)
⩾ 1

𝜀 and
#𝜇𝒜n1:n2� /1 2𝜌∞, 𝜗�
#𝜇 �Nn1:n2∩𝒞(𝛿)� ⩾1−𝜀.

One aspect of the uncertainty in the problem (2.7) is the width of the interval [s1, s2] from
(2.10). It can be seen from the expression for K that the scaling factor required to achieve the
degree of concentration specified by 𝜀 behaves intuitively with this width. (See also Example 4.2
in [Oik17].) This behavior is already apparent from Lemmas 4.2 and 5.4.

Finally, when the concentration is with respect to ℓ∞ distance from x∗, at the expense of intro-
ducing some additional complexity, it is possible to improve the constant K by using a lower
bound on the number of lattice points in 𝒜n(𝛿,𝜗), as was done in §III.D of [OG16].

7 Probabilistic formulation
In §4 and §5 we took 𝜇 to be an m-vector either ⩾1 or of positive integers. What happens if we
take it to be a density vector? Then the interpretation is that we have a 1-dimensional array of
m bins and we assign indistinguishable balls to them one-by-one, so that ball i goes to bin j with
probability 𝜇j, independent of i. Given 𝜈 = (𝜈1, …, 𝜈m) with sum n, (2.1) then becomes the total
probability Pr𝜇(𝜈) of all n-sequences of assignments (bin numbers) that have count vector 𝜈. As
before, the number n of balls we assign is unspecified, subject only to n1⩽n⩽n2.

On the other hand, it is also possible to keep the purely discrete, combinatorial interpretation
of Fig. 2.1: 𝜇 remains a vector of integers and we divide both sides of (2.1) by rn; the result is the
same as using the rational density vector 𝜇/r.
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Below we outline how, with this new interpretation of 𝜇, the developments in §4 and §5 carry
through, so that we end up having concentration in the usual probabilistic (e.g. [DP09]) sense:
under the measure 𝜇, most of the probability is concentrated around the single vector 𝜈∗; this vector has
exponentially higher probability than the entire set ℬn1:n2.

7.1 Lower bounds
When 𝜇 is a density, as opposed to a count, vector the main difference is that by Proposition
2.2 the relative entropy G(𝜈 ∥𝜇) is always ⩽0, and so G∗(𝜇)⩽0 also7.1. Therefore in §4 we have
(1+𝜂)G∗(𝜇) instead of (1−𝜂)G∗(𝜇) in the definitions (4.1) and (4.3) of the sets𝒜n,ℬn and𝒜n1:n2,
ℬn1:n2. Next, when #𝜇 𝜈 becomes Pr𝜇(𝜈), (4.5) turns into

e−m/12S(𝜈) eG(𝜈∥𝜇) ⩽ Pr𝜇(𝜈)⩽ S(𝜈) eG(𝜈∥𝜇).

The development that leads to (4.7) still holds, but in (4.9) we need to substitute 1/𝜇i for 𝜇i. Then
the factor 1/∏i 𝜇i� in the C0(x∗, 𝜇) of (4.10) becomes ∏i 𝜇i� , so that finally the probabilistic
analogue of Lemma 4.2 is that if x∗> /1 2, then

Pr𝜇(𝜈∗)
Pr𝜇�ℬn1:n2(𝛿,𝜂)�

> (m+1)Γ(m/2) e−m/12

2𝜋m/2 �
i=1

m

𝜇i� C2(x∗)C4(x∗)
C3(s1, s2)

e−𝜂G∗(𝜇). (7.1)

The other consequence of the change in (4.9) is that in the second claim of Lemma 4.2, the
∑1⩽i⩽m ln 𝜇i

𝜒i∗
in the condition on 𝜂 becomes ∑1⩽i⩽m ln 1

𝜇i𝜒i∗
.

Turning to the development in §5, the same change as above is needed in the constant C0(x∗,
𝜇), and Lemma 5.2 has no dependence onwhetherG(x∥𝜇)⩾0 or not, so the probabilistic analogue
of Lemma 5.4 is that if x∗> /1 2 and ‖x∗‖∞<2‖x∗‖1, then

Pr𝜇(𝜈∗)
Pr𝜇�ℬn1:n2(𝛿,𝜗)�

⩾ (m+1)Γ(m/2) e−m/12

2𝜋m/2 �
i=1

m

𝜇i� C2(x∗)C4(x∗)
C3(s1, s2)

e𝜗
2K(𝜗,x∗)‖x∗‖∞−𝛿G̃. (7.2)

7.2 Concentration threshold
Using the bounds (7.1) and (7.2) the development of §6 carries through until we get to (6.8).
There we have a constant K ′, obtained by putting 𝜇1⋯𝜇m� in place of 1/ 𝜇1⋯𝜇m� in K, and a 𝛾 ′
which is 𝛾withK ′ in place of K. Further, we see from the proof of (6.9) that K ′≪1 holds a fortiori,
so we still have 𝛾 ′>0 in (6.8).

Thus we finally obtain a probabilistic analogue of Theorem 6.1:

Theorem 7.1. Let 𝜇 be a probability vector, and let x∗ be a solution of theMAXGRENT problem (2.7) with
y=𝜇, satisfying the same conditions as in Theorem 6.1. Let c1,c2 be as in Theorem 6.1, but with 𝜇i↦1/𝜇i
in the G∗-case. Then when the problem is scaled by the factor c⩾1,
1. If c⩾max(c1, c2), the count vector 𝜈∗=[cx∗] is in the set 𝒜n∗(𝛿,𝜂). If, in addition, 𝛿,𝜗 satisfy (6.6)

then 𝜈∗ is in 𝒜n∗(𝛿,𝜗). Further, 𝜈∗ is such that
Pr𝜇(𝜈∗)

Pr𝜇�ℬn1:n2(𝛿,𝜂)�
Pr𝜇(𝜈∗)

Pr𝜇�ℬn1:n2(𝛿,𝜗)� }}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}
}
}
⩾ K ′ e

𝛼c

c𝛽
,

7.1. Recall Proposition 2.5(2).
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where K ′ is the K of (6.8) but with 𝜇i↦1/𝜇i, and 𝛼,𝛽 are as in (6.8).

2. Let f (c) be as in Theorem 6.1, but with 𝛾 modified by 𝜇i↦1/𝜇i, and let c3 be as defined there; then c3
is bounded as in (6.10).

3. The concentration threshold is ĉ≜max(c1, c2, c3). If c⩾ ĉ, we have in the G∗-case

Pr𝜇(𝜈∗)
Pr𝜇�ℬn1:n2(𝛿,𝜂)�

⩾ 1
𝜀 and Pr𝜇�𝒜n1:n2(𝛿,𝜂)�

Pr𝜇�Nn1:n2∩𝒞(𝛿)� ⩾1−𝜀,

and in the x∗-case
Pr𝜇(𝜈∗)

Pr𝜇�ℬn1:n2(𝛿,𝜗)�
⩾ 1

𝜀 and Pr𝜇�𝒜n1:n2(𝛿,𝜗)�
Pr𝜇�Nn1:n2∩𝒞(𝛿)� ⩾1−𝜀.

There are some other differences with the results of §6 that may not be apparent from the
statement of the theorem. As mentioned in §7.1, the sets𝒜,ℬ are defined slightly differently here
than in the G∗-case of §4. Second, in §2.3, the condition (2.10) that the sum of x is bounded was
necessary for the existence of a maximum. Such a condition is not needed here because G(x ∥𝜇) is
bounded from above by 0; but it is still needed for concentration to occur. Third, we can no longer
guarantee that x∗ is the unique maximizer of G(x ∥𝜇); recall Lemma 2.6 and Proposition 2.5(2).

8 Examples

We give an example, adapted from [Oik17], from the field of transportation analysis/planning.
Classic MAXENT has beeen frequently applied to problems in this area (see [KK92]), but our
example is of interest because it is not treatable byMAXENT. While it does not include the complex-
ities of a real problem, the example illustrates fundamental issues that are sometimes obscured
by complexity.

All results in this section were generated by code in the JULIA language, https://
julialang.org, using its JUMP optimization framework, [DHL17].

Example 8.1. Fig. 8.1 shows four cities connected by road segments. We assume that vehicles
travelling between cities follow the most direct route, and that there is no traffic from a city to
itself.

1

2 3

4
v31, v41

v14, v24, v34

v23, v24

Figure 8.1. Four cities connected by bidirectional road segments. Some segments have been labelled with an
arrow indicating the direction for which we have traffic information, and with the flows that go through them
in that direction.
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The number of vehicles in each city is known, which puts upper bounds on the number that
leave each city; also we have either a lower bound or exact data for the number of vehicles on the
road segments 2→3, 3→1, and 3→4. From this information we want to infer howmany vehicles
travel from city i to city j, i.e. the matrix of counts [vij]4×4 with diagonal equal to 0. So suppose
the information on v is

vii=0, �
j
vij⩽200,240,160,180, i=1,…,4

v23+v24⩾154, v31+v41=122, v14+v24+v34=172,
(8.1)

where the last three constraints reflect the “direct route” assumption. The 12-element vector x for
problem (2.7) is (v12,v13,v14,v21,v23,v24,…,v43), and we have s1=294,s2=780, and 𝜌∞=122. [Note
that if we knew that all vehicles in a city leave the city, then we could define a frequencymatrix by
dividing v by 200+⋯+180 and thus formulate a MAXENT problem.] The prior is 𝜇=(2,2,1,…,1,
2), expressing some preference for short trips out of city 1 and city 4.

Table 8.1 shows the MAXGRENT integral solution and also the MINIDIV integral solution.

𝜈∗=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[
[
[ 0 79 79 41
79 0 79 82
65 47 0 49
57 41 82 0 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]
]
]
, �̂�=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[
[
[ 0 2 2 14
1 0 10 144
61 1 0 14
61 1 2 0 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]
]
]
.

Table 8.1. The MAXGRENT solution 𝜈 ∗ and MINIDIV solution 𝜈, both with 𝜇=(2, 2, 1,…, 1, 2). We have s∗=
s2=780, G∗=2079.4,G(𝜈)=485.6, and ‖𝜈−x∗‖∞=79.93.

Why is the MAXGRENT solution to be preferred? Table 8.2 allows us to compare it with the
MINIDIV solution using the G-values. To have �̂� ∈ℬ294:780(0.01, 𝜂) we need 𝜂< 1−G(�̂�)/G∗=
0.7669, and even using the 𝜂=0.2 entry of the table we see that #𝜇 𝜈∗/#𝜇ℬ294:780(0.01,0.2)>10144,
an impressive factor, especially since the denominator contains not only theMINIDIV solution, but
all other possible solutions as well8.1. Also, it is clear that the prior plays a very different role in
the two methods, as we remarked at the end of §3.

Table 8.3 shows the factor by which the problem needs to be scaled (concentration threshold)
to achieve concentration to degree 𝜀 in a region within 1% of the MAXGRENT value G∗ and in a
region within 0.5% of G∗. As expected, ĉ is sensitive to 𝜂 and relatively insensitive to 𝜀.

𝛿 𝜂 #𝜇 𝜈∗/#𝜇ℬ
0.01 0.04 0.542

0.05 5.8 ⋅ 108

0.06 6.2 ⋅ 1017

0.07 6.7 ⋅ 1026

0.08 7.2 ⋅ 1035

0.09 7.7 ⋅ 1044

0.10 8.3 ⋅ 1053

0.20 1.7 ⋅ 10144

Table 8.2. The lower bound of Lemma 4.2.

𝛿 𝜂 𝜀 ĉ
0.01 0.01 10−10 1

10−15 6.75
10−20 7.35
10−30 8.54

0.005 10−10 13.1
10−15 14.3
10−20 15.5
10−30 17.9

Table 8.3. The concentration threshold ĉ of Theorem 6.1.

8.1. The ratios #𝜇 𝜈∗/#𝜇 ℬ are so large that a more appropriate measure would be logarithmic: the log-odds in [Jay03] §4.3,
originally due to I.J. Good.
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To compare using the distance measure, ‖�̂�−x∗‖∞=79.93. To have �̂� ∈ℬ294:780(𝛿, 𝜗) we need
‖�̂�− x∗‖∞>780𝜗 which requires 𝜗 <0.102. However, the problem is too small for the bound of
Lemma 5.4: with 𝜗=0.1,𝛿=0.0045 it yields the useless lower bound 3.5 ⋅10−41. Table 8.4 gives an
idea of how large the problem must be.

𝜀 𝛿 𝜗 ĉ 𝛿 ϑ ĉ 𝛿 𝜗 ĉ
10−3 10−5 0.1 410 10−5 0.05 2020 10−6 0.02 12500
10−5 410 2080 12900
10−10 441 2210 13600
10−15 472 2350 14400
10−20 502 2490 15100

Table 8.4. The threshold ĉ of Theorem 6.1 for concentration around x∗. Note the interaction between 𝛿 and 𝜗.

Finally, we note that Proposition 3.1 says that as the prior becomes a large multiple of 𝜇=(2,
2,1,…,1,2), the factor approaching s∗=780, the MINIDIV �̂� approaches the MAXGRENT 𝜈∗. In fact,
even with the prior 100𝜇 the MINIDIV solution u∗ turns out to be a very good approximation to
the MAXGRENT x∗.

Continuing Example 8.1, now consider the density or probability priors (2,2,1,…,1,2)/15 and
(1,…,1)/12. The MAXGRENT and MINIDIV solutions are shown in Table 8.5.

𝜈∗=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[
[
[ 0 79 79 43
50 0 74 80
65 46 0 50
57 41 82 0 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]
]
]
,

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[
[
[ 0 61 61 53
61 0 82 72
59 54 0 47
63 58 58 0 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]
]
]
, �̂�=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[
[
[ 0 0 0 10
0 0 1 153
61 0 0 10
61 0 0 0 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]
]
]
.

Table 8.5. The MAXGRENT solutions 𝜈 ∗ with the density version 𝜇= (2, 2, 1,…, 1, 2)/15 of the prior used in
Tables 8.2-8.4 and with the uniform prior 𝜇= (1,…, 1)/12. The first solution has s∗=743.6,G∗=−23.4 and
the second s∗=729.4,G∗=−7.07. The integral MINIDIV solutions 𝜈 are the same for both priors, and have
G(𝜈)=−434.5 and −368.4 respectively.

Anoticeable differencewith the case 𝜇⩾1 is that all else being equal, the concentration threshold
becomes higher, as can be seen from Table 8.6. This is not surprising given (7.1) and (7.2).

𝛿 𝜗 𝜀 ĉ
10−5 0.1 10−3 414

10−5 425
10−10 455
10−15 484
10−20 513

Table 8.6. The concentration threshold ĉ of
Theorem 6.1 vs. 𝜀with the prior
𝜇=(2,2, 1,…,1, 2)/15.

𝛿 𝜂 c=5 c=10 c=15
0.01 0.4 7.5 ⋅ 10−31 4.5 ⋅ 10−14 7.7 ⋅ 104

0.5 9.0 ⋅ 10−26 6.4 ⋅ 10−4 1.3 ⋅ 1020

0.6 1.1 ⋅ 10−20 9.1 ⋅ 106 2.2 ⋅ 1035

1 2.1 3.6 ⋅ 1047 1.7 ⋅ 1096

1.5 5 ⋅1025 2 ⋅1098 2.3 ⋅ 10172

Table 8.7. The lower bound of (7.1) on
Pr𝜇 (𝜈 ∗)/Pr𝜇(ℬ) with 𝜇=(2,2, 1,…,1, 2)/15
and some scalings c of the problem.

Table 8.7 shows that the problem is not large enough for the lower bound of Lemma 4.2 to
be meaningful, unless we apply some scaling by c and 𝜂 is rather large. Further, we see from the
𝜂=1.5 row that the ratio G(�̂�)/G∗=18.9 renders the MINIDIV solution exceedingly improbable.
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We also note that for MAXGRENT the probability prior can be interpreted in either of the two
ways mentioned at the beginning of §7. But in the case of MINIDIV its interpretation is not clear.
While it might be argued that a prior which is a density vector is inappropriate forMINIDIV in this
problem, whether the prior is a density or not is not an issue for MAXGRENT.

9 Conclusion
We presented and studied a new generalization of relative entropy to non-negative real vectors
which do not necessarily sum to 1. Its combinatorial interpretation is in terms of count vectors,
whereas that of ordinary entropy and relative entropy is in terms of frequency vectors. We believe
that our results, especially the concentration property, provide support for an extension of the
well-knownMAXENT framework for inference of probability distributions to what we have called
here the MAXGRENT method, itself an extension of the MAXGENT of [Oik17], for inference of
count vectors. Still, there are many more aspects of MAXGRENT and its relationships with other
methods that remain to be explored.

Appendix A Proofs
Proof of Proposition 2.2

1. This can be seen from (2.2) and the second line of (2.4), since G(x) is always non-negative.
2. From the log-sum inequality,∑i xi ln (xi/yi)⩾(∑i xi) ln (∑i xi/∑i yi)=(∑i xi) ln (∑i xi). Then

G(x ∥ y)⩽0 follows from (2.3). Another proof uses (2.5): we have r=1, and the divergence
D(𝜒 ∥𝜓) is always non-negative.

3. The value of G(y ∥y) follows from (2.5).
4. If y⩾1, all partial derivatives of G(x ∥y) are ⩾0 at x; and if yi>1, ∂G/∂xi>0. Thus x′ can be

reached from x by a sequence of changes that cannot decrease, and may increase, the value
of G. More formal proof: by the mean value theorem there is a point u on the line segment
(convex set) between x and x′ s.t. G(x′ ∥y)−G(x ∥y)=∇xG(u ∥y) ⋅ (x′−x). The elements of the
gradient at u are ln �(yi/ui)∑j uj�, andwe already have x′−x⩾0. A simple sufficient condition
for ∇x G(u ∥ y) to be ⩾0 is y⩾1. [A weaker sufficient condition is that ū⩽ y, where ū is the
normalized u.]

5. It is pointed out in [Oik17] that the generalized entropy (2.2) is such that G(𝛼x)=𝛼G(x) for
any 𝛼>0. That the generalized relative entropy G(x ∥y) has the same property then follows
from (2.4).

6. By the second line of (2.4), for fixed y, G(x ∥y) is the sum of the function G(x) of (2.2), shown
concave in §2.2 of [Oik17], and of a linear (affine) function; hence it is concave. That it is not
strictly concave follows from item 5 above. Also,G((x1,x2)∥(1,1)) is an example. Since strong
concavity implies strict concavity, G can't be strongly concave either.

7. By concavity, ∀𝛼,𝛽>0, G� 𝛼
𝛼+𝛽 x+

𝛽
𝛼+𝛽 y � z�⩾

𝛼
𝛼+𝛽 G(x ∥z)+

𝛽
𝛼+𝛽 G(y ∥z). Then by the positive

homogeneity property in Proposition 2.2(5), multiplying both sides by 𝛼+𝛽 yields the desired
result.
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8. The lower bound follows simply from the 2nd line of (2.4) by noting that the generalized
entropy G(x) of (2.2) is always ⩾0, and that ∑i xi ln yi⩾(mini ln yi)∑i xi. The upper bound
follows from the definition (2.3) by noting that by the log-sum inequality ∑i xi ln (xi/yi)⩾
(∑i xi) ln (∑i xi/∑i yi).

9. Suppose we group the ith and jth elements of x as well as those of y: the value of G(x ∥ y)
is unaffected when the same permutation is applied to both arguments, so after a suitable
permutation we can act as if we are grouping the first two elements of each. Then from (2.3)

G�(x1+x2,x3,…,xm) ∥(y1+y2,y3,…,ym)� ⩾ G(x ∥y) ⇔
(x1+x2) ln

x1+x2
y1+y2

⩽ x1 ln
x1
y1

+x2 ln
x2
y2
,

which holds by virtue of the log-sum inequality.

Proof of Proposition 2.5

1. This follows from Proposition 2.2(4).

2. By Proposition 2.2(2), G(x ∥y)=−sD(𝜒 ∥𝜓)⩽0, and D(𝜒 ∥𝜓) becomes 0 iff 𝜒=𝜓.

3. First recall the upper bound in Proposition 2.2(7). With only the constraint∑i xi⩽s, the expres-
sion for x∗ in (2.8) reduces to xj∗=yj (∑i xi

∗) e−𝜉 ∗
, 𝜉 ∗ (∑i xi

∗= s), 𝜉 ∗⩾0. First assume that 𝜉 ∗>
0. Then we must have ∑i xi

∗= s and summing the expression for xj∗ over all j we find that
e−𝜆∗ r=1. So xj∗=(s/r) yj as claimed; the result for the equality constraint follows from that
for the inequality constraint. Next, using the above x∗ in (2.3) it follows that G(x∗ ∥y)= s ln r
as claimed.

Now assume that 𝜉 ∗=0; we then see that wemust have r=1, i.e. ymust be a density vector.
In this case, any feasible x, i.e. with∑i xi⩽s, maximizes G. The value of the maximum is s ln r,
as for 𝜉 ∗>0, and this value is 0. As a simple example of this situation consider maximizing
G�(x1,x2) ∥(0.5, 0.5)� subject to x1+x2⩽ s.

4. The constraint∑i xi⩽s2 is always implicitly present. By part 3, if that were the only constraint,
we would have G∗(y)= s2 ln r. In the presence of additional constraints G∗(y)⩽ s2 ln r. Now
assume the sum s∗ of the solution x∗ is known; by part 3, solving the problem under only the
constraint∑i xi= s∗ results in G∗(y)= s∗ ln r. When we add the rest of the constraints the sum
remains at s∗ and the value of G∗(y) can only decrease or remain the same.

Proof of Lemma 2.6

The proof uses only properties ofG(x∥y), and relies only on that 𝒞 is convex, closed, and bounded.

1. The proof of the uniqueness of the maximum is by contradiction. Assume that u, v are two
(distinct) global maximizers of G over 𝒞. It is not possible that both of them have the same
sum s: under the condition ∑i xi= s, we have G(x ∥y)= s ln s−∑i xi ln xi+∑i xi ln yi by (2.3).
But this is a strictly concave function of x (sum of the strictly concave Shannon entropyA.1

and of a linear function), so it has a unique global maximizer over the convex domain 𝒞∩{x |
∑i xi= s}.

A.1. Extended to all x⩾0. This is strictly concave, the Hessian is easily seen to be negative definite.
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Next let u and v have different sums. We will derive a condition necessary for both u and
v to maximize G and show that it is contradicted by the positive homogeneity of G. Under
our assumption of G(u ∥y)=G(v ∥y)=G∗, the concavity of G implies that any point on the line
segment between u and vmust yield a value ⩾G∗. Since G never exceeds G∗, this value must
be G∗. Thus the function

f (𝛼)=G�𝛼u+(1−𝛼)v ∥y�, 𝛼∈[0,1]

must be a constant. Therefore f ′(𝛼) must be 0 for all 𝛼∈(0, 1). Rather than f ′(𝛼), it is easier
to deal with the expression for f ′′(𝛼), which also has the advantage of not involving y. The
constancy of f ′(𝛼) implies that we must have f ′′(𝛼)≡0:

f ′′(𝛼) = (∑i ui−∑i vi)2
𝛼∑i ui+(1−𝛼)∑i vi

−�
i

(ui−vi)2
𝛼ui+(1−𝛼)vi

.

We will consider the condition f ′′( /1 2)=0, and set ui−vi=zi,ui+vi=wi. Then we have

f ′′( /1 2) =
(∑i zi)2
∑i wi

−�
i

zi2
wi

=0.

Further setting qi=wi/∑i wi, since ∑i wi>0 the above condition is equivalent to (∑i zi)
2−

∑i (zi
2/qi)=0. But the l.h.s. is a strictly concave function of q, hence over the convex set q>0,

∑i qi=1 it attains its global maximum of 0 at a unique point q̂, where qî=zi/∑j zj.
So we have shown that f ′′( /1 2)=0⇒wi/∑jwj=zi/∑j zj for all i. This is equivalent to

∀i, ui+vi
∑j uj+∑j vj

= ui−vi
∑j uj−∑j vj

or ui
vi
=
∑j uj

∑j vj
. (A.1)

This condition is necessary for f ′(𝛼) to be constant, in particular 0, hence for f (𝛼) to be con-
stant. Finally, we can assume w.l.o.g. that the points u and v are such that ∑i ui>∑i vi, and
then (A.1) implies that there is some 𝛼>1 s.t. u=𝛼v. But then by Proposition 2.2(5),G(u∥y)=
𝛼G(v ∥y)>G(v ∥y), contradicting our initial assumption that both u and v maximize G. [The
last inequality holds because G(v ∥y)>0 when y⩾1; recall Remark 2.4.]

2.When y is a density vector the argumentwe gave above still holds, until we get to the inequality
𝛼G(v ∥y)<G(v ∥y), which is now reversed because G(v ∥y)⩽0; this inequality fails when G(v ∥
y)=G∗=0.

3. If 𝒞 is not full-dimensional, i.e. its dimension is <m, then the claim is trivially true: every point
of 𝒞 is a boundary point in (relative to)ℝm. Now suppose 𝒞 is full-dimensional, and x∗∈ int𝒞.
Then for some 𝜂>0 there exists an ℓ∞-ball𝔹(x∗,𝜂) contained in 𝒞. Hence by Proposition 2.2(4)
the point of 𝒞 obtained by adding 𝜂 to each element of x∗ yields a value of G larger than G∗,
a contradiction. [The polytope defined by (2.7) is full-dimensional if there are no equality
constraints and also no equalities implied by the inequalities; see [Sch86], §8.2 for details.]

Concerning the relative boundary, on the set 𝒞={x∈ℝ+
2 |x1+x2= s} whose interior in ℝ2

is empty and whose relative boundary (w.r.t. its affine hull) consists of the two points (0, s)
and (s, 0), G�x ∥ (1,1)� is maximized at the interior point (s/2, s/2).

28 APPENDIX A



Proof of Proposition 2.8

We can write (2.12) as F(x ∥𝜇)=F(x)−∑i xi ln 𝜇i, where F(x)=∑i xi ln xi−(∑i xi) ln (∑i xi). F(x)
is the negative of the generalized entropyG(x) introduced in [Oik17]. The function F also appears
in 3.51 of [RW09], and it is shown in 11.12 there that it is the support function of the convex set
{u∈ℝm | ln (eu1+⋯+ eum)⩽0}, equivalently of {u∈ℝm | eu1+⋯+ eum⩽1}. Now by 11.4 of [RW09],
the conjugate of the support function of a closed convex set C is the indicator function 𝛿C of this
set; it follows that the conjugate F†(u) of F(x) is the indicator function of the set {u∈ℝm |∑i e

ui⩽1}.
Finally, by using 11(3) of [RW09], i.e. the correspondence 𝜑(x)−𝛼 ⋅x ↔↔↔↔↔↔↔↔

†
𝜓(u+𝛼) that holds

when 𝜑 is proper, lower-semicontinuous, and convexA.2, which F(x) is, we see that the conjugate
F†(u ∥𝜇) of F(x ∥𝜇) is the indicator function of �u∈ℝm |∑i e

ui+ln𝜇i⩽1�, as claimed.

Proof of Proposition 2.9

The first three inequalities follow from the basic property of rounding, ∀y∈ℝ, �[y]−y�⩽ /1 2. For
the last inequality, omitting the stars for simplicity, we have

�𝜈n− x
s �1 = �𝜈n + x

n− x
n− x

s �1 ⩽ 1
n ‖𝜈−x‖1+�1n − 1

s � ‖x‖1 ⩽
m
2n+ |n− s|

ns s ⩽ m
2n + m

2n .

Proof of Proposition 2.7

Suppose that the vectors x∗, 𝜆∗, 𝜉 ∗ satisfy condition (2.8); we show that if b↦𝛼 b, then 𝛼x∗, 𝜆∗, 𝜉 ∗

also satisfy this condition. This means that if x∗ solves problem (2.7), the scaled vector 𝛼x∗ solves
the problem after the data is scaled by b↦𝛼b. That 𝛼x∗,𝜆∗,𝜉 ∗ satisfy (2.8) with b↦𝛼b is clear from
the linearity of the constraints on x in the first line, and the fact that the expression for x∗ in the
second line is invariant under x∗↦𝛼x∗, as is the condition on 𝜉 ∗ in the third line.

That G∗ scales as claimed follows from Proposition 2.2(5). Finally, the fact that the bounds on
∑i xi scale with 𝛼 is just a property of linear programs in general: if z solves the LPminx∈ℝm∑i aixi
subject to Cx⩽d, then 𝛼z solves it with the scaled constraint Cx⩽𝛼d. Similarly for the maximum.

Proof of Proposition 3.1

Consider the two concave programs maxx∈𝒞(0)G(x ∥y) and maxu∈𝒞(0)−𝒟(u ∥v), with 𝒞(0) as in
(2.7). The Lagrangians are

LG(x, 𝜆, 𝜉 ) = G(x ∥y)−𝜆⋅ (Ax−b)−𝜉 ⋅ (Cx−d),
L𝒟(u, 𝜌,𝜎) = −𝒟(u ∥v)−𝜌 ⋅ (Au−b)−𝜎 ⋅ (Cu−d),

and the necessary and sufficient conditions for x∗(y),u∗(v) to be the solutions of the concave pro-
grams are (2.8) and (3.2).
1. Given the solution x∗(y) of the MAXGRENT problem, set v= ṽ= y∑j xj

∗, and 𝜌=𝜆∗, 𝜎 =𝜉 ∗ in
(3.2). Then we see that the resulting expressions are satisfied by �x∗(y),𝜆∗, 𝜉 ∗�, hence u∗(ṽ)=
x∗(y) as claimed.

2. The Lagrangian is now LG(x, 𝜆, 𝜉,𝜆0), containing the extra term −𝜆0∑i u
∗(v) and the solution

(x∗, 𝜆∗, 𝜉 ∗, 𝜆0
∗) is such that

xj∗ = yj �∑i xi
∗� e−(𝜆∗⋅A.j+𝜉 ∗⋅C.j+𝜆0

∗), 𝜉j∗(C. jx∗−dj)=0, 𝜉j∗⩾0, 1⩽ j⩽m. (A.2)

A.2. [RW09] use ∗ to denote conjugacy, but we've used that to denote optimality, so we denote it by † instead.
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Given the MINIDIV solution u∗(v), set in the above expressions y= ỹ= v/∑i u
∗(v),∑i xi

∗=
∑i ui

∗, 𝜆∗=𝜌∗, 𝜉 ∗=𝜎 ∗, 𝜆0
∗ =0. Then �u∗(v),𝜌∗, 𝜎 ∗,𝜆0

∗� satisfies (A.2) and solves the MAXGRENT
problem, as claimed.

Proof of Proposition 4.1
Let 𝜻 be an m-vector all of whose components equal 𝜁 . In the hypercube ‖y− x‖∞⩽𝜁 , G(y ∥ 𝜇)
attains its minimum at x−𝜻 and its maximum at x+𝜻 , so we have G(x−𝜻 ∥𝜇)⩽G(y∥𝜇)⩽G(x+𝜻 ∥
𝜇). The lower bound of the lemma is based on Lemma 2.1 of [Oik17] which bounds G(x− 𝜻)
from below; the proof is the same as the one given there with the simple modification G(y ∥𝜇)=
G(y)+∑i yi ln 𝜇i. The upper bound of the lemma is a bound on G(x+𝜻 ∥ 𝜇) from above, and
follows likewise by changing 𝜻 to −𝜻 .

Proof of Proposition 5.1
The proof relies only on the convexity of 𝒞, and not on the fact that it is polyhedral. Let ‖⋅‖ be any
ℓp norm.
1. For a∈(0,1), let y=ax∗+(1−a)x be a point on the line segment between x and x∗. Since all of

the segment is in 𝒞 because 𝒞 is convex, y∈𝒞. Then by the concavity of G,

G�y ∥𝜇� ⩾ aG(x∗ ∥𝜇)+(1−a)G(x ∥𝜇) > aG(x ∥𝜇)+(1−a)G(x ∥𝜇) = G(x ∥𝜇),

where the strict inequality follows from x≠x∗ and the fact that x∗ is the unique maximizer of
G(⋅∥𝜇) over 𝒞. So G(y ∥𝜇)>G(x ∥𝜇) for any a∈(0,1).

Now let x be outside K(𝜗 ∗), and choose 𝛼 so that y is on the surface of K∗(𝜗): ‖x∗− y‖=
𝜗 ‖x∗‖⇔ (1− a) ‖x−x∗‖=𝜗 ‖x∗‖. So the desired 𝛼 is 1−𝜗 ‖x∗‖

‖x−x∗‖ , and it is in (0, 1) because ‖x−
x∗‖>𝜗 ‖x∗‖ for x outside K∗(𝜗).

2. As above, with y=ax∗+(1−a)x we have G(y ∥𝜇)>G(x ∥𝜇). Then �∑i yi− s∗�=(1−a) �∑i xi−
s∗�, so �∑i yi− s∗�⩽𝜗 ‖x∗‖ iff a⩾1−𝜗 ‖x∗‖/|∑i xi− s∗|. Since x∉D∗(𝜗), a∈(0,1).

Proof of Proposition 5.3
We prove both parts of the proposition by means of one example. Let m=2 and let 𝒞 be the
very simple set {x∈ℝ+

2 |x1+x2= s}. By Proposition 2.5, x∗=� s𝜇1
𝜇1+𝜇2

, s𝜇2
𝜇1+𝜇2

�, s∗= s. For some 𝜁 >0
consider z=x∗+(𝜁,−𝜁), a point to the right and below x∗ on the line x1+x2=s. By the mean value
theorem there is a point y between z and x∗ on this line s.t. G(x∗∥𝜇)−G(z∥𝜇)=∇xG(y∥𝜇)⋅(x∗−z).
Since ∇xG(y ∥𝜇)=�ln 𝜇1 s

y1
, ln 𝜇2 s

y2
� and ‖z−x∗‖∞=𝜁 , it follows that

G(x∗ ∥𝜇)−G(z ∥𝜇)
‖z−x∗‖∞

= ln (((((((𝜇2
𝜇1

y1
y2))))))) < ln (((((((𝜇2

𝜇1

x1∗+𝜁
x2∗−𝜁))))))), (A.3)

because y1<z1 and y2>z2 imply y1/y2<z1/z2.
1. Now let 𝜁 ⩽𝜉 , so ‖z−x∗‖⩽𝜉 as assumed in part 1. Noting that 𝜇2x1∗=𝜇1x2∗=

𝜇1𝜇2 s
𝜇1+𝜇2

, the claim
follows for the ℓ∞ norm by choosing 𝜁 >0 small enough tomake the argument of the log ⩽1+𝜀
(easily seen for 𝜇1=𝜇2=1). Next, for the ℓ1 norm we have ‖z−x∗‖1=2𝜁 so (A.3) becomes

G(x∗ ∥𝜇)−G(x ∥𝜇)
‖x−x∗‖1

= 1
2 ln (((((((𝜇2

𝜇1

y1
y2))))))) < 1

2 ln (((((((𝜇2
𝜇1

x1∗+𝜁
x2∗−𝜁)))))))

as above. For the ℓ2 normwe have ‖z−x∗‖2= 2� 𝜁 , so analogously, and the claim is established
for these norms also.
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2. We see from (A.3) that a necessary condition for the statement of part 2 to hold at z=x∗+(𝜁,
−𝜁), where now we just assume 𝜁 >0, is that

𝜁 ⩾𝜗 ‖x∗‖ ⇒ 𝜁 ln (((((((𝜇2
𝜇1

x1∗+𝜁
x2∗−𝜁))))))) > 𝜅𝜗 ‖x∗‖.

If we take 𝜇1=𝜇2 and 𝜁 =𝜗 ‖x∗‖, the r.h.s. above reduces to

ln s∗/2+𝜗 ‖x∗‖
s∗/2−𝜗 ‖x∗‖ > 𝜅. (A.4)

With the ℓ∞ norm we have ‖x∗‖∞= s∗/2 so (A.4) becomes ln 1+𝜗
1−𝜗 > 𝜅. Therefore any 𝜅>0

satisfying it must depend on 𝜗, and this establishes the claim for ‖⋅‖∞. Likewise, for the ℓ1 and
ℓ2 normswe have ‖x∗‖1=s∗ and ‖x∗‖2=s∗/ 2� , so (A.4) becomes ln 1/2+𝜗

1/2−𝜗 > 𝜅 and ln 1/ 2� +𝜗
1/ 2� −𝜗

> 𝜅
respectively.

Proof of (6.9) and (6.10)
1. We have already discussed 𝛼>0 after (6.6), so the first thing we need for (6.9) is to show that

𝛾>0. We do this by showing that K≪1. Noting that s∗𝜒i
∗=xi∗ and all 𝜇i⩾1,

K < (m+1)Γ(m/2) e−m/12

2𝜋m/2
1

� s2+ /m 2+2� + m√ �m+1−� s1− /m 2� + m√ �m+1 .

The second fraction above is largest when s1= s2= s, and the result is maximized when s= /m 2;
this is achievable by s= s∗ when all xi∗= /1 2. So then

K < (m+1)Γ(m/2) e−m/12

2𝜋m/2
1

� m+2� + m√ �m+1− ( m√ )m+1

and this can be seen to be ≪1 for any m⩾2.
Nowwe want c to satisfy the inequality c−𝛽 e𝛼c⩾e𝛾, equivalently f (c)⩾0. If 𝛼⩾𝛾, f (1)⩾0.

Otherwise, we note that f is strictly convex over (0,∞), has a minimum at 𝛽/𝛼, and increases
thereafter. So if f (𝛽/𝛼)⩾0, c3=max (1, 𝛽/𝛼). If not, we have f (1)<0, f (𝛽/𝛼)<0, so f has
a unique root in �max (1, 𝛽/𝛼),∞� as indicated. [This root can be expressed in terms of the
Lambert W-function, but the added complexity does not seem worth it.]

2. For (6.10), in §4.3.1 of [Oik17] and in the proof of eq. (4.26) there it is shown that the inequality
x⩾A ln x+B is satisfied by

x = {{{{{{{{{{{{{{{{{{{{ 2A ln(A+B)+B, A+B⩾1,
B+ln B, A+B<1.

[The second line above is a slight improvement over the 1.5B+ln B in [Oik17], obtained by
noting that in the case here B<1 so lnB<0.] (6.10) follows by taking A=𝛽/𝛼,B=𝛾/𝛼.

Appendix B Proof of Lemma 5.2
Let x∗ maximize G(x ∥𝜇) over a compact convex set 𝒞. Assuming that 𝒞 is contained in an open
subset ofℝ+

m, by a 2nd-order Taylor expansion around x∗ we have that for any x∈𝒞, x≠x∗, there
is a x̃=ax+(1−a)x∗ for some a∈(0,1) such that

G(x ∥𝜇) = G(x∗ ∥𝜇)+∇xG(x∗ ∥𝜇) ⋅ (x−x∗)+ 1
2 (x−x∗)T∇x2G(x̃ ∥𝜇)(x−x∗). (B.1)
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The term ∇xG(x∗∥𝜇)⋅(x−x∗) is ⩽0 for any x∈𝒞, as this is a necessary condition for x∗ tomaximize
G(x ∥𝜇) over 𝒞. Further, the Hessian is

∇x2G(x̃ ∥𝜇) =
1

∑i x̃i
1m,m−diag� 1

x̃1
,…, 1

x̃m
�,

where 1m,m is an m×mmatrix of 1s. Therefore, writing x̃ as x∗+a (x−x∗),

∀x∈𝒞, G(x∗ ∥𝜇)−G(x ∥𝜇) ⩾ −1
2 (x−x∗)T∇x2G(x̃ ∥𝜇)(x−x∗)

= 1
2 ((((((((((((((�i

(xi−xi∗)2
xi∗+a (xi−xi∗)

− �∑i xi−∑i xi
∗�2

∑i xi∗+a�∑i xi−∑i xi∗�))))))))))))))
≜ 1

2 f (x;a).

(B.2)

[The notation f (x; a) is somewhat misleading because once x is given the possible x̃ and a are
determined, but it is intended to indicate that we treat a as a parameter whose value is unknown.]
We show in §B.4 that

∀x∈ℝ+
m, ∀a∈(0,1), f (x;a)⩾0 and f (x;a)=0 iff x= cx∗ for some c>0. (B.3)

[So the above Hessian, a function of x, a, is positive-semidefinite.] Note that (B.2) holds only for
x∈𝒞 whereas (B.3) holds for all x∈ℝ+

m.
Using the notation s≜∑i xi, s

∗≜∑i xi
∗,

f (x;a) = �
i

(xi−xi∗)2
xi∗+a (xi−xi∗)

− (s− s∗)2
s∗+a (s− s∗) ⩾ 0 ∀a∈(0,1). (B.4)

By Proposition 5.1(1) we want to minimize f (x;a) over 𝒞 under the constraint ‖x−x∗‖∞=𝜗 ‖x∗‖∞.
For the purposes of the proof we introduce an auxiliary constraint s− s∗= t, where we treat t∈ℝ
as a parameter. This parameter is constrained by |t| ⩽ m𝜗 ‖x∗‖∞, since |t| = �‖x‖1− ‖x∗‖1� ⩽ ‖x−
x∗‖1 ⩽ m ‖x−x∗‖∞ [and also by (2.10)].

From this point on in the proof, we relax the problem by ignoring the constraint x∈𝒞, except in a
few instances clearly identified in the sequel. Then setting u≜x−x∗, the minimum of f (x;a, t)will
be ⩾

min
‖u‖∞=𝜗‖x∗‖∞, ∑iui=t, u>−x∗

𝜑(u)− t2
s∗+a t , where 𝜑(u)≜�

i

ui
2

aui+xi∗
= �

i
𝜑i(ui), (B.5)

and we note that the minimum is over a non-convex setB.1. Now define the convex sets

Cj
+ ≜ {uj=𝜗 ‖x∗‖∞, ∑i ui= t, ui>−xi∗, |ui|⩽𝜗 ‖x∗‖∞}

Cj
− ≜ {uj=−𝜗 ‖x∗‖∞, ∑i ui= t, ui>−xi∗, |ui|⩽𝜗 ‖x∗‖∞}

, j=1,…,m. (B.6)

Then u is in the non-convex set {‖u‖∞=𝜗 ‖x∗‖∞,∑i ui= t,u>−x∗} of (B.5) iff it is in one of the 2m
convex sets (B.6) [which are not disjoint].

We can find û=argmin𝜑(u) byminimizing 𝜑(u) over each one of the sets (B.6) and taking the
minimum of the results. To do this, we will minimize 𝜑(u) over C1

+ in §B.1 and over C1
− in §B.2,

and then in §B.3 show how to generalize to the rest of the sets in (B.6).

B.1. Nevertheless 𝜑i(ui) is strictly convex for ui>−xi∗, and so 𝜑(u) is also strictly convex for u>−x∗.
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B.1 The case u∈C1
+

To ease the notation we use xmax
∗ ≜ ‖x∗‖∞ and v≜𝜗 ‖x∗‖∞. Then C1

+={u1= v,∑i ui= t, ui>−xi∗,
|ui|⩽v}, and with û1=v we have

min
u∈C1

+
𝜑(u) = 𝜑1(v) + min

u∈C1
+
�
i⩾2

𝜑i(ui). (B.7)

For the second term we relax the constraints |ui| ⩽ v, and introduce a Lagrange multiplier 𝜆 for
∑i⩾2 ui= t−v. Then we must have

(aui+2xi∗)ui

(aui+xi∗)2
+𝜆=0, i⩾2,

which implies that a(𝜆a+1)ui
2+2xi∗(𝜆a+1)ui+𝜆(xi∗)2=0. If 𝜆a+1=0, this reduces to 𝜆(xi∗)2=0,

so wemust have 𝜆=0; this leads either to ûi that violate ui>−xi∗, or to ûi=0 for i⩾2, possible only
if t=v. If 𝜆a+1<0 there is no real root, so it must be that

ûi=
±1− 𝜆a+1�
a 𝜆a+1�

xi∗, 𝜆≠0, 𝜆a+1>0, i⩾2.

The ûi with the −1 in the numerator does not satisfy ûi>−xi∗, so we are left with ûi=
1− 𝜆a+1�
a 𝜆a+1�

xi∗,
and using the constraint ∑i⩾2 ui= t−v we find

û1=v=𝜗xmax
∗ , ûj=

t−v
s∗−x1∗

xj∗, j⩾2 (B.8)

This includes the solution ûj=0 for j⩾2when t=v found above. To satisfy ûi>−xi∗wemust have
t−v>x1∗− s∗; this reduces to ŝ−x1∗>v B.2, which holds by virtue of x̂1−x1∗= û1=v. Finally, from
(B.8) and û= x̂−x∗,

x̂1=x1∗+v, x̂j=�1+ t−v
s∗−x1∗

�xj∗, j⩾2. (B.9)

We see that unless t<v, the point x̂ is not admissible: by Proposition 2.2(4) we would have G(x̂ ∥
𝜇)>G(x∗ ∥𝜇), so x̂ cannot be in 𝒞. Therefore we assume t<v in the rest of this section.

Now we return for a moment to the constraint |uj|⩽v for j⩾2. By (B.8) it is equivalent to

∀j⩾2, ((((((((((1− s∗−x1∗
xj∗ ))))))))))v ⩽ t ⩽ ((((((((((1+ s∗−x1∗

xj∗ ))))))))))v,
so in case t satisfies these conditions, the solution (B.8), (B.9) of the relaxed problem also solves
the original problem (B.7).

With (B.8) the min in the second term of (B.7) reduces to (t−v)2

s∗−x1∗+a (t−v) and so

min
u∈C1

+
𝜑(u) ⩾ v2

x1∗+av+
(t−v)2

s∗−x1∗+a (t−v) > 0. (B.10)

From (B.10) and (B.5),

f (x;a, t) ⩾ v2
x1∗+av+

(t−v)2
s∗+a t− (x1∗+av)−

t2
s∗+a t ≜ 𝜓(a, t,v). (B.11)

B.2. Here we are using the covert notation û= x̂−x∗ and ŝ=∑i x̂i.
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B.1.1 Minimization w.r.t. a

We begin by minimizing 𝜓(a, t,v) w.r.t. a, since once x is given in (B.2), a is restricted.
First we investigate 𝜓(0, t,v) and 𝜓(1, t,v):

𝜓(0, t,v)= (vs∗− t x1∗)2
x1∗ s∗(s∗−x1∗)

, 𝜓(1, t,v)= (vs∗− t x1∗)2
(x1∗+v)(s∗+ t)(s∗−x1∗−v+ t) .

Clearly 𝜓(0, t,v)⩾0 and it is 0 at t=vs∗/x1∗, but this is excluded by the assumption t<vmade after
(B.9). Therefore ∀t,𝜓(0, t,v)>0. For 𝜓(1, t,v),

s∗−x1∗+ t−v>0 ∀t (B.12)

because s∗−x1∗+ t−v=s−x1∗−v>0 since x1−x1∗=v implies s⩾x1∗+v. Then t=vs∗/x1∗ is excluded
as noted above, and therefore ∀t,𝜓(1, t,v)>0.

Next, it is too hard to deal with ∂𝜓/∂a as a function of a directly, so we use a transformation
with the notation

𝜎1≜x1∗+av, 𝜎2≜ s∗+a t, 𝜌(a)≜𝜎1/𝜎2, 𝜎1, 𝜎2, 𝜌>0.
Then we haveB.3

𝜓(a, t,v)= v2
𝜎1

− t2
𝜎2

+ (t−v)2
𝜎2−𝜎1

, ∂𝜓
∂a = t3

𝜎22
− v3

𝜎12
− (t−v)3

(𝜎2−𝜎1)2
.

Further,
x1∗
s∗ ⩽ 𝜌(a) ⩽ x1∗+v

s∗+ t < 1, ∀a, t. (B.13)

This follows from 𝜌′(a)= vs∗− tx1∗

(s∗+a t)2 . If t>0, vs∗− tx1∗=0 is disallowed as above, and for t<(s∗/x1∗)v,
𝜌′(a)>0. If t<0, 𝜌′(a)>0 always. So the minimum of 𝜌(a) is 𝜌(0) and its maximum is 𝜌(1).

Returning to ∂𝜓/∂a,
∂𝜓
∂a = (t𝜌−v)2�t𝜌2+2(v− t)𝜌−v�

𝜎22(𝜌−1)2𝜌2 .

So the sign of ∂𝜓/∂a is determined by that of 𝜑(𝜌, t)= t𝜌2+2(v− t)𝜌−v in the numerator. Now
we distinguish some cases within t<vB.4:

Case 1. 0< t<v and 𝜌⩽1/2.
Then 𝜑(𝜌, t) = t 𝜌(𝜌− 2)+ (2 𝜌− 1) v < 0, so ∂𝜓/∂a<0 and mina 𝜓(a, t, v)=𝜓(1, t, v). From

(B.13) the assumption 𝜌⩽ /1 2 will hold if 2(x1∗+v)⩽ s∗+ t. With t∈(0,v) this will hold if

𝜗 ⩽ 1
2

s∗
xmax
∗ −1 (B.14)

which appears in the statement of the lemma and imposes a restriction on x∗: xmax
∗ < s∗/2 B.5.

Case 2. t<0.
We show that 𝜓(a,−t,v)>𝜓(a, t,v) for all t>0, and the same goes for the minima, so we don't

need to do anything more for the t<0 case, the already-derived bounds hold a fortiori.

B.3. Most of the following calculations were done with the help of the computer algebra system MAXIMA, https://
maxima.sourceforge.io.

B.4. Recall assumption after (B.9).
B.5. Noting that 𝜑(𝜌, t) is an affine function of t controlled by the values 𝜑(𝜌,0) and 𝜑(𝜌,v)<0, we see that if 𝜌>1/2wemay have

mina𝜓(a, t,v)=𝜓(0, t,v); this may open a way toward relaxing xmax
∗ < s∗/2.
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With t>0, 𝜓(a,−t,v)>𝜓(a, t,v) is equivalent to

(t+v)2
s∗−a t− (x1∗+av)−

(t−v)2
s∗+a t− (x1∗+av) > t2� 1

s∗−a t −
1

s∗+a t�

⟺ 2vs∗−2vx1∗−av2+a t2
�s∗−a t− (x1∗+av)��s∗+a t− (x1∗+av)� > a t2

(s∗−a t)(s∗+a t)

⟺ 2v (s∗−x1∗)−av2+a t2

a t2
> �s∗−a t− (x1∗+av)��s∗+a t− (x1∗+av)�

(s∗−a t)(s∗+a t) .

The r.h.s. of the last inequality is <1, so it suffices if the l.h.s. is ⩾1. This reduces to 2(s∗−x1∗)⩾av,
which holds if 𝜗⩽2(s∗/xmax

∗ −1), a requirement weaker than (B.14).

Case 3. t=0.
Here we have 𝜑(𝜌,0)=(2𝜌−1)v, so ∂𝜓/∂a⩽0 iff 𝜌⩽ /1 2, which will hold by (B.14), and then

mina𝜓(a, 0,v)=𝜓(1,0,v) again. [If 𝜌> /1 2, ∂𝜓/∂a>0 and mina 𝜓(a, 0,v)=𝜓(0,0,v).]

B.1.2 Minimization w.r.t. t≠0

The conclusion from §B.1.1 is that we have to minimize 𝜓(1, t,v), where 0⩽ t<v. [We shouldn't
do anything w.r.t. x=x1∗ at this point, because x1∗ can't depend on t= s− s∗.]

(B.8), (B.9) specify a family of solutions x̂= x̂(t), parameterized by t. Setting a value for t, e.g.
by minimizing over t, picks out one of these solutions. We've already handled t=0, so here we
have 0< t<v. From (B.11),

∂𝜓(1, t,v)
∂t =−

(vs∗− t x1∗)�(2 s∗−x1∗) t− (2x1∗+v) s∗+2 s∗2�
(s∗+ t)2(s∗−x1∗−v+ t)2

.

The first factor in the numerator is positive by the assumption t<v. The second factor is positive
iff t> 2x1∗+v−2 s∗

2 s∗−x1∗
s∗. But this is true because t⩾0 and the numerator of the r.h.s. is negative if

𝜗⩽2(s∗/xmax
∗ −1), as at the end of Case 2 in §B.1.1.

Consequently 𝜓(1, t,v) decreases with increasing t∈(0,v) and therefore

inf
t∈(0,v)

𝜓(1, t,v) = 𝜓(1,v,v)=� 1
x1∗+v −

1
s∗+v�v

2.

B.2 The case u∈C1
−

Here we have the set C1
−=�u1=−v, ∑i ui= t, ui>−xi∗, |ui|⩽v�. Proceeding as in §B.1 and omitting

the details, (B.8) and (B.9) become

û1==−v=−𝜗xmax
∗ , ûj=

t+v
s∗−x1∗

xj∗, j⩾2,
and

x̂1=x1∗−v, x̂j=�1+ t+v
s∗−x1∗

�xj∗, j⩾2.

There is no easy constraint on t here for x̂ to be in 𝒞, so we assume t∈[−mv,mv]. Next, (B.10)
becomes

min
u∈C1−

𝜑(u) ⩾ v2
x1∗−av+

(t+v)2
s∗−x1∗+a (t+v) > 0,
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and (B.11) becomes

f (x;a, t) ⩾ v2
x1∗−av+

(t+v)2
s∗+a t− (x1∗−av) −

t2
s∗+a t ≜ 𝜔(a, t,v). (B.15)

From (B.11) we see that 𝜔(a, t,v)=𝜓(a, t,−v), not entirely a surprise. Now we show that

t⩾0 ⇒ 𝜔(a, t,v)>𝜓(a, t,v), 𝜔(a,−t,v)⩾𝜓(a, t,v) (B.16)

These inequalities allow us to short-circuit the rest of the derivations, as the bounds we have
derived in §B.1 for 𝜓(a, t,v) when t⩾0 then hold a fortiori for 𝜔(a, t,v) whether t⩾0 or t<0.

To derive the first inequality in (B.16), from (B.11) and (B.15),

𝜔(a, t,v)−𝜓(a, t,v) = 2v (av2 s∗2+2 t x1∗2 s∗−2av2x1∗ s∗−2 t x1∗3+a t2x1∗2)
(x1∗−av)(x1∗+av)(s∗−x1∗−av+a t)(s∗−x1∗+av+a t) ,

so the sign of the difference is that of the 2nd factor in the numerator, an affine function of a:

(v2 s∗2−2v2x1∗ s∗+ t2x1∗2)a+2 t x1∗2(s∗−x1∗).

This is positive at a=0, and also positive at a=1 if t⩾0, which establishes the inequality.
For the second inequality,

𝜔(a,−t,v)−𝜓(a, t,v) =
2a (vs∗− t x1∗)2�t v (t−v)a2+vs∗2+2(t−v)x1∗ s∗− t x1∗2�

(x1∗−av)(x1∗+av)(s∗−a t)(s∗+a t)(s∗−x1∗−av+a t)(s∗−x1∗+av−a t).

The inequality is satisfiedwith equality at t=(s∗/x1∗)v. Otherwise, in the third factor of the numer-
ator the coefficient of a2 is minimized at t=v/2 and equals −v3/4. So the third factor is ⩾

−v2/4+vs∗2+2(t−v)x1∗ s∗− t x1∗2 = (2 s∗−x1∗)x1∗ t+(s∗2−2x1∗ s∗−v2/4)v
⩾ (s∗2−2x1∗ s∗−v2/4)v

and the last expression is ⩾0 if 𝜗⩽2 s∗
x1∗

1−2x1∗/s∗� . This is a weaker condition on 𝜗 than (B.14),
but still requires s∗/xmax

∗ >2.
This completes the proof of (B.16) and of the case u∈C1

−.

B.3 Generalization to Cj
+,Cj

− for j>1.
It is clear that if at the beginning of §B.1 we had chosen the set Cj

+, j≠1, in (B.6), we would have
simply ended up with xj∗ instead of x1∗ in (B.11) and then in §B.1.1 and §B.1.2. The same goes for
choosing Cj

−, j≠1, in §B.2: we would have xj∗ instead of x1∗ in (B.15). To remove this dependence
on j altogether, we minimize the bounds we have obtained one final time, w.r.t. x1∗.

There are two constraints on x1∗: x1∗< s∗− v by (B.12), and x1∗⩽xmax
∗ . (B.14) implies that s∗−

𝜗xmax
∗ >xmax

∗ , so only the constraint x1∗⩽xmax
∗ matters.

For t=0 and t∈(0,v) respectively, we have the functions

((((((( 1
s∗−x1∗−v +

1
x1∗+v)))))))v2=𝜓(1,0,v), � 1

x1∗+v −
1

s∗+v�v
2=𝜓(1,v,v).
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The minimum of 𝜓(1, 0,v) occurs at x1∗= s∗/2− v, but by (B.14) this is ⩾xmax
∗ , so the function is

minimized at xmax
∗ and has the value 𝜗 2

1+𝜗
s∗

s∗− (1+𝜗)xmax
∗ xmax

∗ . The function 𝜓(1,v,v) has its minimum

at the largest allowable x1∗, i.e. xmax
∗ , and its value is 𝜗 2

1+𝜗
s∗−xmax

∗

s∗+𝜗xmax
∗ xmax

∗ . Expressing these values in
terms of xmax

∗ /s∗,

min
x1∗

𝜓(1,0,v)= 𝜗 2

1+𝜗
1

1− (1+𝜗)xmax
∗ /s∗ xmax

∗ , min
x1∗

𝜓(1,v,v)= 𝜗 2

1+𝜗
1−xmax

∗ /s∗
1+𝜗xmax

∗ /s∗ xmax
∗ .

The first bound is smaller than the second, and is our final result in the statement of the lemma.
It is not unreasonable that this is so: the t=0 problem is more tightly constrained around x∗, and
so the minimum difference G(x∗ ∥𝜇)−G(x ∥𝜇) is smaller.

B.4 Proof of (B.3)
This is an improvement of the proof in [Oik17], Proposition 2.2.

Set u=x−x∗ and x̃=x∗+a (x−x∗) so that (B.2) becomes

f (x;a) = �
i

ui
2

x̃i
− (∑i ui)2

∑j x̃j
= 1

∑j x̃j ((((((((((((�i
ui
2

x̃i/∑j x̃j
−��

i
ui�2))))))))))))

= 1
∑j x̃j ((((((((((�i

ui
2

𝜉i
−��

i
ui�2)))))))))) ≜ 1

∑j x̃j
g(𝜉),

where 𝜉i= x̃i/∑j x̃j. For fixed u, g(𝜉) is a strictly convex function of 𝜉 ∈ℝ+
m and has a unique

minimizer 𝜉i=ui/∑j uj, at which point its value is 0. This establishes f (x;a)⩾0 for any x,a.
To show that f (x;a)=0 iff x= cx∗ for some c>0, when g(𝜉)=0 we have

𝜉i=
ui

∑j uj
⟺ xi∗+a (xi−xi∗)

s∗+a (s− s∗) = xi−xi∗
s− s∗ ,

where s≜∑i xi, s
∗≜∑i xi

∗. Now given any c>0, x= c x∗ implies the last equality above. Con-
versely, if that equality holds, it implies that xi=(s/s∗)xi∗, so c= s/s∗.
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