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ABSTRACT

Recently, Beloborodov suggested that there exists a resonance phenomenon between an extremely

intense electromagnetic wave and internal magnetized particles. The particles exchange energy with

the wave at frequent resonance events and then reach the radiation reaction limit immediately. This

process greatly enhances the scattering cross section of the particles. Note that these results only

involve an extraordinary (X) mode wave. In this paper, we focus on an intense ordinary (O) mode

wave propagating through magnetized particles and compare it with the case of the X-mode wave.

Our result shows that the scattering cross section of the particles in the O-mode wave is significantly

smaller than that in the X-mode wave. This has important implications for the transparency of a fast

radio burst (FRB) inside the magnetosphere of a magnetar. We argue that there is a strong scattering

region in the stellar magnetosphere, within which an O-mode wave is more transparent than an X-mode

wave for an FRB.
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1. INTRODUCTION

Some highly magnetized neutron stars, known as mag-

netars, can generate extremely intense transient radio

emissions called fast radio bursts (FRBs) (Lorimer et al.

2007; Bochenek et al. 2020; CHIME/FRB Collabora-

tion et al. 2020). Currently, the radiation mechanism

of FRBs is not well understood. Even in the magnetar

models, there are still different viewpoints on the loca-

tion where FRBs are generated. Some models propose

that FRBs could be produced inside the magnetosphere

(Yang & Zhang 2018; Lu et al. 2020; Wang et al. 2022;

Zhang 2022; Liu et al. 2023), while some other models

suggest that FRBs could take place outside the mag-

netosphere (Lyubarsky 2014; Beloborodov 2017, 2020;

Metzger et al. 2019; Margalit et al. 2020). It was also

proposed that FRBs could be generated near the light

cylinder (Lyubarsky 2020; Mahlmann et al. 2022). More

details about the models can be seen in some recent re-

views (Platts et al. 2019; Lyubarsky 2021; Xiao et al.

2021; Zhang 2023).

The typical luminosity of cosmological FRBs is ap-

proximately 10 orders of magnitude larger than that of

regular radio pulses from pulsars. Therefore, a strong

wave effect in FRBs likely introduces new characteris-

tics distinct from those radio pulses and can constrain

theoretical models (Kumar & Lu 2020; Yang & Zhang

2020). To describe this effect, a nonlinear parameter can

be introduced, which is defined as

a0 =
eE0

mcω
≈ 2.3× 104ν−1

9 L
1/2
iso,42r

−1
9 , (1)

where c is the speed of light, and e and m are elec-

tron charge and mass. E0, Liso = (1042 erg s−1)Liso,42,

and ν = ω/2π = (109 Hz)ν9 represent the electric field

strength, isotropic luminosity, and frequency of an FRB,

respectively. r = (109 cm)r9 is the magnitude of the

light cylinder radius,

RLC =
cP

2π
≈

(
4.8× 109 cm

)( P

1 s

)
, (2)

where P is the period of the magnetar. The nonlinear

parameter in Eq. (1) can also be written as a0 = vec/c,

where vec = eE0/mω can be understood as the nonrel-

ativistic characteristic oscillation velocity of an electron

in the wave. For a strong wave with a0 ≫ 1, the classical

nonrelativistic theorem describing the Thomson scatter-

ing fails, and the strong wave effect is supposed to be

taken into account. The strong wave effect of FRBs

has been extensively discussed in the near-source envi-

ronment (Luan & Goldreich 2014; Gruzinov 2019; Lu &

Phinney 2020; Yang & Zhang 2020), while there have

been few works focusing on the effect within the mag-

netosphere.
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Recently, Beloborodov (2022) proposed a novel de-

scription of the scattering of magnetized particles in

such a strong electromagnetic wave. For instance, an

FRB traveling outward through the magnetosphere of a

magnetar likely encounters a region with

1 <
ωB

ω
< a0, (3)

where ωB = eBbg/mc is the electron cyclotron frequency

in a background magnetic field. This condition can be

satisfied near the outer magnetosphere where

ωB

ω
≈ 2.8× 103Bs,15ν

−1
9 r−3

9 . (4)

We adopt a dipole background field with surface

strength Bs = (1015 G)Bs,15. Within the region where

Eq. (3) holds, the wave exchanges energy with internal

charged particles at resonance events, and pushes the

particles to the radiation reaction limit. In this case,

the energy loss of the particles due to radiation equals

the energy gained from resonance. The scattering cross

section of particles can then be semianalytically derived

and is found to be significantly enhanced compared with

the classical Thomson scattering.

We note that the above consideration only involves

an extraordinary (X) mode wave, whose electric field

is perpendicular to the propagation direction and the

background magnetic field. In fact, both ordinary (O)

mode and X-mode waves can be generated within the

framework of magnetospheric coherent emission models,

such as curvature radiation (Wang et al. 2012; Kumar

et al. 2017; Yang et al. 2020). It is therefore necessary

to investigate the scattering of magnetized particles in

an intense O-mode wave, whose electric field lies in the

plane defined by the propagation direction and the back-

ground magnetic field.

In this paper, we first solve the equation of motion

of a charged particle in an O-mode wave and an X-

mode wave, respectively. We then study the resonance

phenomenon between the wave and the particle in both

modes in Section 2. The derivation of the cross sections

in different modes is conducted in Section 3. Based on

these results, we further investigate the implications for

FRBs in Section 4. The final summary and discussion

are presented in Section 5. In this paper, the notation

Qn = Q/10n and cgs units are adopted.

2. PARTICLE MOTION IN AN INTENSE WAVE

WITHIN A BACKGROUND MAGNETIC FIELD

The equation of motion of a charged particle within

an intense electromagnetic wave and a background mag-

netic field is

du

dt
=

e

mc
(E + β ×B + β ×Bbg) , (5)

Figure 1. Schematic illustration of an electromagnetic wave
propagating along the z-axis. The electric field and magnetic
field of the wave are along the x- and y-axis, respectively.
The direction of the background magnetic field is determined
by parameters θ and ϕ.

where u = γβ is the spatial component of the normal-

ized four-velocity uα = dxα/cdτ = (γ, γβ). We as-

sume that the incident wave is linearly polarized. As

shown in Figure 1, its electric field, magnetic field,

and propagation direction are along the x-, y- and z-

axes, respectively. For simplicity, we also assume that

the incident wave is a monochromatic plane wave, i.e.,

eE/mcω = exa0 sin (ωξ) and eB/mcω = eya0 sin (ωξ),

where ξ ≡ t − z/c. The background magnetic field

can point in any direction, which is given by Bbg =

Bbg(sin θ cosϕ, sin θ sinϕ, cos θ).

Eq. (5) can be written as three scalar equations:

dUx

dt
=
ωB

γ
(uy cos θ − uz sin θ sinϕ) ,

duy
dt

=
ωB

γ
(uz sin θ cosϕ− ux cos θ) ,

duξ
dt

=
ωB

γ
(uy sin θ cosϕ− ux sin θ sinϕ) ,

(6)

where Ux = ux + a0 cos (ωξ) and uξ = dξ/dτ = γ − uz.

The solutions of motion of an initial rest particle are

exhibited in Figure 2, in which the wave is O-mode

(upper panels) or X-mode (lower panels). The motion

of the particle can be regarded as the superposition

of a large-amplitude oscillation and a small-amplitude

oscillation, as shown in the right two panels in Fig-

ure 2. According to Eq. (6), we can infer and esti-

mate that the frequency of the large-amplitude oscilla-

tion is the Larmor frequency ωL = ωB/γ. The small-

amplitude oscillation is driven directly by the electro-

magnetic field of the wave. The wave undergoes one

cycle with ωδξ = ω (1− βz) δt ∼ 2π, providing an ap-

proximate angular frequency ω (1− βz) for the small-

amplitude oscillation. In the O-mode wave, the motion
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of the particle in the x-axis direction can be solved an-

alytically, i.e., ux = a0 [1− cos (ωξ)]. In the X-mode

wave, the motion of the particle in the y-axis direction

vanishes, i.e., uy = 0.

Figure 2 also shows that the energy of the particle

can be pumped to a different value at every resonance

event. This pumping effect was found by Beloborodov

(2022). We find that the value of the pumped Lorentz

factor of the particle in an O-mode wave is apparently

different from that in an X-mode wave. As we demon-

strate below, the gained Lorentz factors of the particle

at resonance in these two modes are totally different.

The pumped energy of a particle at a resonance event

is provided by the electric field of the wave, that is,

mcdγ/dt = eEβx. This equation can be equivalently

written as

dγ =
a0
γ

ux sin (ωξ)

1− βz
ωdξ. (7)

In the vicinity of resonance, βres
z ∼ cos δψ ∼ 1− δψ2/2,

where δψ = ωLδt. The resonance event occurs within

one small-amplitude oscillation, i.e., ω(1 − βz)δt ∼ 2π.

Therefore, one arrives at

δψ ∼
(ωL

ω

)1/3

. (8)

For the particle in the O-mode wave, one has ux =

a0 [1− cos (ωξ)]. Substituting these relations into Eq.

(7) gives the pumped Lorentz factor at a resonance event

δγO ≈ HOa
2
0γ

−1/3
(ωB

ω

)−2/3

sin (ωξ0) [1− cos (ωξ0)] ,

(9)

where ωξ0 is the phase of the wave at resonance.

The coefficient HO ≈ 1.39, which can be ob-

tained by fitting the data of a−2
0 γ1/3(ωB/ω)

2/3δγ and

sin (ωξ0) [1− cos (ωξ0)] at resonance events in the nu-
merical solution, as shown in the left panel of Figure 3.

For the particle in the X-mode wave, ux near a resonance

event can be estimated as

uresx =
[
γ2(1− β2

z )− 1
]1/2 ∼

(
γ2δψ2 − 1

)1/2
∼

[
γ2

(ωL

ω

)2/3

− 1

]1/2
∼ γ2/3

(ωB

ω

)1/3

,
(10)

where we have used the relation γ2 − u2x − u2z = 1. A

further calculation of Eq. (7) gives

δγX ≈ HXa0γ
1/3

(ωB

ω

)−1/3

sin (ωξ0). (11)

The fitting result is shown in the right panel of Figure 3,

in which HX ≈ 1.05 is obtained. The derivation of Eq.

(7) is independent of whether the wave is O mode or X

mode. Therefore, one can observe that the difference in

the pumped Lorentz factor between both modes is solely

determined by ux, i.e., the motion of the charged particle

along the electric field direction. This motion behaves

differently in O-mode and X-mode waves, resulting in

a difference in the pumped Lorentz factor during reso-

nance.

In a sufficiently long time, the pumping effect of the

Lorentz factor behaves like a random walk process, and

hence can theoretically boost the energy of the particle

to high values. Nevertheless, the maximal Lorentz factor

can be limited by radiation losses. A radiation reaction

limit can be reached when the energy loss due to radi-

ation equals to the energy gained from resonance. In

the following section, we demonstrate that after reach-

ing such an equilibrium state, a significant difference in

the Lorentz factors of the particle emerges between the

O-mode and X-mode waves. The difference results in

distinct scattering cross sections of the particle.

3. SCATTERING CROSS SECTIONS IN

DIFFERENT POLARIZED MODES

The total emission power of a relativistic electron is

(Rybicki & Lightman 1991)

Pe =
2e2

3c3
γ4

(
a2⊥ + γ2a2∥

)
, (12)

where a⊥ and a∥ represent the acceleration perpendicu-

lar and parallel to the velocity, respectively. The emis-

sion power can be equivalently expressed in terms of the

electromagnetic field as

γ̇emmc
2 =

c

4π
σT

[
(γE + u×B + u×Bbg)

2 − (u ·E)
2
]
,

(13)

where γ̇em is the loss rate of Lorentz factor due to ra-

diation. σT = 8πr2e/3 is the Thomson scattering cross

section, and re = e2/mc2 is the classical electron radius.

When B ≫ Bbg, one has γ̇em ∼ σTE
2u2ξ/4πmc

2. Aver-

aging this loss rate over the period of a small-amplitude

oscillation gives

γ̇em ∼ 1

3

rea
2
0ω

2

c
u2ξ , (14)

where u2ξ ≈ u2ξ has been used.

The radiation reaction limit requires that, within each

large-amplitude oscillation, the energy loss due to radi-

ation equals to the energy gained from resonance, i.e.,

⟨γ̇em⟩∆t = δγ, where the angle bracket denotes the time

average during one large-amplitude oscillation, with a

timescale ∆t ∼ 2π/ωL. The average radiative loss rate

⟨γ̇em⟩ = rea
2
0ω

2⟨u2ξ⟩/3c ∼ rea
2
0ω

2γ2/3c. Therefore, in

the O-mode wave, the Lorentz factor at the radiation
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Figure 2. Solutions of motion of a charged particle in an intense electromagnetic wave and a background magnetic field. The
parameters a0 = 30 and ωB/ω = 10 are adopted. In the upper panels, the incident wave is O mode. The angle parameters are
θ = π/2 and ϕ = 0. In the lower panels, the wave is X mode. The angle parameters are θ = π/2 and ϕ = π/2. The vertical
black dashed lines refer to the position of a resonance event. The left two panels exhibit the pumping effect of the Lorentz factor
during several large-amplitude oscillations. The middle two panels exhibit the components of the normalized four-velocity. The
right two panels exhibit the behavior of the particle near a resonance event in detail, in which the insets show the pumping
effect of the Lorentz factor.
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Figure 3. The rescaled pumped Lorentz factor of the particle vs. the phase of the wave at resonance. In the O-mode wave,
a−2
0 γ1/3(ωB/ω)

2/3δγ ≈ HO sin (ωξ0) [1− cos (ωξ0)] with HO ≈ 1.39 (left panel). In the X-mode wave, a−1
0 γ−1/3(ωB/ω)

1/3δγ ≈
HX sin (ωξ0) with HX ≈ 1.05 (right panel).

reaction limit is

γrrl,O ≈
(
3HO

2π

c

reω

)3/10 (ωB

ω

)1/10

. (15)

For the X-mode wave, the Lorentz factor at radiation

reaction limit

γrrl,X ≈
(
3HX

2π

c

rea0ω

)3/8 (ωB

ω

)1/4

. (16)

Notice that the condition ⟨γ̇em⟩∆t < γ must be satis-

fied to ensure that the energy loss during each large-

amplitude oscillation is smaller than the total energy.

This condition implies that there exists an upper limit

for the particle Lorentz factor in both modes, i.e.,

γ < γul =

(
3

2π

c

rea20ω

)1/2 (ωB

ω

)1/2

. (17)

Substituting Eqs. (15) and (16) into Eq. (17) gives a0 <

H
−3/10
O ac ≈ ac for the O mode, and a0 < H

−3/5
X ac ≈ ac
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for the X mode, where a characteristic nonlinear param-

eter is defined as

ac =

(
3cω2

B

2πreω3

)1/5

. (18)

The pumping effect of the Lorentz factor resembles a

random walk process, and therefore the time to reach the

radiation reaction limit can be simply obtained through

an analogy with the random walk process, i.e., trrl ∼
(γrrl/δγ)

2
2π/ωL, which gives

ωtrrl,O
2π

∼ H
−9/10
O

(
a0

ωB/ω

)3/2 (
ac
a0

)11/2

(19)

for the O-mode wave, and

ωtrrl,X
2π

∼ H
−9/8
X

(
a0

ωB/ω

)3/2 (
ac
a0

)35/8

(20)

for the X-mode wave. Since the timescale is short, once

particles are within the wave, they can reach the radia-

tion reaction limit immediately.

The scattering cross section is defined as the time-

averaged radiation power over the incident flux of the

wave,

σ =
⟨γ̇em⟩mc2

⟨S⟩
∼ γ2σT , (21)

where we have used ⟨S⟩ = mca20ω
2/8πre. Due to the

short time to reach the radiation reaction limit, the scat-

tering cross section of a particle in the O-mode wave can

be estimated as

σO ∼ γ2rrl,OσT ≈
(
3HO

2π

c

reω

)3/5 (ωB

ω

)1/5

σT . (22)

The scattering cross section in an X-mode wave can be

given by

σX ∼ γ2rrl,XσT ≈
(
3HX

2π

c

rea0ω

)3/4 (ωB

ω

)1/2

σT . (23)

Note that the scattering cross section in Eq. (22) does

not depend on the wave intensity, which is a unique

property for the intense O-mode wave. One can natu-

rally define the ratio of these two cross sections,

fσ =
σO
σX

≈ H
3/5
O H

−3/4
X

(
ac
a0

)−3/4

≈
(
ac
a0

)−3/4

. (24)

When a0 < ac, one has fσ < 1. This implies that the

scattering cross section of a charged particle in an O-

mode wave is smaller than that in an X-mode wave.

The aforementioned calculations assume that the

propagation direction is perpendicular to the back-

ground magnetic field. For a wave propagating

obliquely, the scattering process can be considered in a

frame that moves relativistically along the background

magnetic field. In order to keep the propagation di-

rection perpendicular to the background magnetic field

in the moving frame, the Lorentz factor of this frame

should be

γf =
1

sin θ
, (25)

where θ is the angle between the propagation direction

and the background magnetic field in the lab frame. The

wave frequency and cyclotron frequency in the moving

frame are (a prime symbol denotes the quantity in the

moving frame)

ω′ =
ω

γf
, ω′

B = ωB . (26)

The condition a′0 < a′c therefore can be rewritten as

a0 < acγ
3/5
f , (27)

where a0 = a′0 is Lorentz invariant. The ratio between

O-mode and X-mode scattering cross sections is then

transformed into

f ′σ ≈ (sin θ)9/20
(
ac
a0

)−3/4

. (28)

One can see that in the moving frame, the ratio is further

reduced, but does not show a significant difference with

Eq. (24).

4. IMPLICATIONS FOR FRBS

If an FRB originates inside the magnetosphere, it is

likely to be generated in the open magnetic field line re-

gion at a distance of several tens of neutron star radii.

Therefore, the angle between the propagation direction

of the FRB and the background magnetic field near the

emission site is small (Qu et al. 2022). However, this

angle is not extremely small near the outer magneto-

sphere. To simplify the calculation, we consider the

case of perpendicular propagation. According to Eqs.

(1) and (4), the region where scattering is most severe,

i.e., 1 < ωB/ω < a0 can be written as

0.4L
−1/4
iso,42B

1/2
s,15 < r9 < 14.1ν

−1/3
9 B

1/3
s,15. (29)

The condition a0 < ac further constrains the region

where strong scattering occurs. For a typical FRB trav-

eling through the magnetosphere of a magnetar, this can

be written as

ac
a0

≈ 0.3ν
2/5
9 L

−1/2
iso,42B

2/5
s,15r

−1/5
9 > 1. (30)

Observations show that the luminosity of FRBs falls

within a broad range of 1038–1046 erg s−1 (Ravi et al.
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Figure 4. The strong scattering region of FRBs is marked
in yellow (part I) and cyan (part II) in luminosity–radius
parameter space. Dashed lines represent various values of
ac/a0 or fσ. In the region marked in gray, radiation sup-
presses the growth of the Lorentz factor to the radiation
reaction limit, and the scattering cross sections of particles
in O-mode and X-mode waves are approximately equal. The
parameters Bs = 1015 G and ν = 109 Hz are adopted.

2019; Bochenek et al. 2020). Within such a wide range,

the existence of a strong scattering region determined by

both Eqs. (29) and (30) is reasonable. We plot the re-

gion in the luminosity–radius parameter space in Figure

4. Within this region, the strong scattering in different

modes mentioned previously is valid. Different values of

ac/a0 or fσ are marked by dashed lines in this figure.

One can see that the scattering cross section of a particle

in an O-mode wave is significantly smaller than that in

an X-mode wave. In the gray region where a0 > ac, the

upper limit of the Lorentz factor from Eq. (17) is smaller

than the Lorentz factor at the radiation reaction limit

from Eqs. (15) and (16). Radiation then suppresses

further growth of the Lorentz factor. The characteris-

tic scattering cross sections of particles in O-mode and

X-mode waves can be considered approximately equal

since the maximal achievable Lorentz factors are equal

in both modes.

The optical depth of an FRB in the strong scattering

region is given by

τO, X =

∫
ξnGJσO, Xdr, (31)

where nGJ ≈ 7 × 104 cm−3 Bs,15P
−1r−3

9 is the

Goldreich-Julian density, and ξ is the pair multiplic-

ity parameter. In the following discussion, we fix the

surface magnetic field strength Bs = 1015 G, the pe-

τO

τX

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Log10Liso,42

τ

Figure 5. Optical depth with respect to luminosity in the
strong scattering region of FRBs. The black dashed line
represents the boundary between part I and part II of the
strong scattering region. The O-mode wave (blue) is more
transparent than the X-mode wave (red). The parameters
ξ = 102, Bs = 1015 G, P = 3 s, and ν = 109 Hz are adopted.

riod P = 3 s, and the wave frequency ν = 109 Hz.

The scattering cross section of a particle can then be

written as σO ≈ 3.3 × 108r
−3/5
9 σT in an O-mode wave,

and σX ≈ 1.4 × 108L
−3/8
iso,42r

−3/4
9 σT in an X-mode wave.

As shown in Figure 4, since the upper bound of the

strong scattering region is a piecewise function, we di-

vide the region into part I and part II and calculate

the value of optical depth for a given value of luminos-

ity. In part I, the integral in Eq. (31) is calculated

over 0.4L
−1/4
iso,42 < r9 < 14.1. In part II, the integral

is calculated over 0.4L
−1/4
iso,42 < r9 < 0.35L

−5/2
iso,42. An

FRB passing through part II will inevitably traverse the

gray region, where the scattering cross section in both

modes can be estimated as σgray
O ≈ σgray

X ≈ γ2ulσT ≈
4.3× 107L−1

iso,42r
−1
9 σT . The integral in this region is cal-

culated over 0.35L
−5/2
iso,42 < r9 < 14.1. The optical depth

as a function of luminosity is exhibited in Figure 5. One

can clearly see that due to different scattering cross sec-

tions, there is a significant difference between the values

of optical depth of the O-mode and X-mode waves.

5. SUMMARY AND DISCUSSION

A novel semianalytical approach was developed to de-

scribe the behavior of a magnetized particle in a strong

X-mode electromagnetic wave (Beloborodov 2022). We

have used a similar method and solved the motion of

a magnetized particle in a strong O-mode wave. We

found that the particle behaves similarly to that in the

X-mode wave: it exchanges energy with the wave at

frequent resonance events, and reaches the radiation re-

action limit in a short time, leading to a significant en-

hancement in the scattering cross section. However, the

pumped Lorentz factor of the particle at resonance in

an O-mode wave exhibits a remarkable difference from
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that in an X-mode wave, as indicated by Eqs. (9) and

(11). Consequently, the maximal Lorentz factors as well

as scattering cross sections of particles in both modes

are different. We further obtained the ratio of these two

cross sections and found that this value is usually less

than 1, implying that a charged particle in the X-mode

wave is more likely to have a larger scattering cross sec-

tion. We also briefly discussed the case of oblique prop-

agation and found that it does not show a significant

difference unless the angle between the magnetic field

and the propagation direction is particularly small.

The above results have important implications if

FRBs are generated inside the magnetosphere. When an

FRB propagates outward, it likely encounters a strong

scattering region determined by Eqs. (29) and (30), as

plotted in Figure 4. The values of the optical depth of an

O-mode wave and an X-mode wave are shown in Figure

5. Our results indicate that an FRB is more transparent

if it is an O-mode wave. We emphasize that this con-

clusion holds only in the strong scattering region, as it

is possible for an FRB not to encounter such a region

during its propagation.

The topic of whether an FRB can escape from the

magnetosphere of a magnetar or not has been pointed

out as an argument against the magnetospheric origin

of FRBs. Beloborodov (2021) argued that the pho-

tons emitted by charged particles in an FRB are capa-

ble of inducing the creation of electron–positron pairs,

which increase the multiplicity parameter in the magne-

tosphere. This process then blocks the propagation of

an FRB in the magnetosphere. However, this argument

was challenged by several other perspectives. First, an

FRB traveling in open field line regions probably re-

duces this effect (Qu et al. 2022). Second, the large ra-

diation pressure possibly helps an FRB break out from

the magnetosphere (Wang et al. 2022). Third, a self-

cleaning effect may sweep away the plasma on the path

of an FRB (Lyutikov 2023). These effects can alleviate

the criticism that an FRB can not escape the magneto-

sphere of a magnetar. In conclusion, we argue that if

an FRB is partially scattered by magnetized particles,

rather than being completely blocked, an O-mode wave

remains more transparent than an X-mode wave.
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