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4 Differential equations on a k-dimensional

torus: Poincaré type results

Lev Sakhnovich ∗

Abstract

Ordinary differential equations of the first order on the torus have
been investigated in detail by H. Poincaré, P. Bohl and A. Denjoy.
P. Bohl, back in 1916, emphasised the importance of the transfer of
the results for the order k = 1 to the case k > 1, adding at the same
time: “However, any attempt to do so would be hopeless”. The fol-
lowing more than hundred years have only confirmed Bohl’s forecast.
It became clear that a new approach to this problem is needed.

In this paper, we propose a new (non-Hamiltonian) and promising
approach. We use Hamiltonians, that is, ordinary differential systems
of equations of the first order, only for heuristics. In the main scheme
and corresponding proofs we do not use these systems. Instead of dif-
ferential systems, we study sets of continuous vector functions φ(t, η)
satisfying certain important conditions. Limit sets and left and right
rotation vectors appear in the case k > 1. Some of our results are
new even in the case k = 1. Under simple and natural conditions, the
left and right rotation vectors coincide and a precise analog of the
well-known H. Poincaré’s result is derived for k > 1.
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1 Introduction

Let us formulate some classical Poincaré results [4, Ch. XVII]. For this
purpose, consider the ordinary differential equation

d

dt
x(t) = f(t, x), (1.1)

where the function f(t, x) is real, continuous and defined for all real numbers
t and real numbers x. It is assumed in this theory that two conditions below
are satisfied.

Condition I. f(t+ 1, x) = f(t, x+ 1) = f(t, x). (1.2)

Condition II. Through every point of the (t, s) plane passes a unique
solution of equation (1.1).

Let us study solutions of the differential system (1.1) with initial value
(parameter) η. It is assumed also that the function φ(t, η) is known at the
two fixed time points t = 0 and t = 1:

x = φ(t, η), φ(0, η) = η, φ(1, η) = ψ(η). (1.3)

It follows from (1.1)–(1.3) that

φ(t, η + 1) = φ(t, η) + 1, ψ(η + 1) = ψ(η) + 1. (1.4)

One may easily see that

φ(t+ 1, η) = φ(t, ψ(η)). (1.5)

Indeed, in view of (1.2) the function φ(t + 1, η) is a solution of (1.1) be-
cause φ(t, η) is its solution. Moreover, it follows from (1.3) that φ(1, η) =
φ(0, ψ(η)) = ψ(η) and so the solutions φ(t + 1, η) and φ(t, ψ(η)) both have
the same value ψ(η) at t = 0. Hence, (1.5) is valid for all t. Here, we use the
uniqueness theorem (see [4, Ch.1, Section 1]), instead of the Condition II,
because the uniqueness theorem is also valid in the vector case (see [8, Ch. II,
Section 1]), which we treat in the next section.

Remark 1.1. Two points P1 = (t1, x1) and P2 = (t2, x2) are regarded as
identical if t1 − t2 and x1 − x2 are integers.
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One may represent the solution paths (t, x) (on the torus T1) in the
following way:

u =
(

a+ b cos(2πx)
)

cos(2πt), (1.6)

v =
(

a + b cos(2πx)
)

sin(2πt), (1.7)

w = b sin(2πx), (1.8)

where a and b are constants such that 0 < b < a, and (u, v, w) are rectilinear
coordinates in a three-dimensional space. Now, let x = φ(t, η) be the solution
of (1.1) such that φ(0, η) = η (see (1.3)). Let us consider the function

ψ(η) = φ(1, η). (1.9)

According to [4, Ch. XVII, Sect. 1], the function ψ(η) is a continuous,
monotonic and increasing homeomorphism of the real line into itself and (see
(1.4))

ψ(η + 1) = ψ(η) + 1. (1.10)

The function ψ(η) represents a transformation T of the form TP = P1 or,
introducing it in a slightly different way,

Tη = ψ(η). (1.11)

Theorem 1.2. [4, Ch. XVII, Sect. 2, Theorem 1.2] The limit

ρ = lim
t→∞

φ(t, η)

t
(1.12)

exists and does not depend on the initial value η; it is rational if and only if
some integer and positive power m ∈ N of T has a fixed point.

Recall that N stands for the set of integer and positive numbers.

Definition 1.3. The value ρ introduced in (1.12) is called rotation number.

Let ψn(η) be the function defined by the relations

ψ0(η) = η, ψn(η) = ψ[ψn−1(η)] (n ∈ N). (1.13)

The function ψn is of the same type as ψ, that is, ψn(η) is continuous, mono-
tonic and satisfies (1.10). Next, ρ is expressed in terms of ψn.
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Theorem 1.4. [4, Ch. XVII, Sect. 5, Theorem 1.3] The rotation number
satisfies the equality

ρ = lim
n→∞

ψn(η)
/

n, (1.14)

where the limit exists and does not depend on the initial value η.

P. Bohl, back in 1916 [3], emphasized the importance of the transfer of
results for the order k = 1 to the case k > 1, adding at the same time: “How-
ever, any attempt to do so would be hopeless”. In spite of many important
developments of the considered here Poincaré theory (see, e.g., interesting re-
cent works [2,5,7,9–11,13,15,16] and references therein), the following more
than hundred years have confirmed Bohl’s forecast. It became clear that a
new approach to that problem is needed. In this paper, we propose a new
(non-Hamiltonian) and promising approach.

Further we consider the k-dimensional vector space Ek of vectors
X = [x1, x2, ..., xk] with real-valued elements, where the norm is defined
by the relation

‖X‖ = max |xp|, 1≤p≤k. (1.15)

Definition 1.5. (see [17]) Let vectors X and Y belong to Ek. We say that
X > Y if all the elements of the vector X − Y are non-negative and at least
one of them is positive.

Thus, Ek is a partially ordered space.

Our approach has the following characteristic features:
1. We use Hamiltonians, that is, ordinary differential systems of equa-

tions of the first order of the form (1.1) only as a source of heuristics. The
corresponding differential systems are not used in our statements and proofs.

2. Instead of differential systems, we study a set of continuous vector
functions φ(t, η), which satisfy vector versions of conditions (1.3)–(1.5) and
which we call solutions of generalised vector systems (see section 2). We do
not assume that the functions φ(t, η) are differentiable.

3. We consider the corresponding problems in k-spaces Ek (k≥1).
4. We use the theory of the partially ordered spaces Ek and Zorn’s lemma.
5. Under natural conditions, we construct solutions φ(t, η) in an explicit

form (see Theorem 2.3). This result is new even for the case k = 1.
6. We obtain vector versions of Theorems 1.2 and 1.4 (see section 3).
7. It is very difficult to check the critical points of the solution φ(t, η)

within the framework of the classical theory. Our approach allows to effec-
tively solve this problem (see Example 5.4).
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Remark 1.6. The avoidance of differential equations is not new in physics.
In particular, the overcomplexity of the quantum electrodynamics equations
is well known. R. Feynman [6] built an effective and fairly simple procedure
for solving a number of problems of quantum electrodynamics without using
the corresponding differential equations. Sure, classical equations served as
a background and a hint for heuristics. Interesting interconnections between
classical theory and R. Feynman theory are studied in our paper [14].

In Section 2, generalised vector systems on torus are introduced and the
problem of their recovery is studied. In Section 3, limit sets and left and
right rotation vectors appear in the case k > 1. Under simple and natural
conditions, the left and right rotation vectors coincide and a precise analog
of the well-known H. Poincaré’s result is derived for k > 1. This result is
presented in Theorem 4.4 in Section 4. Finally, some interesting examples
are considered in Section 5.

The notation Z stands for integer and the notation R for real numbers.

2 Generalised vector systems on torus

2.1 Differential systems

We start with a system of differential equations on a k-dimensional torus Tk:

d

dt
x(t) = f(t, x), (2.1)

where the elements of the k-dimensional vector function f(t, x) are real, con-
tinuous and well-defined for all the numbers t ≥ 0 and real vectors x(t) ∈ Ek.

Further we always assume that t ≥ 0. The case t ≤ 0 is easily reduced to
the case t ≥ 0.

We also assume that

f(t+ 1, x) = f(t, x+ q) = f(t, x), (2.2)

for each k-dimensional vector q with integer elements (i.e., for q ∈ Z
k).

The vector solution of the differential system (2.1) is denoted by
x = φ(t, η), and we (similar to section 1) assume that the function φ(t, η) is
known at two fixed time points t = 0 and t = 1:

φ(0, η) = η, φ(1, η) = ψ(η) (η ∈ Ek). (2.3)
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Proposition 2.1. Let x = φ(t, η) satisfy (2.1) and (2.2).
Then, we have

φ(t, η + q) = φ(t, η) + q, ψ(η + q) = ψ(η) + q for q ∈ Z
k; (2.4)

φ(t+ 1, η) = φ(t, ψ(η)). (2.5)

Remark 2.2. We note that relations (2.4) and (2.5) are vector versions of
(1.4) and (1.5) and are proved in the same way as (1.4) and (1.5).

It follows from (2.4) and (2.5) that

φ(t, η) = η + a(t, η) (2.6)

ψ(η) = η + a(η), (2.7)

where
a(t, η) = a(t, η + q) for q ∈ Z

k, a(η) = a(1, η). (2.8)

2.2 Generalised systems

Neither equation (2.1) nor condition (2.2) are used in our further considera-
tions.

We consider a set of real, continuous k-dimensional vector functions
φ(t, η), where t ≥ 0 and η ∈ Ek. We assume that relations (2.3)–(2.5)
are fulfilled. The requirements above we call a generalised system and a set
of the vector functions φ(t, η), which satisfy them, is called a solution of the
generalised system.

Here and further, the continuity of the functions depending on t and η
means that they continuously (in R

⊕

Ek metrics) act on the elements (t, η)
of the set {(t, η)}. The requirement for the function φ(t, η) to be differentiable
is omitted. The restriction of φ on the interval [0, 1] is denoted by Φ:

Φ(t, η) = φ(t, η) (0 ≤ t ≤ 1, η ∈ Ek). (2.9)

Theorem 2.3. I. Let a continuous vector function φ(t, η) satisfy relations
(2.3)–(2.5). Then, the continuous vector function Φ(t, η) satisfies the follow-
ing conditions.

a) The relation
Φ(t, η + q) = Φ(t, η) + q, (2.10)

holds for the vectors q with integer elements (i.e., for q ∈ Z
k).
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b) The following equalities are valid:

Φ(0, η) = η, Φ(1, η) = ψ(η). (2.11)

II. Let a continuous vector function Φ(t, η) (0 ≤ t ≤ 1, η ∈ Ek) satisfy
conditions a) and b). Then, a solution φ(t, η) of the generalised system is
recovered in the explicit form via the formula

φ(t+ n, η) = Φ(t, ψn(η)) (0 ≤ t ≤ 1), (2.12)

where n ∈ N and ψn is expressed via ψ in (1.13). This φ(t, η) is continuous
and satisfies relations (2.3)–(2.5).

Proof. Part I of the theorem immediately follows from the theorem’s condi-
tions. Note that formula (2.12) follows (under Part I conditions) from (2.5)
and (2.9).

Let us prove Part II. First, given (2.12), let us prove that the constructed
vector function φ(t, η) is continuous. Indeed, discontinuities may only occur
at the points t = n for n ∈ N. (Recall that the case t ≥ 0 is considered.) In
view of (2.11) and (2.12), we have the equalities:

φ(n+ 0, η) = Φ(+0, ψn(η)) = Φ(0, ψn(η)) = ψn(η), (2.13)

φ(n− 0, η) = Φ(1− 0, ψn−1(η)) = Φ(1, ψn−1(η)) = ψn(η). (2.14)

Thus, the constructed vector function φ(t, η) is continuous. Now, formula
(2.5) follows from (2.9) and (2.12). Relations (2.10) and (2.11) yield the
second equality in (2.4). The second equality in (2.4) and relations (2.5),
(2.9) and (2.10) imply the first equality in (2.4). Formulas (2.3) follow from
(2.9) and (2.10). In this way, we proved that the constructed solution φ(t, η)
satisfies (2.3)–(2.5).

Theorem 2.3 is new even in the scalar case.

3 A partially ordered space, Zorn’s lemma

and rotation vectors

Recall the definition of the space Ek with the norm (1.15) and a partial order
on Ek given by Definition (1.5) in introduction.
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Remark 3.1. Similar to the case k = 1 in Remark 1.1, the points
P1 = (t1, X) and P2 = (t2, Y ) (X, Y ∈ Ek) are regarded as identical if t1 − t2
and all the elements of the vector X − Y are integers. This condition shows
that differential equations on the torus Tk are equivalent to corresponding
differential equations in the space Ek.

The vector function ψ(η) plays a central role in this section. It follows
from the requirements of the generalised system that ψ(η) is continuous and
satisfies relations (2.4), (2.7) and (2.8).

Note that formula (2.7) coincides with Poincare mapping in the case
k = 1. Similar to (1.11), we introduce a transformation T defined by

Tη = ψ(η). (3.1)

The vector function ψn is again defined by (1.12). Our next lemma follows
from (2.7).

Lemma 3.2. The vector function ψn(η) is continuous, satisfies the relation

ψn(η + q) = ψn(η) + q for q ∈ Z
k, (3.2)

and has the form

ψn(η) = η + a(η) + a[ψ(η)] + ...+ a[ψn−1(η)], (3.3)

where a(η) = φ(1, η)− η .

Formula (3.3) is well known for the case k = 1 (see [1, p. 104]).

Proposition 3.3. If the operator Tm (for some m ∈ N) has a fixed point,
then the limit vector

ρ = lim
n→∞

ψn(η)
/

n (3.4)

exists at this point and all the elements of ρ are rational.

Proof. At the fixed point η, we have

Tmη = ψm(η) = η + q for some q ∈ Z
k, (3.5)

because the points η and η + q are regarded as identical for the torus (see
Remark 3.1). Taking into account (3.2) and (3.5), we obtain

ψ2m(η) = ψm(η + q) = ψm(η) + q = η + 2q,

ψ3m(η + q) = ψm(ψ2m(η)) = η + 3q, . . . ,
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and it follows by induction that

ψmn(η) = η + nq (n = 0, 1, 2, ...). (3.6)

Every K ∈ N admits representation K = mℓ+s, where the integer s satisfies
0 ≤ s < m. Thus, (3.6) implies that

ψK(η) = ψs(η) + qℓ. (3.7)

Using (3.7) we derive

ρ = lim
K→∞

ψK(η)
/

K = q/m, (3.8)

which proves the lemma.

Further we consider the general case, where fixed points (3.5) are not
necessary. Let us introduce the following notation

an(η) = a(η) + a[ψ(η)] + ...+ a[ψn−1(η)]. (3.9)

It follows from (3.3) and (3.9) that ψn(η)− an(η) = η so that

lim
n→∞

(

ψn(η)− an(η)
)/

n] = 0. (3.10)

Let us introduce the notion of a limit set for a sequence of vectors Bn (n ∈ N)
or a family of vectors Bt

(

t ∈ (0,∞)
)

.

Definition 3.4. The vector γ belongs to the limit set for a sequence of vectors
Bn (for a family of vectors Bt) if there is a sequence {np} ({tp}), where
np ∈ N

(

tp ∈ (0,∞)
)

such that

γ = lim
np→∞

Bnp

(

γ = lim
tp→∞

Btp

)

. (3.11)

Since the vector function a(η) is continuous (together with ψ(η)) and
(2.8) holds, a(η) is bounded:

sup
η∈Ek

‖a(η)‖ ≤ M <∞. (3.12)

Taking into account (3.9) and (3.12), we see that an(η)/n is also bounded:

sup
η∈Ek

‖an(η)/n‖ ≤M, (3.13)

where M is the same as in (3.12). We denote the limit set of an(η)/n by
Q(η). Relation (3.13) implies the following proposition.
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Proposition 3.5. The limit sets Q(η) of the vector functions an(η)/n are
nonempty and uniformly bounded:

sup
γ(η)∈Q(η)

‖γ(η)‖ ≤M. (3.14)

In view of (3.10) we obtain the corollary below.

Corollary 3.6. The limit set of ψn(η)/n coincides with he limit set Q(η) of
an(η)/n .

Theorem 3.7. The limit set of φ(t, η)/t, for t→+∞, coincides with Q(η).

Proof. For t ∈ (0,∞) we choose nt ∈ N so that nt ≤ t < nt + 1. Hence t
admits representation

t = nt + st (0 ≤ st < 1). (3.15)

In view of (2.5) and (3.15), we have

φ(t, η) = φ(st, ψnt
(η)). (3.16)

We represent ψnt
(η) in the form

ψnt
(η) = Unt

(η) + Vnt
(η), (3.17)

where all the elements of the vector Unt
(η) are integer and all the elements

of the vector Vnt
(η) are nonnegative and less then 1. Taking into account

relations (2.4), (3.16) and (3.17), we obtain

φ(t, η) = Unt
(η) + φ(st, Vnt

(η)). (3.18)

Clearly, the norms of Vnt
(η) and of φ(st, Vnt

(η)) for our continuous vector
function φ are bounded. Thus, the theorem follows from Corollary 3.6 and
the equalities (3.17) and (3.18).

Corollary 3.8. The vector function φ(t, η) may be represented in the form

φ(t, η) = ψnt
(η) + b(t, η), (3.19)

where b(t, η) is a bounded vector function depending on t ≥ 0 and η ∈ Ek.
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According to (3.19), ψ(η) defines φ(t, η) up to a bounded term. Using
(3.3) and (3.9), we rewrite (3.19) in the form

φ(t, η) = η + ant
(η) + b(t, η), (3.20)

Taking into account (3.13) and (3.20), we obtain the next theorem.

Theorem 3.9. The vector function

F (t, η) = [φ(t, η)− η]/t (t > 1)

is bounded and continuous. The limit set of F (t, η), for t→ +∞, coincides
with Q(η).

Theorem 3.9 implies (see [4, Ch.XYI, Theorem 1.1] or [8, Ch.X, Assertion
7.1]) the following proposition.

Proposition 3.10. The limit set Q(η) is closed, connected and nonempty.

Note that the fact that Q(η) is closed and nonempty easily follows from
the considerations above Theorem 3.9.

Let q be a vector with integer elements. Then, taking into account (2.8)
(3.2) and (3.9) we have

an(η + q) = an(η), n = 1, 2, ... (3.21)

It follows from (3.21) that

Q(η + q) = Q(η). (3.22)

Next, we will need Zorn’s lemma [18]:

Lemma 3.11. A partially ordered set containing upper bounds for every
totally ordered subset contains at least one maximal element.

The set Q(η) is partially ordered, bounded and closed (see Definition 1.5,
inequality (3.13) and Proposition 3.10). Hence, Q(η) satisfies all the condi-
tions of Zorn’s lemma. Thus, we derive a vector analog of scalar Theorems
1.2 and 1.4.

Theorem 3.12. There are vectors ρ1(η), ρ2(η) ∈ Q(η), which satisfy the
following relations for all the vectors X ∈ Q(η).

ρ1(η)≤X≤ρ2(η). (3.23)
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According to (3.22), we have

ρ1(η + q) = ρ1(η), ρ2(η + q) = ρ2(η) for q ∈ Z
k. (3.24)

Definition 3.13. By analogy with the scalar case, we call the vector functions
ρ1(η) and ρ2(η) rotation vector functions (left and right, respectively).

Remark 3.14. The case of ρ = ρ1 = ρ2, which do not depend on η, is dealt
with in greater detail in our next paper.

4 Differentiable solutions

of the generalised system

Suppose that a k-vector function f(x) of k variables is differentiable. Then,
the corresponding Jacobian matrix has the form

Jx(f) =





∂f1
∂x1

... ∂f1
∂xk

... ... ...
∂fn
∂x1

... ∂fk
∂xk



 . (4.1)

Differentiable k-vector functions f(x) and g(f(x)) satisfy the chain rule:

Jx(g(f(x)) = Jf(g)Jx(f). (4.2)

In this section we assume that all the first order derivatives of the k-vector
function ψ(η) (η ∈ Ek) exist and are continuous. Then, all the first order
derivatives of the k-vector functions ψn(η) (n ∈ N) exist and are continuous
as well. Clearly, we preserve our standard requirement

ψ(η + q) = ψ(η) + q for q ∈ Z
k. (4.3)

It follows from (4.2) that the Jacobian for ψn(η) has the form:

Jη(ψn(η)) = Jψn−1
(ψn)Jψn−2

(ψn−1)...Jη(ψ), (4.4)

where ψ0(η) = η.

Corollary 4.1. If det[Jη(ψ)] has no roots, then det[Jη(ψn)] has no roots too.

Corollary 4.2. If det[Jη(ψ) has no roots then the functions ψn(η) (n ∈ N)
have not extremal points.
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By Da, we denote the k-dimensional cube of the form:

−a ≤ xs ≤ a (a > 0, 1≤s≤k). (4.5)

The vectors from zero to the vertices ofDa (or the coordinates of the vertices)
have the form ah, where each element of h equals either 1 or −1. A special
role is played by the vectors ae and −ae, where all the elements of e equal
one: e = [1, 1, . . . , 1].

Theorem 4.3. Let all the first order derivatives of the k-vector function
ψ(η) (η∈Ek) exist and be continuous and assume that the inequality

det[Jη(ψ)]6=0 (4.6)

holds for η ∈ Ek.
Then, the following inequalities are valid for all the vectors η ∈ Da :

ψn(−ae) ≤ ψn(η) ≤ ψn(ae). (4.7)

Proof. According to Corollary 4.2, the function ψn(η) has no extremum
points inside of the cube Da. If the extremum point τ0 of the vector function
ψn(η) is on the boundary of the cube, but does not coincide with the vertex
of the cube, then the elements of at least one of the columns of Jη(ψn(η))
are equal to zero, which contradicts condition (4.6) of our theorem. Thus,
we have proved that ψn may attain its greatest and smallest values at the
points belonging to the set Va of the vertices of Da only. Note that Zorn’s
lemma (Lemma 3.11) implies that the function ψn(η) attains its greatest and
smallest values in the domain Da. Thus, these values are attained at the
vertices.

Now suppose that ψn attains its greatest (or smallest) values at two ver-
tices P and Q simultaneously. Considering the segment [P,Q], we see again
that the greatest and smallest values of ψn on it are attained at the ends of
[P,Q], that is, the greatest and the smallest values of ψn on [P,Q] coincide.
Therefore, ψn is constant on [P,Q] and attains its greatest (or smallest) in
Da values on the whole segment [P,Q]. This contradicts the fact that the
greatest and smallest values of ψn may be attained at the points of Va only.
Therefore, the function ψn(η) takes its greatest (smallest) value in Da at one
and only one point, which belongs to Va.

For sufficiently large a (in view of (4.3)), ψn(η) may attain its greatest
(smallest) value at the point ae (−ae) only. Thus, it attains it there. Since
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the vector functions ψn(ah) (for h with the elements taking values ±1) are
continuous with respect to a and the greatest (smallest) values are attained
at one vertex only, the h at which ψn(ah) takes the greatest (smallest) value
cannot change when a decreases. Hence, (4.7) holds for all a ≥ 0.

Relation (4.7) may be rewritten in the form

ψn(−ae)/n ≤ ψn(η)/n ≤ ψn(ae)/n (η ∈ Da). (4.8)

We reduced our problem to the case k = 1. Using relation (4.8) and the proof
of the classical Poincaré theorem ( [4, Ch. XVII]) about rotation numbers,
we obtain the main result of this section.

Theorem 4.4. If the conditions of Theorem 4.3 are fulfilled, then the vector
function ψ(ae) is monotonically increasing and the following equality holds:

ρ1(η) = ρ2(η) = ρ. (4.9)

.

5 Examples

Example 5.1. Starting with the simplest case, where relations (2.1) and
(2.2) hold, let

dx

dt
= G, x(0) = η (t ∈ R; η, G, x(t) ∈ Ek). (5.1)

The solution φ(t, η) of equation (5.1) and ψ(η) have the form

φ(t, η) = Gt+ η, ψ(η) = G+ η. (5.2)

It follows that

ψn(η) = nG+ η, Q(η) = {G} (i.e., ρ1 = ρ2 = G). (5.3)

The next assertion is easily checked directly.

Proposition 5.2. In the case (5.1), relations (2.3)–(2.5) are fulfilled. The
vector functions ψ(η) and φ(t, η) (for each t) are injective.
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Remark 5.3. We note that injective property of the vector function ψ(η)
is an analog of the monotonic property of ψ(η) in the scalar case. Injec-
tive property of the vector function φ(t, η) is an analog of Condition II on
φ(t, η) in the scalar case. Thus, injective properties of ψ(η) and φ(t, η) are
of interest.

Next, consider a more non-trivial example.

Example 5.4. Let k = 2, η = [η1, η2] and ψ(η) have the form

ψ(η) = [η1 + r sin(2πη2), η2 − r sin(2πη1)] (r ∈ R). (5.4)

Let the 2-vector function Φ(t, η) (0 ≤ t ≤ 1) have the form

Φ(t, η) = [Φ1(t, η), Φ2(t, η)], Φ1(t, η) = η1 + r sin(πt/2) sin(2πη2), (5.5)

Φ2(t, η) = η2 − r sin(πt/2) sin(2πη1). (5.6)

Clearly, conditions (2.10) and (2.11) are fulfilled and we may apply The-
orem 2.3. (Clearly, the second equality in (2.4) holds for ψ as well.)

Proposition 5.5. Given (5.4)–(5.6) we recover solution φ(t, η) of a gener-
alised system using (2.12).

Let us consider ψ(η) in greater detail. The following inequality is well
known:

| sin x− sin y|≤|x− y|. (5.7)

Using (5.4) and (5.7), we derive

ψ(η)− ψ(p) = η − p+ rb, ‖b‖ < 2π ‖η − p‖ , (5.8)

where b = [sin(2πη2)−sin(2πp2), sin(2πp1)−sin(2πη1)]. Taking into account
(5.8), we obtain

‖ψ(η)− ψ(p)‖ 6= 0 for η 6= p and |r| < 1/(2π). (5.9)

Using relation (5.9) we have:

Proposition 5.6. The vector function ψ(η) given by (5.4), where
|r| < 1/(2π), is an injective mapping of the space E2 into the space E2.
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Remark 5.7. Proposition 5.6 may be generalised using representation (2.7)
of ψ in the k-dimensional generalised system. Namely, if the inequality

‖a(η)− a(p)‖ < ‖η − p‖ . (5.10)

is fulfilled for all the k-vectors η and p, then the vector function ψ(η) is an
injective mapping of the space Ek into the space Ek. It is easy to see that
the vector function ψ(η) considered in Proposition 5.6 satisfies the condition
(5.10).

Now, let us calculate the Jacobian matrix J for this ψ(η):

J =

(

1 2rπ cos(2πη2)
−2rπ cos(2πη1) 1

)

. (5.11)

Hence, we have

detJ = 1 + (2πr)2 cos(2πη2) cos(2πη1) > 0 for |r| < 1/(2π). (5.12)

Formula (5.12) yields the next proposition.

Proposition 5.8. The vector function ψ(η) given by (5.4), where
|r| < 1/(2π), has no critical points.

Recall that a critical point of the vector function is a point where the
rank of the Jacobian matrix is not maximal.

Similar to Proposition 5.6 we derive a more general proposition.

Proposition 5.9. The vector function Φ(t, η) given by (5.5) and (5.6), where
|r| < 1/(2π), is an injective mapping of the space Ek into the space Ek for
each t ∈ [0, 1].

For the Jacobian matrix J = {Jik} (1 ≤ i ≤ 2, 1 ≤ k ≤ 3) of Φ(t, η) we
easily obtain: J11 = J22 = 1,

J12 = 2rπ sin(πt/2) cos(2πη2), J21 = −2rπ sin(πt/2) cos(2πη1).

Thus, the rows of J are linearly independent for |r| < 1/(2π) and the Jacobian
matrix J has the maximal rank 2.

Proposition 5.10. The vector function Φ(t, η) given by (5.5) and (5.6),
where |r| < 1/(2π), has no critical points.
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Finally, we apply important Theorem 4.4 to Example 5.4. From (5.12)
and Theorem 4.4 follows the proposition below.

Proposition 5.11. If the vector function ψ(η) is given by (5.4), where
|r| < 1/(2π), the equality (4.9) is valid.
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