THE STABLE ALBANESE HOMOLOGY OF THE IA-AUTOMORPHISM GROUPS OF FREE GROUPS

MAI KATADA

ABSTRACT. The IA-automorphism group IA_n of the free group F_n of rank n is a normal subgroup of the automorphism group $Aut(F_n)$ of F_n . We study the Albanese homology of IA_n , which is the quotient of the rational homology of IA_n on homology. The Albanese homology of IA_n is an algebraic $GL(n, \mathbb{Q})$ -representation. We determine the representation structure of the Albanese homology of IA_n for n greater than or equal to three times the homologies of the analogue of IA_n to the outer automorphism group of F_n . Moreover, we identify the relation between the stable Albanese (co)homology of IA_n and the stable cohomology of $Aut(F_n)$ with certain twisted coefficients.

1. INTRODUCTION

The IA-automorphism group IA_n of the free group F_n of rank n is the normal subgroup of the automorphism group $Aut(F_n)$ of F_n that is trivial under the canonical group homomorphism from $Aut(F_n)$ to the general linear group $GL(n,\mathbb{Z})$ induced by the abelianization map of F_n . Then we have a short exact sequence of groups

$$1 \to \mathrm{IA}_n \to \mathrm{Aut}(F_n) \to \mathrm{GL}(n,\mathbb{Z}) \to 1.$$

By this short exact sequence, the (co)homology of IA_n admits an action of $GL(n, \mathbb{Z})$. The IA-automorphism group IA_n is analogous to the *Torelli groups* for surfaces, which are important objects in low-dimensional topology. Some strategies of studying the (co)homology of the Torelli groups can be used to study the (co)homology of IA_n and vice versa.

The structure of the first (co)homology was determined by Cohen–Pakianathan, Farb (both unpublished) and Kawazumi [8], independently. The Johnson homomorphism for $\operatorname{Aut}(F_n)$ induces an isomorphism

$$H_1(\mathrm{IA}_n, \mathbb{Z}) \xrightarrow{\cong} \mathrm{Hom}(H_{\mathbb{Z}}, \bigwedge^2 H_{\mathbb{Z}}), \quad H_{\mathbb{Z}} = H_1(F_n, \mathbb{Z}).$$

For n = 3, it is known that IA₃ is not finitely presentable by Krstić–McCool [11] and $H_2(IA_3, \mathbb{Z})$ has infinite rank by Bestvina–Bux–Margalit [1]. Pettet [15] determined the GL (n, \mathbb{Z}) -subrepresentation of $H^2(IA_n, \mathbb{Q})$ that is detected by using the Johnson homomorphism, which is regarded as the second Albanese cohomology $H^2_A(IA_n, \mathbb{Q})$ of IA_n explained below. Satoh [17] detected an irreducible subrepresentation of $H^2(IA_3, \mathbb{Q})$ which is not included in $H^2_A(IA_3, \mathbb{Q})$. For $n \ge 4$, it is still open whether IA_n is finitely presentable or not. However, it is known that $H_2(IA_n, \mathbb{Z})$ is finitely generated as a GL (n, \mathbb{Z}) -representation by Day–Putman [4].

Date: April 24, 2024.

In a stable range, that is, for sufficiently large n with respect to the (co)homological degree, the structure of the rational (co)homology of IA_n has been studied [7, 6, 13], and we have a conjectural structure of the stable rational (co)homology of IA_n (see Theorem 1.2).

The main interest of this paper is a subalgebra of the rational cohomology of IA_n which seems to play an essential role in the stable rational cohomology of IA_n . The subalgebra is defined to be the image of the map induced by the abelianization map of IA_n :

$$H^*_A(\mathrm{IA}_n, \mathbb{Q}) = \mathrm{im}(H^*(\mathrm{IA}_n^{\mathrm{ab}}, \mathbb{Q}) \to H^*(\mathrm{IA}_n, \mathbb{Q})).$$

Church–Ellenberg–Farb [2] called $H^*_A(IA_n, \mathbb{Q})$ the Albanese cohomology of IA_n . The Albanese homology $H^A_*(IA_n, \mathbb{Q})$ is predual to the Albanese cohomology defined by

$$H^A_*(\mathrm{IA}_n, \mathbb{Q}) = \mathrm{im}(H_*(\mathrm{IA}_n, \mathbb{Q}) \to H_*(\mathrm{IA}_n^{\mathrm{ab}}, \mathbb{Q})).$$

It follows from the definition of the Albanese (co)homology of IA_n and the computation of the first homology of IA_n that the Albanese (co)homology is an *algebraic* $\operatorname{GL}(n, \mathbb{Q})$ -representation. The second and the third Albanese homology of IA_n was determined by Pettet [15] and the author [7], respectively. Moreover, in [7], the author detected a large subquotient $\operatorname{GL}(n, \mathbb{Q})$ -representation W_i of $H_i^A(\operatorname{IA}_n, \mathbb{Q})$ for each $n \geq 3i$, and conjectured that $H_i^A(\operatorname{IA}_n, \mathbb{Q})$ is isomorphic to W_i for $n \geq 3i$.

The aim of this paper is to prove this conjecture on the representation structure of the Albanese homology of IA_n .

Theorem 1.1 (Theorem 2.5, cf. [7, Conjecture 6.2]). We have an isomorphism of $GL(n, \mathbb{Q})$ -representations

$$F_i: H_i^A(\mathrm{IA}_n, \mathbb{Q}) \xrightarrow{\cong} W_i$$

for $n \geq 3i$.

It follows from Theorem 1.1 that the Albanese homology of IA_n is representation stable in $n \ge 3i$ in the sense of Church–Farb [3].

The author received a draft version of [13] by Erik Lindell and noticed that some reinterpretation of [13, Proposition 6.3] can be used to determine the structure of the stable Albanese homology of IA_n. In the appendix of [13], she proved the statement of Theorem 1.1 only for $n \gg i$.

Habiro and the author [6] studied the structure of the stable rational cohomology of IA_n . By using Theorem 1.1, we can remove from one of the main results of [6] (cf. [6, Theorem 1.10 and Remark 7.9]) the assumption about the structure of the Albanese homology of IA_n , and obtain the following theorem.

Theorem 1.2 (Cf. [6, Theorem 1.10 and Remark 7.9]). Suppose that $H^i(IA_n, \mathbb{Q})$ is an algebraic $GL(n, \mathbb{Q})$ -representation for $n \gg i$. Then for $n \gg i$, we have

$$H^{i}(\mathrm{IA}_{n},\mathbb{Q})\cong\bigoplus_{k+l=i}W_{k}^{*}\otimes\mathbb{Q}[z_{1},z_{2},\cdots]_{l},$$

where $\mathbb{Q}[z_1, z_2, \cdots]_l$ denotes the degree l part of $\mathbb{Q}[z_1, z_2, \cdots]$ and deg $z_j = 4j$.

Lindell [13] has recently weakened the assumption of Theorem 1.2 that the family $\{H^*(IA_n, \mathbb{Q})\}_n$ is algebraic for $n \gg *$ to the assumption that $\{H^*(IA_n, \mathbb{Q})\}_n$ satisfies *Borel vanishing* for $n \gg *$ (see [13, Definition 1.5]).

 $\mathbf{2}$

In this paper, we will prove Theorem 1.1 by taking care of the stable range. It follows from the proof of Theorem 1.1 that the Albanese cohomology algebra is quadratic for $n \ge 3*$. We also prove several related conjectures which are proposed in [7]. In particular, we will determine the structure of the Albanese homology of the analogue IO_n of IA_n to the outer automorphism group of F_n for $n \ge 3*$.

We will also prove the conjecture on the relation between the stable Albanese cohomology of IA_n and the stable cohomology of $Aut(F_n)$ with coefficients in the tensor product $H^{p,q}$ of p copies of the standard representation $H = H_1(F_n, \mathbb{Q})$ of $GL(n, \mathbb{Q})$ and q copies of the dual representation H^* .

Theorem 1.3 (Theorem 3.8, cf. [6, Conjecture 7.2]). The inclusion map $i : IA_n \hookrightarrow Aut(F_n)$ induces an isomorphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

*:
$$H^*(\operatorname{Aut}(F_n), H^{p,q}) \xrightarrow{\cong} [H^*_{\mathcal{A}}(\operatorname{IA}_n, \mathbb{Q}) \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})}$$

for $n \ge \min(\max(3*+4, p+q), 2*+p+q+3)$.

Acknowledgements

The author would like to thank Erik Lindell for sending a draft version of [13] to her and for helpful comments. She also thanks Kazuo Habiro for valuable discussions. She was supported in part by JSPS KAKENHI Grant Number JP22KJ1864 and JP24K16916.

2. The stable Albanese homology of IA_n

In this section, we will prove [7, Conjecture 6.2] on the $GL(n, \mathbb{Q})$ -representation structure of the stable Albanese homology of IA_n.

2.1. Algebraic $GL(n, \mathbb{Q})$ -representations. Here we briefly recall some facts from representation theory of $GL(n, \mathbb{Q})$. See Fulton–Harris [5] for details.

A finite-dimensional $\operatorname{GL}(n, \mathbb{Q})$ -representation (ρ, V) is called *algebraic* if after choosing a basis for V, the $(\dim V)^2$ coordinate functions of the group homomorphism $\rho : \operatorname{GL}(n, \mathbb{Q}) \to \operatorname{GL}(V)$ are rational functions on n^2 variables.

It is well known that algebraic $\operatorname{GL}(n, \mathbb{Q})$ -representations are completely reducible and that irreducible representations are classified by *bipartitions*, i.e., pairs of partitions. Here, a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is a non-increasing sequence of nonnegative integers. Let $|\lambda| = \sum_{i=1}^{n} \lambda_i$ denote the *size* of λ and $l(\lambda) = \max(\{0\} \cup \{i \mid \lambda_i > 0\})$ the *length* of λ . For a bipartition (λ, μ) , the irreducible algebraic $\operatorname{GL}(n, \mathbb{Q})$ representation $V_{\lambda,\mu}$ is constructed as follows. Consider $H = H_1(F_n, \mathbb{Q})$ as the standard representation of $\operatorname{GL}(n, \mathbb{Q})$ and set $H^{p,q} = H^{\otimes p} \otimes (H^*)^{\otimes q}$ for $p, q \geq 0$. The *traceless part* $T_{p,q}$ of $H^{p,q}$ is defined by

$$T_{p,q} = \bigcap_{1 \le k \le p, \ 1 \le l \le q} \ker(c_{k,l} : H^{p,q} \to H^{p-1,q-1}),$$

where $c_{k,l}$ is the contraction map that takes the dual pairing $\langle, \rangle : H \otimes H^* \to \mathbb{Q}$ at the k-th tensorand of $H^{\otimes p}$ and the l-th tensorand of $(H^*)^{\otimes q}$. For $|\lambda| = p$, $|\mu| = q$, let

$$V_{\lambda,\mu} = T_{p,q} \otimes_{\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]} (S^{\lambda} \otimes S^{\mu}),$$

where S^{λ} and S^{μ} denote the Specht modules corresponding to λ and μ , respectively. If $n \geq l(\lambda) + l(\mu)$, then $V_{\lambda,\mu}$ is an irreducible algebraic $\operatorname{GL}(n, \mathbb{Q})$ -representation and otherwise $V_{\lambda,\mu} = 0$.

2.2. Invariant theory of $GL(n,\mathbb{Z})$. Let $\{e_i \mid 1 \leq i \leq n\}$ be a basis for H and $\{e_i^* \mid 1 \leq i \leq n\}$ the dual basis for H^* . Define a linear map $\omega : \mathbb{Q} \to H \otimes H^*$ by

(2.2.1)
$$\omega(1) = \sum_{i=1}^{n} e_i \otimes e_i^*$$

which is dual to the pairing \langle , \rangle . By using (p+q) copies of the element $\omega(1)$, we have a surjective linear map

$$\Omega: \mathbb{Q}[\mathfrak{S}_{p+q}] \twoheadrightarrow [H^{p,q} \otimes H^{q,p}]^{\mathrm{GL}(n,\mathbb{Z})},$$

which is defined by

$$\Omega(\sigma) = \sum_{1 \le i_1, \cdots, i_{p+q} \le n} \left(\bigotimes_{j=1}^p e_{i_j} \otimes \bigotimes_{j=1}^q e_{i_{\sigma^{-1}(j)}}^* \right) \otimes \left(\bigotimes_{j=p+1}^{p+q} e_{i_j} \otimes \bigotimes_{j=q+1}^{p+q} e_{i_{\sigma^{-1}(j)}}^* \right)$$

for $\sigma \in \mathfrak{S}_{p+q}$. See [13, Section 2.1] for details.

Let $\operatorname{pr} : [H^{p,q} \otimes H^{q,p}]^{\operatorname{GL}(n,\mathbb{Z})} \twoheadrightarrow [T_{p,q} \otimes T_{q,p}]^{\operatorname{GL}(n,\mathbb{Z})}$ denote the projection. Let

$$\Omega' = \operatorname{pr} \circ \Omega|_{\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]} : \mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q] \to [T_{p,q} \otimes T_{q,p}]^{\operatorname{GL}(n,\mathbb{Z})},$$

where $\Omega|_{\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]}$ is the restriction of Ω to $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$. By the surjectivity of Ω , the map Ω' is also surjective since we have $\operatorname{pr} \circ \Omega(\sigma) = 0$ for $\sigma \in \mathfrak{S}_{p+q} \setminus (\mathfrak{S}_p \times \mathfrak{S}_q)$. Let $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ act on $[T_{p,q} \otimes T_{q,p}]^{\operatorname{GL}(n,\mathbb{Z})}$ by the place permutations of p copies of H^* and q copies of H in $T_{q,p}$. Then Ω' is a $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -module map.

We will generalize [13, Proposition 2.10] to obtain the following lemma.

Lemma 2.1. For $n \ge \max(p+q, r+s)$, we have a linear isomorphism

$$[T_{p,q} \otimes T_{r,s}]^{\mathrm{GL}(n,\mathbb{Z})} \cong \begin{cases} \mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q] & (p = s, q = r) \\ 0 & (otherwise). \end{cases}$$

Therefore, the map Ω' is an isomorphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules for $n \ge p+q$.

Proof. We will compute the dimension of $[T_{p,q} \otimes T_{r,s}]^{\operatorname{GL}(n,\mathbb{Z})}$. By Koike [10], for $n \geq \max(p+q, r+s)$, we have irreducible decompositions

$$T_{p,q} \cong \bigoplus_{\lambda \vdash p, \mu \vdash q} (V_{\lambda,\mu})^{\oplus (\dim S^{\lambda} \dim S^{\mu})}, \quad T_{r,s} \cong \bigoplus_{\xi \vdash r, \eta \vdash s} (V_{\xi,\eta})^{\oplus (\dim S^{\xi} \dim S^{\eta})}.$$

Therefore, we have

$$T_{p,q} \otimes T_{r,s} \cong \bigoplus_{\substack{\lambda \vdash p, \mu \vdash q\\ \xi \vdash r, \eta \vdash s}} (V_{\lambda,\mu} \otimes V_{\xi,\eta})^{\oplus (\dim S^{\lambda} \dim S^{\mu} \dim S^{\xi} \dim S^{\eta})}$$

Since for each $\lambda \vdash p$, $\mu \vdash q$, $\xi \vdash r$, $\eta \vdash s$,

$$[V_{\lambda,\mu} \otimes V_{\xi,\eta}]^{\mathrm{GL}(n,\mathbb{Z})} \cong \mathrm{Hom}_{\mathrm{GL}(n,\mathbb{Z})}(V_{\eta,\xi}, V_{\lambda,\mu}) \cong \mathbb{Q}^{\oplus(\delta_{\lambda,\eta}\delta_{\mu,\xi})}$$

by Schur's lemma, we have

$$\dim([T_{p,q}\otimes T_{r,s}]^{\mathrm{GL}(n,\mathbb{Z})}) = \delta_{p,s}\delta_{q,r}\sum_{\lambda\vdash p,\mu\vdash q} (\dim S^{\lambda})^2 (\dim S^{\mu})^2.$$

It follows from

$$\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q] \cong \mathbb{Q}[\mathfrak{S}_p] \otimes \mathbb{Q}[\mathfrak{S}_q] \cong \bigoplus_{\lambda \vdash p, \mu \vdash q} (S^{\lambda})^{\oplus \dim S^{\lambda}} \otimes (S^{\mu})^{\oplus \dim S^{\mu}}$$

that we have

$$\dim(\mathbb{Q}[\mathfrak{S}_p\times\mathfrak{S}_q])=\sum_{\lambda\vdash p,\mu\vdash q}(\dim S^{\lambda})^2(\dim S^{\mu})^2,$$

which completes the proof.

2.3. The conjectural structure of the stable Albanese homology of IA_n . We will briefly review our conjectural structure of the stable Albanese homology of IA_n . For $i \ge 1$, let

$$U_i = \operatorname{Hom}(H, \bigwedge^{i+1} H).$$

Let $U_* = \bigoplus_{i \ge 1} U_i$ be the graded $\operatorname{GL}(n, \mathbb{Q})$ -representation. Define $W_* = \widetilde{S}^*(U_*)$ as the traceless part of the graded-symmetric algebra $S^*(U_*)$ of U_* . Here, the traceless tensor product $V_{\lambda,\mu} \otimes V_{\xi,\eta}$ of two irreducible algebraic $\operatorname{GL}(n, \mathbb{Q})$ -representations $V_{\lambda,\mu}$ and $V_{\xi,\eta}$ is defined by

$$V_{\lambda,\mu} \widetilde{\otimes} V_{\xi,\eta} = (V_{\lambda,\mu} \otimes V_{\xi,\eta}) \cap T_{|\lambda| + |\xi|, |\mu| + |\eta|} \subset H^{|\lambda| + |\xi|, |\mu| + |\eta|}$$

and the traceless part of the tensor algebra is defined by using the traceless tensor product instead of the usual tensor product. The traceless part of the graded-symmetric algebra is defined as the image of the traceless part of the tensor algebra under the canonical projection. See [7, Sections 2.5 and 2.6] for details of the notion of the traceless part.

In order to prove our main theorem, we will review and give the stable range of [7, Proposition 12.3 and Lemma 12.4]. To state these proposition and lemma, we will review the wheeled PROP $\mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}$ that is introduced in [9], and the non-unital wheeled PROP $\mathcal{C}_{\mathcal{O}^{\circlearrowright}}$ that is introduced in [7], corresponding to the operad $\mathcal{C}om$ of non-unital commutative algebras.

Let $\mathcal{P}_0 = \bigoplus_{k \ge 1} \mathcal{P}_0(k)$ denote the operadic suspension of the operad $\mathcal{C}om$, i.e., we have $\mathcal{P}_0(0) = 0$ and $\mathcal{P}_0(k)$ is the sign representation of \mathfrak{S}_k placed in cohomological dimension k - 1 for $k \ge 1$. Let $\mathcal{P}_0^{\circlearrowright}$ denote the wheeled completion of \mathcal{P}_0 and $\mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}$ the wheeled PROP freely generated by $\mathcal{P}_0^{\circlearrowright}$.

Let $\mathcal{O} = \bigoplus_{k \geq 2} \mathcal{P}_0(k)$ denote the non-unital suboperad of \mathcal{P}_0 . Let $\mathcal{O}^{\circlearrowright}$ denote the non-unital wheeled sub-operad of $\mathcal{P}_0^{\circlearrowright}$ and $\mathcal{C}_{\mathcal{O}^{\circlearrowright}}$ the non-unital wheeled sub-PROP of $\mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}$.

Remark 2.2. In [13], Lindell defined a wBr_n -module $\mathcal{P} \otimes \det$ (resp. a dwBr-module $\mathcal{P}' \otimes \det$), which is a functor from the walled Brauer category wBr_n (resp. the downward walled Brauer category dwBr) to the category of Q-vector spaces, in terms of labelled partitions of sets. A wheeled PROP (resp. a non-unital wheeled PROP) admits a natural structure of a wBr_n-module (resp. a dwBr-module), and the wheeled PROP $\mathcal{C}_{\mathcal{P}_0^{\circ}}$ corresponds to $\mathcal{P} \otimes \det$ and the non-unital wheeled PROP $\mathcal{C}_{\mathcal{O}^{\circ}}$ corresponds to $\mathcal{P}' \otimes \det$.

Lemma 2.3 (Cf. [7, Proposition 12.3]). For $n \ge 3i$, we have an isomorphism of $GL(n, \mathbb{Q})$ -representations

$$W_i \cong \bigoplus_{a-b=i} T_{a,b} \otimes_{\mathbb{Q}[\mathfrak{S}_a \times \mathfrak{S}_b]} \mathcal{C}_{\mathcal{O}^{\circlearrowright}}(a,b).$$

Here, we have $T_{a,b} \otimes_{\mathbb{Q}[\mathfrak{S}_a \times \mathfrak{S}_b]} \mathcal{C}_{\mathcal{O}^{\circlearrowright}}(a,b) = 0$ unless $i \leq a \leq 2i, 0 \leq b \leq i$.

Proof. The proof of [7, Proposition 12.3] does not take care of the stable range, but the argument holds for $n \ge 3i$ since for any $k, l \ge 1$ such that $kl \le i$, we have

$$H^{k(l+1),k} \otimes_{\mathbb{Q}[\mathfrak{S}_{l+1}\wr\mathfrak{S}_k]} \mathcal{O}(l)^{\otimes k} \cong S^k(V_{1^l,1}), \quad H^{kl,0} \otimes_{\mathbb{Q}[\mathfrak{S}_l\wr\mathfrak{S}_k]} \mathcal{O}_w^{\circlearrowright}(l)^{\otimes k} \cong S^k(V_{1^l,0}),$$

where $S^k(V_{1^l,i})$ denotes the graded-symmetric power of $V_{1^l,i}$ (i = 0, 1), and where $\mathcal{O}_w^{\circlearrowright}$ denotes the wheel part of the non-unital wheeled operad $\mathcal{O}^{\circlearrowright}$.

Lemma 2.4 (Cf. [7, Lemma 12.4]). For $n \ge \max(3i, p+q)$, we have an isomorphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

$$[(W_i)^* \otimes H^{p,q}]^{\mathrm{GL}(n,\mathbb{Z})} \cong \mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}(p,q)_i.$$

Proof. Since the proof of [7, Lemma 12.4] does not deal with the stable range, we will recall the proof of it to take care of the stable range. By Lemma 2.3, we have for $n \ge 3i$,

$$(W_i)^* \cong \bigoplus_{a-b=i} T_{b,a} \otimes_{\mathbb{Q}[\mathfrak{S}_a \times \mathfrak{S}_b]} \mathcal{C}_{\mathcal{O}^{\circlearrowright}}(a,b),$$

where the direct summand is trivial unless $i \leq a \leq 2i, 0 \leq b \leq i$. For $n \geq p+q$, we have $H^{p,q} \cong \bigoplus_{c=0}^{\min(p,q)} T_{p-c,q-c}^{\oplus \binom{p}{c}\binom{q}{c}c!}$. Therefore, we have

$$\begin{split} &[(W_{i})^{*} \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})} \\ &\cong \left[\bigoplus_{a-b=i}^{\infty} \left(T_{b,a} \otimes_{\mathbb{Q}[\mathfrak{S}_{a} \times \mathfrak{S}_{b}]} \mathcal{C}_{\mathcal{O}^{\circlearrowright}}(a,b) \right) \otimes \bigoplus_{c=0}^{\min(p,q)} \left(T_{p-c,q-c}^{\oplus \binom{p}{c}\binom{q}{c}c!} \right) \right]^{\operatorname{GL}(n,\mathbb{Z})} \\ &\cong \bigoplus_{a-b=i}^{\min(p,q)} \bigoplus_{c=0}^{\min(p,q)} [T_{p-c,q-c} \otimes T_{b,a}]^{\operatorname{GL}(n,\mathbb{Z})} \otimes_{\mathbb{Q}[\mathfrak{S}_{a} \times \mathfrak{S}_{b}]} \mathcal{C}_{\mathcal{O}^{\circlearrowright}}(a,b)^{\oplus \binom{p}{c}\binom{q}{c}c!} \\ &\cong \bigoplus_{c=0}^{\min(p,q)} \mathbb{Q}[\mathfrak{S}_{p-c} \times \mathfrak{S}_{q-c}] \otimes_{\mathbb{Q}[\mathfrak{S}_{p-c} \times \mathfrak{S}_{q-c}]} \mathcal{C}_{\mathcal{O}^{\circlearrowright}}(p-c,q-c)_{i}^{\oplus \binom{p}{c}\binom{q}{c}c!} \\ &\cong \bigoplus_{c=0}^{\min(p,q)} \mathcal{C}_{\mathcal{O}^{\circlearrowright}}(p-c,q-c)_{i}^{\oplus \binom{p}{c}\binom{q}{c}c!} \\ &\cong \mathcal{C}_{\mathcal{P}_{0}^{\circlearrowright}}(p,q)_{i} \end{split}$$

by Lemma 2.1.

2.4. The stable Albanese homology of IA_n . Now we will state the main theorem of this paper.

Theorem 2.5 ([7, Conjecture 6.2]). For $n \ge 3i$, we have an isomorphism of $\operatorname{GL}(n, \mathbb{Q})$ -representations

$$F_i: H_i^A(\mathrm{IA}_n, \mathbb{Q}) \to W_i.$$

Remark 2.6. The range $n \geq 3i$ in the statement of Theorem 2.5 might be improved. However, the multiplicity of an irreducible algebraic $\operatorname{GL}(n, \mathbb{Q})$ -representation which appears as a component of W_i is stable for $n \geq 3i$ (see [7, Section 6.1] for details). In the sense of Church–Farb [3], the Albanese homology of IA_n is representation stable in $n \geq 3i$. Since the first Albanese homology of IA_n is isomorphic to the first rational homology of IA_n , the degree 1 case follows from Cohen–Pakianathan, Farb and Kawazumi [8]. The degree 2 case is proven by Pettet [15] and the degree 3 case is by the author [7]. Moreover, in [7, Theorem 6.1], the author proved the following.

Theorem 2.7 ([7, Theorem 6.1]). We have a morphism of graded $GL(n, \mathbb{Q})$ -representations

$$F_*: H_*(U_1, \mathbb{Q}) \to S^*(U_*)$$

such that $F_*(H^A_*(\mathrm{IA}_n, \mathbb{Q})) \supset W_*$ for $n \ge 3*$.

Remark 2.8. In order to detect W_* in the image of F_* , the author used abelian cycles in $H_*(IA_n, \mathbb{Q})$. Therefore, it follows from Theorem 2.5 that the stable Albanese homology of IA_n is generated by abelian cycles.

In the appendix of [13], the author proved the statement of Theorem 2.5 for sufficiently large n with respect to the homological degree.

Proof of Theorem 2.5. Let $\mathcal{G}(p,q)$ denote the graded quotient vector space of (2, 1)valent marked directed oriented graphs with p incoming legs and q outgoing legs modulo the directed IH-relation, which is introduced in [13, Section 6]. In the proof of [13, Proposition 6.3], Lindell proved that $\mathcal{G}(p,q)$ is isomorphic to $(\mathcal{P} \otimes \det)(p,q)$, and constructed a surjective map

$$\alpha: \mathcal{G}(p,q) \twoheadrightarrow [R_{\text{pres}} \otimes H^{p,q}]^{\mathrm{GL}(n,\mathbb{Z})}$$

by using the element $\omega(1)$ in (2.2.1), where R_{pres} is the graded-commutative ring that is constructed in [13, Definition 6.1]. By [13, Remark 6.2], we have an isomorphism of $\text{GL}(n, \mathbb{Q})$ -representations

$$R_{\text{pres}} \cong H^*(U_1, \mathbb{Q})/\langle R_2 \rangle,$$

where $\langle R_2 \rangle$ denotes the two-sided ideal of $H^*(U_1, \mathbb{Q})$ generated by

$$R_2 = \ker \left(H^2(U_1, \mathbb{Q}) \cong \bigwedge^2 H^1(\mathrm{IA}_n, \mathbb{Q}) \xrightarrow{\cup} H^2(\mathrm{IA}_n, \mathbb{Q}) \right).$$

Since the Albanese cohomology of IA_n is equal to the image of the cup product map $\bigwedge^* H^1(IA_n, \mathbb{Q}) \xrightarrow{\cup} H^*(IA_n, \mathbb{Q})$, we have a surjective morphism of graded $GL(n, \mathbb{Q})$ -representations

(2.4.1)
$$H^*(U_1, \mathbb{Q})/\langle R_2 \rangle \twoheadrightarrow H^*_A(\mathrm{IA}_n, \mathbb{Q}).$$

Therefore, we have a surjective map

$$(\mathcal{P} \otimes \det)(p,q) \twoheadrightarrow [H^*_A(\mathrm{IA}_n, \mathbb{Q}) \otimes H^{p,q}]^{\mathrm{GL}(n,\mathbb{Z})}$$

For $n \geq 3i$, by Lemma 2.4, we have

$$(\mathcal{P} \otimes \det)(2i,i)_i \cong \mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}(2i,i)_i \cong [(W_i)^* \otimes H^{2i,i}]^{\operatorname{GL}(n,\mathbb{Z})}$$

and thus we have a surjective map

$$[(W_i)^* \otimes H^{2i,i}]^{\mathrm{GL}(n,\mathbb{Z})} \twoheadrightarrow [H^i_A(\mathrm{IA}_n,\mathbb{Q}) \otimes H^{2i,i}]^{\mathrm{GL}(n,\mathbb{Z})}.$$

By combining this with Theorem 2.7, for $n \ge 3i$ we have

$$[(W_i)^* \otimes H^{2i,i}]^{\mathrm{GL}(n,\mathbb{Z})} \cong [H^i_A(\mathrm{IA}_n, \mathbb{Q}) \otimes H^{2i,i}]^{\mathrm{GL}(n,\mathbb{Z})}.$$

Therefore, since $H_i^A(\mathrm{IA}_n, \mathbb{Q}) \subset H_i(U_1, \mathbb{Q}) \cong \bigwedge^i U_1 \subset H^{2i,i}$, we have $H_A^i(\mathrm{IA}_n, \mathbb{Q}) \cong (W_i)^*$, which completes the proof. \Box

3. Several related conjectures

We will prove several conjectures related to the $GL(n, \mathbb{Q})$ -representation structure of the stable Albanese homology of IA_n, which are proposed in [7].

3.1. The algebra structure of the Albanese cohomology of IA_n . Here we study the algebra structure of the Albanese cohomology of IA_n . The cup product gives the algebra structure on the rational cohomology of IA_n and IA_n^{ab} , and the Albanese cohomology of IA_n is a subalgebra of $H^*(IA_n, \mathbb{Q})$ generated by $H^1(IA_n, \mathbb{Q})$. We refer the reader to [7, Section 8] for details.

The following theorem directly follows from the proof of Theorem 2.5.

Theorem 3.1 (Cf. [7, Conjecture 8.2]). The Albanese cohomology algebra is stably quadratic in $n \ge 3*$. That is, the surjective $\operatorname{GL}(n, \mathbb{Q})$ -equivariant morphism (2.4.1) of graded algebras

$$H^*(U_1,\mathbb{Q})/\langle R_2 \rangle \twoheadrightarrow H^*_A(\mathrm{IA}_n,\mathbb{Q})$$

is an isomorphism of $GL(n, \mathbb{Q})$ -representations for $n \geq 3*$.

3.2. The coalgebra structure of the Albanese homology of IA_n . Here we study the coalgebra structure of the Albanese homology of IA_n . We refer the reader to [7, Section 7] for details.

The rational homology of IA_n (resp. IA_n^{ab}) has a natural coalgebra structure, which is predual to the algebra structure of $H^*(IA_n, \mathbb{Q})$ (resp. $H^*(IA_n^{ab}, \mathbb{Q})$). The coalgebra structures of $H^*(IA_n, \mathbb{Q})$ and $H^*(IA_n^{ab}, \mathbb{Q})$ induce a coalgebra structure on the Albanese homology of IA_n . We also have a coalgebra structure on the graded-symmetric algebra $S^*(U_*)$ (see [7, Section 2.6] for details).

Let $F_*: H_*(U_1, \mathbb{Q}) \to S^*(U_*)$ be the morphism that appeared in Theorem 2.7. By [7, Proposition 7.1], the map F_* is a coalgebra morphism. Since we have

$$\operatorname{Prim}(S^*(U_*)) = U_* = \operatorname{Prim}(W_*),$$

where Prim(C) denotes the primitive part of a co-augmented coalgebra C, Theorem 2.5 implies the following.

Corollary 3.2 ([7, Conjecture 7.2]). The $GL(n, \mathbb{Q})$ -equivariant coalgebra morphism F_* restricts to a $GL(n, \mathbb{Q})$ -equivariant morphism

$$F_*: \operatorname{Prim}(H^A_*(\operatorname{IA}_n, \mathbb{Q})) \to U_*,$$

which is an isomorphism for $n \ge 3*$.

3.3. The stable Albanese homology of IO_n . Let $Out(F_n)$ denote the outer automorphism group of F_n . Define IO_n as the kernel of the surjective group homomorphism from $Out(F_n)$ to $GL(n, \mathbb{Z})$, that is, we have a short exact sequence of groups

$$1 \to \mathrm{IO}_n \to \mathrm{Out}(F_n) \to \mathrm{GL}(n,\mathbb{Z}) \to 1.$$

The Albanese homology of IO_n is defined in a way similar to IA_n by

$$H^A_*(\mathrm{IO}_n, \mathbb{Q}) = \mathrm{im}(H_*(\mathrm{IO}_n, \mathbb{Q}) \to H_*(\mathrm{IO}_n^{\mathrm{ab}}, \mathbb{Q})).$$

The conjectural structure W^O_* of the stable Albanese homology of IO_n is constructed as the traceless part of the graded-symmetric algebra $S^*(U^O_*)$ of the graded $GL(n, \mathbb{Q})$ -representation

$$U^{O}_{*} = \bigoplus_{i \ge 1} U^{O}_{i}, \quad \begin{cases} U^{O}_{1} = \operatorname{Hom}(H, \bigwedge^{2} H)/H \cong V_{1^{2}, 1} & i = 1\\ U^{O}_{i} = U_{i} & i \ge 2. \end{cases}$$

We refer the reader to [7, Section 9] for details.

By using Theorem 2.5 and several results in [7], we will determine the stable Albanese homology of IO_n . The cases of degree 1, 2 and 3 are proven by [8], [15] and [7], respectively.

Theorem 3.3 (Cf. [7, Conjecture 9.7]). We have an isomorphism of $GL(n, \mathbb{Q})$ -representations

$$H_i^A(\mathrm{IO}_n, \mathbb{Q}) \cong W_i^O$$

for $n \geq 3i$.

Proof. If we disregard the stable range, then the statement follows directly from Theorem 2.5 and [7, Proposition 9.11]. However, we will recall the argument and take care of the stable range.

We have isomorphisms of $GL(n, \mathbb{Q})$ -representations

$$H_i^A(\mathrm{IA}_n, \mathbb{Q}) \cong H_i^A(\mathrm{IO}_n, \mathbb{Q}) \oplus (H_{i-1}^A(\mathrm{IO}_n, \mathbb{Q}) \otimes H)$$

for $n \ge 2$ by [7, Proposition 9.8], and

$$W_i \cong W_i^O \oplus (W_{i-1}^O \otimes H)$$

for $n \geq 3i$ by [7, Lemma 9.9]. Since we have $H_1^A(IO_n, \mathbb{Q}) \cong W_1^O$, the statement follows by induction on i.

In the case of IA_n, the polynomiality of the dimension of the stable Albanese homology was known in [2]. By Theorem 2.5 and an irreducible decomposition of W_* , it is possible to compute the exact polynomial. It seems natural to expect the same thing holds for IO_n, but the author has not found any literature about the polynomiality of the stable Albanese homology of IO_n. By Theorem 3.3, we obtain the polynomiality in the case of IO_n as well.

Corollary 3.4 (Cf. [7, Conjecture 9.6]). There is a polynomial $P_i^O(T)$ of degree 3i such that we have $\dim_{\mathbb{Q}}(H_i^A(\mathrm{IO}_n, \mathbb{Q})) = P_i^O(n)$ for $n \geq 3i$.

3.4. Relation between the stable Albanese cohomology of IA_n and the stable twisted cohomology of $Aut(F_n)$. Here we will study the relation between the stable Albanese cohomology of IA_n and the stable cohomology of $Aut(F_n)$ with coefficients in $H^{p,q}$.

The stability of the twisted homology of $\operatorname{Aut}(F_n)$ was shown by Randal-Williams– Wahl [16]. We will use the recent improvement of the stable range in [14].

Theorem 3.5 (Miller–Patzt–Petersen–Randal-Williams [14, Theorem 1.2]). For any bipartition (λ, μ) , the homology group $H_i(\operatorname{Aut}(F_n), V_{\lambda,\mu})$ stabilizes for $n \geq 3i + 4$.

By using this improved stable range, we will prove the following.

Theorem 3.6 (Cf. [7, Conjectures 12.5 and 12.6]). We have an isomorphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

$$H^{i}(\operatorname{Aut}(F_{n}), H^{p,q}) \cong [H^{i}_{A}(\operatorname{IA}_{n}, \mathbb{Q}) \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})}$$

for $n \ge \min(\max(3i+4, p+q), 2i+p+q+3)$. The statement also holds for coefficients in $V_{\lambda,\mu}$ with $|\lambda| = p, |\mu| = q$ instead of $H^{p,q}$.

Proof. By [12, Theorem A], for $n \ge 2i + p + q + 3$, we have an isomorphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

(3.4.1)
$$H^{i}(\operatorname{Aut}(F_{n}), H^{p,q}) \cong (\mathcal{P} \otimes \det)(p,q)_{i}.$$

Since $\mathcal{P} \otimes \text{det}$ is independent of n, it follows from Theorem 3.5 that the isomorphism (3.4.1) holds for $n \geq \max(3i+4, p+q)$. On the other hand, by Theorem 2.5 and Lemma 2.4, we have isomorphisms of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

$$[H_A^i(\mathrm{IA}_n, \mathbb{Q}) \otimes H^{p,q}]^{\mathrm{GL}(n,\mathbb{Q})} \cong [(W_i)^* \otimes H^{p,q}]^{\mathrm{GL}(n,\mathbb{Q})} \cong \mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}(p,q)_i \cong (\mathcal{P} \otimes \det)(p,q)_i$$

for $n \ge \max(3i, p+q)$, which completes the proof. \Box

Remark 3.7. For the non-vanishing case p - q = i, we have

$$\min(\max(3i+4,p+q),2i+p+q+3) = \begin{cases} \max(3i+4,p+q) & q \ge 1, \\ 3i+3 & q = 0. \end{cases}$$

Moreover, in [6], Habiro and the author conjectured that the isomorphism in Theorem 3.6 is realized by the morphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

$$i^*: H^*(\operatorname{Aut}(F_n), H^{p,q}) \to H^*(\operatorname{IA}_n, H^{p,q})^{\operatorname{GL}(n,\mathbb{Z})} = [H^*(\operatorname{IA}_n, \mathbb{Q}) \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})}$$

that is induced by the inclusion map $i : \mathrm{IA}_n \hookrightarrow \mathrm{Aut}(F_n)$. To prove this conjecture, we will construct a wheeled PROP corresponding to $[H^*_A(\mathrm{IA}_n, \mathbb{Q}) \otimes H^{p,q}]^{\mathrm{GL}(n,\mathbb{Z})}$ in a way similar to the wheeled PROP \mathcal{H} corresponding to $H^*(\mathrm{Aut}(F_n), H^{p,q})$ that was introduced in [9].

In what follows, let H(n) denote $H = H_1(F_n, \mathbb{Q})$ to make the dependence on n explicit. The inclusion map $F_n \hookrightarrow F_{n+1}$ that maps the generator $x_i \in F_n$ to $x_i \in F_{n+1}$ for $1 \leq i \leq n$ induces an inclusion map $IA_n \hookrightarrow IA_{n+1}$. We have the projection $H(n+1) \twoheadrightarrow H(n)$ that sends the basis element $e_i \in H(n+1)$ to $e_i \in H(n)$ for $1 \leq i \leq n$ and $e_{n+1} \in H(n+1)$ to 0. We also have the projection $H(n+1)^* \twoheadrightarrow H(n)^*$ that sends the dual basis element $e_i^* \in H(n+1)^*$ to $e_i^* \in H(n)^*$ and $e_{n+1}^* \in H(n+1)^*$ to 0. These three maps induce the linear map

$$[H_A^*(\mathrm{IA}_{n+1},\mathbb{Q})\otimes H^{p,q}(n+1)]^{\mathrm{GL}(n+1,\mathbb{Z})} \to [H_A^*(\mathrm{IA}_n,\mathbb{Q})\otimes H^{p,q}(n)]^{\mathrm{GL}(n,\mathbb{Z})}$$

and the stable $\operatorname{GL}(n,\mathbb{Z})$ -invariant part of the twisted Albanese cohomology is the limit $\underline{\lim}_{n} [H^*_A(\operatorname{IA}_n, \mathbb{Q}) \otimes H^{p,q}(n)]^{\operatorname{GL}(n,\mathbb{Z})}$. By Theorem 2.5, we have

$$\lim_{n} [H^{i}_{A}(\mathrm{IA}_{n}, \mathbb{Q}) \otimes H^{p,q}(n)]^{\mathrm{GL}(n,\mathbb{Z})} \cong [H^{i}_{A}(\mathrm{IA}_{n}, \mathbb{Q}) \otimes H^{p,q}(n)]^{\mathrm{GL}(n,\mathbb{Z})}$$

for $n \ge \max(3i, p+q)$.

Define a wheeled PROP \mathcal{A} as follows. The morphisms are the graded $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

$$\mathcal{A}(p,q) = \varprojlim_{n} [H^*_A(\mathrm{IA}_n, \mathbb{Q}) \otimes H^{p,q}(n)]^{\mathrm{GL}(n,\mathbb{Z})},$$

where the actions of \mathfrak{S}_p and \mathfrak{S}_q are given by place permutations of the copies of H and H^* . The horizontal composition

$$\mathcal{A}(p_1,q_1) \otimes \mathcal{A}(p_2,q_2) \to \mathcal{A}(p_1+p_2,q_1+q_2)$$

is induced by the cup product map for the cohomology of IA_n , and the vertical composition

$$\mathcal{A}(q,r) \otimes \mathcal{A}(p,q) \to \mathcal{A}(p,r)$$

is induced by the composition of the cup product map for the cohomology of IA_n and the map $H^{q,r} \otimes H^{p,q} \cong Hom(H^{\otimes r}, H^{\otimes q}) \otimes Hom(H^{\otimes q}, H^{\otimes p}) \to H^{p,r}$ defined by the composition of linear maps. The contraction map

$$\xi_j^i: \mathcal{A}(p,q) \to \mathcal{A}(p-1,q-1)$$

is induced by the contraction map $c_{i,j}: H^{p,q} \to H^{p-1,q-1}$. We refer the reader to [9, Definition 6.1, Proposition 6.2].

Theorem 3.8 (Cf. [6, Conjecture 7.2]). The inclusion map $i : IA_n \hookrightarrow Aut(F_n)$ induces an isomorphism of wheeled PROPs

$$i^*: \mathcal{H} \xrightarrow{\cong} \mathcal{A},$$

and thus induces an isomorphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

$$i^*: H^*(\operatorname{Aut}(F_n), H^{p,q}) \to [H^*_A(\operatorname{IA}_n, \mathbb{Q}) \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})}$$

for $n \ge \min(\max(3*+4, p+q), 2*+p+q+3)$.

Proof. Since we have observed the stability of $H^*(\operatorname{Aut}(F_n), H^{p,q})$ and $[H^*_A(\operatorname{IA}_n, \mathbb{Q}) \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})}$, by Theorem 3.6, it suffices to check that the inclusion map $i : \operatorname{IA}_n \hookrightarrow \operatorname{Aut}(F_n)$ induces a surjective morphism of wheeled PROPs $i^* : \mathcal{H} \twoheadrightarrow \mathcal{A}$.

The Johnson homomorphism for $Aut(F_n)$ is the group homomorphism

$$\tau: \mathrm{IA}_n \to \mathrm{Hom}(H, \bigwedge^2 H)$$

defined by $\tau(f)([x]) = [f(x)x^{-1}]$ for $f \in IA_n$ and $x \in F_n$, where [x] denotes the image under the projection $F_n \to H$ and $[f(x)x^{-1}]$ the image under the projection $[F_n, F_n] \to \bigwedge^2 H$. By abuse of the notation, let $\tau \in H^1(IA_n, H^{2,1})$ denote the cohomology class that is represented by the composition map of the Johnson homomorphism and the inclusion $Hom(H, \bigwedge^2 H) \hookrightarrow H^{2,1}$. We can check that the cohomology class τ is non-trivial for $n \geq 3$ by using the dual pairing

$$\langle,\rangle: H^1(\mathrm{IA}_n, H^{2,1}) \otimes H_1(\mathrm{IA}_n, H^{1,2}) \to \mathbb{Q}$$

defined by $\langle [f], [g \otimes x] \rangle = f(g)(x)$ for $f : IA_n \to H^{2,1} \cong Hom_{\mathbb{Q}}(H^{1,2}, \mathbb{Q})$ and $g \in IA_n, x \in H^{1,2}$, where [f] (resp. $[g \otimes x]$) denotes the cohomology class (resp. homology class).

Kawazumi [8] extended the Johnson homomorphism to a cohomology class $h_1 \in H^1(\operatorname{Aut}(F_n), H^{2,1})$, which is non-trivial. Therefore, we have

(3.4.2)
$$i^*(h_1) = \tau \in H^1(\mathrm{IA}_n, H^{2,1})^{\mathrm{GL}(n,\mathbb{Z})}$$

By [9] and [12], \mathcal{H} is generated by h_1 as a wheeled PROP, which means that for any $p, q \geq 0$, the hom-space $\mathcal{H}(p,q)$ is a $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -module spanned by morphisms obtained from some copies of h_1 and $\mathrm{id}_H \in H^{1,1}$ by the horizontal composition, the vertical composition and the contraction map of \mathcal{H} . Since the map i^* sends the generator h_1 of \mathcal{H} to $\tau \in \mathcal{A}(2, 1)$, in order to prove that i^* is surjective, we have only to prove that \mathcal{A} is generated by τ as a wheeled PROP.

The Albanese cohomology of IA_n is generated by the first cohomology as an algebra. Therefore, \mathcal{A} is generated by the degree 1 part $[H^1_A(IA_n, \mathbb{Q}) \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})} = H^1(IA_n, H^{p,q})^{\operatorname{GL}(n,\mathbb{Z})}$. For $p, q \geq 0$ with $p-q \neq 1$, we have $H^1(IA_n, H^{p,q})^{\operatorname{GL}(n,\mathbb{Z})} = 0$ for $n \geq \max(3, p+q)$. For p = 1, q = 0, we have

$$H^1(\mathrm{IA}_n, H^{1,0})^{\mathrm{GL}(n,\mathbb{Z})} = \mathbb{Q}\xi_1^1(\tau)$$

for $n \geq 3$. For p = 2, q = 1, we have

$$H^{1}(\mathrm{IA}_{n}, H^{2,1})^{\mathrm{GL}(n,\mathbb{Z})} = \mathbb{Q}\{\tau, \xi_{1}^{1}(\tau) \cup \mathrm{id}_{H}, \mathrm{id}_{H} \cup \xi_{1}^{1}(\tau)\}$$

for $n \geq 3$. For $p \geq 3$, q = p - 1, the horizontal composition map

$$H^{1}(\mathrm{IA}_{n}, H^{2,1})^{\mathrm{GL}(n,\mathbb{Z})} \otimes (H^{p-2,p-2})^{\mathrm{GL}(n,\mathbb{Z})} \to H^{1}(\mathrm{IA}_{n}, H^{p,p-1})^{\mathrm{GL}(n,\mathbb{Z})}$$

is surjective for $n \ge 2p - 1$. Therefore, \mathcal{A} is generated by τ as a wheeled PROP, which completes the proof.

References

- Mladen Bestvina, Kai-Uwe Bux, and Dan Margalit. Dimension of the Torelli group for Out(F_n). Invent. Math., 170(1):1–32, 2007.
- [2] Thomas Church, Jordan S. Ellenberg, and Benson Farb. FI-modules and stability for representations of symmetric groups. Duke Math. J., 164(9):1833–1910, 2015.
- [3] Thomas Church and Benson Farb. Representation theory and homological stability. Adv. Math., 245:250-314, 2013.
- [4] Matthew Day and Andrew Putman. On the second homology group of the Torelli subgroup of Aut(F_n). Geom. Topol., 21(5):2851–2896, 2017.
- [5] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
- [6] K. Habiro and M. Katada: On the stable rational cohomology of the IA-automorphism groups of free groups, arXiv:2211.13458. (2022), to appear in J. Math. Soc. Japan.
- [7] Mai Katada. Stable rational homology of the IA-automorphism groups of free groups. arXiv preprint arXiv:2207.00920, 2022.
- [8] Nariya Kawazumi. Cohomological aspects of magnus expansions. arXiv preprint math/0505497, 2005.
- [9] Nariya Kawazumi and Christine Vespa. On the wheeled PROP of stable cohomology of Aut(F_n) with bivariant coefficients. Algebr. Geom. Topol., 23(7):3089–3128, 2023.
- [10] Kazuhiko Koike. On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters. Adv. Math., 74(1):57–86, 1989.
- [11] Sava Krstić and James McCool. The non-finite presentability of $IA(F_3)$ and $GL_2(\mathbb{Z}[t, t^{-1}])$. Invent. Math., 129(3):595–606, 1997.
- [12] Erik Lindell. Stable cohomology of $\operatorname{Aut}(F_n)$ with bivariant twisted coefficients. arXiv preprint arXiv:2212.11075, 2022.
- [13] Erik Lindell. The walled Brauer category and stable cohomology of IA_n. arXiv preprint arXiv: 2404.06263, 2024.
- [14] Jeremy Miller, Peter Patzt, Dan Petersen, and Oscar Randal-Williams. Uniform twisted homological stability. arXiv preprint arXiv:2402.00354, 2024.
- [15] Alexandra Pettet. The Johnson homomorphism and the second cohomology of IA_n. Algebr. Geom. Topol., 5:725–740, 2005.
- [16] Oscar Randal-Williams and Nathalie Wahl. Homological stability for automorphism groups. Adv. Math., 318:534–626, 2017.
- [17] Takao Satoh. On the low-dimensional cohomology groups of the IA-automorphism group of the free group of rank three. Proc. Edinb. Math. Soc. (2), 64(2):338–363, 2021.

FACULTY OF MATHEMATICS, KYUSHU UNIVERSITY, FUKUOKA 819-0395, JAPAN Email address: katada@math.kyushu-u.ac.jp

12