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We propose a scheme for quantum-light generation in a nonlinear cavity hybridized with a 2-level
system. We theoretically show that, when excited by a series of controlled pump pulses, the hybrid
source can generate various Fock states with high probabilities, such as near-on-demand generation
of 1- and 2-photon states, and above 50% probability for generation of Fock states with up to 7
photons. More importantly, the tailorable nature of the nonlinear cavity and its pumping allows
for generating Fock states with arbitrary frequencies, even with a fixed 2-level system, creating
fundamentally new opportunities in all areas of quantum technologies.

Introduction.

To support the realization of optical quantum tech-
nologies [1–4], development of efficient and tailorable
sources of quantum light, such as squeezed light and Fock
states, is of major interest. While squeezed light can re-
liably be generated using nonlinear parametric processes
[5, 6], generation of optical Fock states with photon num-
bers n ≥ 2 is notoriously difficult in practice and is an
ongoing topic of research. The majority of proposals and
implementations rely on either of the two general ap-
proaches: using atomic or atom-like solid-state quantum
systems [7–10], with successful implementations mainly
based on temporal demultiplexing of single photons from
a single quantum dot [11–13], or using nonlinear para-
metric sources, where Fock states can be heralded by
conditional measurement of squeezed-light states [14–16].
Yet both approaches have their limitations. Although
capable of deterministic generation, atomic and solid-
state systems have very limited tunabilities [17], espe-
cially in their spectra, which result in states with limited
tailorability in spectral/modal properties.

In contrast, nonlinear sources are widely tunable in
spectral, modal, and polarization degrees of freedom, spe-
cially in nanostructured platforms [18], yet they only gen-
erate Fock states probabilistically, with decreasing prob-
ability for higher photon-number states [16].

Motivated by these complementary advantages and
disadvantages of nonlinear and atom-like systems, we aim
for a hybrid system combining the two, that exploits both
their advantages towards creating an ideal source of Fock
states, one that is on-demand and tunable. Such hybrid
systems have attracted attention recently, with propos-
als for enhancing atom-cavity interaction [19, 20], single-
photon generation with enhanced purity [21], generating
equally weighted superposition of Fock states [22], and
generating Schrödinger cat states [23].

In this Letter, we propose a hybrid source, consisting of
a nonlinear cavity and a two-level system (2LS), for gen-
eration of Fock states with enhanced probabilities and ar-
bitrary frequencies. To this end, we use a sequence of op-
tical pump pulses for the nonlinear cavity, with controlled
amplitudes, phases, and temporal delays, and leverage
the complex interplay between squeezed-light generation
and its interaction with a 2LS. Importantly, the prop-
erties of the generated Fock states, specially their fre-
quency, can be adjusted by tuning the parameters of the
nonlinear process. We also study this system’s perfor-
mance in the presence of cavity losses.

Basic principles. The hybrid source is depicted schemat-
ically in Fig. 1(a), in which a nonlinear crystal with
second-order susceptibility χ(2) and a 2LS, are embed-
ded in an optical cavity. The nonlinear cavity, without
the 2LS, when pumped by an optical field of frequency
ωp = ωs + ωi, can generate two-mode squeezed vacuum
(TMSV) into two separate resonance modes of the cav-
ity, referred to as signal and idler modes, of frequencies
ωs and ωi, respectively. The 2LS has the transition fre-
quency ω0, which is resonant with the idler mode, i.e.,
ωi = ω0. The TMSV state generated by the squeez-

ing operator e−i(râ†
i â

†
s+ H.c.) can be written as a su-

perposition of perfectly photon-number correlated states
as |TMSV⟩ = sech ζ

∑∞
n=0(i e

iϕ tanh ζ)n |n, n⟩ [24, 25].

Here, â†i and â†s are the creation operators for the idler
and signal modes, respectively. We adopt the convention
that a state of the form |m,n⟩ contains m idler, and n
signal photons and also refer to states where n = m as
multi-pair states. Additionally, ζ and ϕ are the magni-
tude and phase, respectively, of the complex parametric
gain r = ζ eiϕ, determined by the properties of the non-
linear cavity and the pump field [24].

In Fig. 1(b), we show the probability of finding the first
few multi-pair states in a TMSV state, as a function of
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FIG. 1. (a) Schematic representation of the hybrid source. A sequence of pump pulses with distinct temporal separations,
amplitudes, and phases are incident on a nonlinear cavity, to generate a two-mode squeezed vacuum (TMSV) in the signal and
idler modes. Simultaneously, the idler photons undergo resonant Rabi oscillations with a 2LS. (b) Probabilities of obtaining
the five lowest order |n, n⟩ states as a function of a real-valued parametric gain r, in a conventional TMSV source without
the 2LS. (c,d) Temporal evolution of the probabilities (c) and phases of probability amplitudes (w.r.t. the |0, 0⟩ state) (d)
for the three lowest order |n, n⟩ in a configuration with two pump pulses and no 2LS. The pulses have the parametric gains
r1 = −r2 ≈ 0.58 and a temporal separation of T1 = 0.59 2π

Ω
. Vertical black dashed lines indicate the arrival time of each pump

pulse. As the pulses are too short to be discernible at these time scales, a plot of a pump pulse envelope is shown in the inset of
(c); (e,f) Temporal evolution of a few lowest-order composite states |n, n, g⟩ and |n− 1, n, e⟩ (phases w.r.t. the |0, 0, g⟩ state),
in the nonlinear cavity with the 2LS, for the same pumping configuration as in (c,d).

the parametric gain. We observe that, as the paramet-
ric gain increases, these probabilities rise to a maximum
value and then decrease. This is a consequence of lower-
order |n, n⟩ states ”seeding” the generation of the higher-
order ones. This property of squeezed-light sources sets
a fundamental limit on the probability of generating any
given multi-pair state. In principle, a combination of
heralding and multiplexing approaches can be used to en-
hance the generation probability of a specific Fock state.
Yet, this demands enormous resources in practice, even
for the simplest case of realizing an on-demand source of
single photons [26, 27].

Hybrid dynamics. The hybrid system dynamics can be
described with the following Hamiltonian in the interac-
tion picture, Ĥ(t) = ℏΓE(t)â†i â†s+iℏΩ

2 âiσ̂
†+ H.c. [28, 29].

Here, Γ is a nonlinear coupling constant, representing the
nonlinear efficiency of the cavity for TMSV generation. Ω
is the single-photon Rabi frequency, and σ̂ is the atomic
lowering operator for the 2LS. E(t) is the temporal en-
velope of the pump field, which is made of a sequence of
temporally distinct pulses. Each pump pulse is enumer-
ated by the number j, and is characterized by a paramet-
ric gain rj = ζj e

iϕj = Γ
∫
j
dt E(t), where the integration

extends over the duration of the j-th pulse. Without loss
of generality, we use Gaussian pump pulses with tempo-
ral widths fixed to ≈ 5× 10−3 2π

Ω , much shorter than the
temporal period of few-photon Rabi oscillations between
the idler photons and the 2LS, which allows us to isolate
the dynamics of nonlinear generations from the Rabi os-
cillations. Essentially, with every shot of a pump pulse,
the nonlinear Hamiltonian induces a quick change in the
system’s state, followed by much slower Rabi oscillations.
For numerical calculations, we also used QuTiP library in

Python [30]. The details of the analytical derivations and
numerical procedures are outlined in the Supplementary
[31].

To understand the hybrid dynamics, an example with
a two-pulse pump sequence is shown in Fig. 1(c-f). We
plot the temporal evolution of the first few multi-pair
states, where we show their probabilities and their rela-
tive phases with respect to the |0, 0⟩ state. In Fig. 1(c,d),
we study the case of the nonlinear cavity without the 2LS,
essentially a TMSV source. We use two pump pulses of
equal gain magnitudes, but with a relative phase differ-
ence of π, with r1 = −r2 ≈ 0.58. The sharp changes in all
the plots correspond to the points in time where a pump
pulse is incident on the nonlinear cavity. As we see in
this case, these two pulses cancel each others parametric
gains, resulting in a perfect destructive nonlinear inter-
ference [32], creating the TMSV with the first pulse and
going back to the vacuum state with the second pulse. In
Figs. 1(e,f), we show the results for the same two-pulse
configuration as in Figs. 1(c,d), but now in the presence
of the 2LS in the nonlinear cavity. Firstly, we see that
for each individual multi-pair state generated by the first
pump pulse, the hybrid system experiences Rabi oscilla-
tions between composite states |n, n, g⟩ and |n− 1, n, e⟩,
where g (e) indicates the ground (excited) state of the
2LS. The frequency of each Rabi oscillation is propor-
tional to

√
n [28, 29]. This scaling of the Rabi frequency

with photon number, results in a complex set of rela-
tive phases between individual multi-pair states by the
time the second pump pulse arrives, which consequently
changes the nature of nonlinear interferences. This then
results in a significantly different final state, as can be
seen, compared to the obtained vacuum state in the case
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FIG. 2. (a) Probability of having a single photon in the sig-
nal mode in a two-pulse configuration, as a function of the
parametric gain magnitude ζ2 and delay time T1 of the sec-
ond pump pulse (fixed relative phase, ϕ2 = π and ϕ1 = 0);
(b) The same probability as a function of the phase and mag-
nitude of r2 = ζ2 e

iϕ2 (delay time fixed to T1 = 0.61 2π
Ω
). In

both cases, the gain of the first pulse is r1 ≈ 0.58.

without the 2LS. Interestingly, we can see in Fig. 1(e),
that the probability of generating a single pair of signal
and idler photons reaches a value close to 0.5, which is
twice the value than can be achieved in a conventional
TMSV source, as was seen in Fig. 1(b).

In fact, the final state varies significantly with the para-
metric gain, relative phase, and the delay time between
the pump pulses. To see this, in Fig. 2, we show the
probability of finding a single-photon state in the sig-
nal mode (calculated by adding the probabilities of the
|1, 1, g⟩ and |0, 1, e⟩ states): (a) as a function of the delay
time T1 and gain magnitude ζ2 of the second pulse, for a
fixed relative phase ϕ2 − ϕ1 = π; (b) as a function of the
phase ϕ2 and magnitude ζ2 of the parametric gain of the
second pulse, for a fixed delay time T1 = 0.61 2π

Ω . The
other parameters were identical to the configuration in
Figs. 1(e,f). In Fig. 2(a), we see that the single-photon
generation probability attains a maximum of 0.5 for a
delay of T1 = 0.61 2π

Ω and a parametric gain of ζ2 ≈ 0.55.
In Fig. 2(b), we see that phases ϕ2 ̸= π always result
in a lower single-photon generation probability. Further
simulations (see Supplementary [31]) also showed that,
within the considered ranges of ζ2 and T1, the highest
single-photon probabilities are always obtained for a rel-
ative phase of π between two consecutive pump pulses.

Three-pulse configuration. While the high-dimensional
space of control parameters in a multi-pulse sequence of-
fers many ways to tune desired outputs, even configura-
tions with a limited number of varying parameters are
capable of generating high-photon-number Fock states,
with generation probabilities far surpassing what is pos-
sible in a conventional TMSV source. To demonstrate
this, we calculate the output for a configuration with
three pump pulses. We use the parametric gains and de-
lay times of the pulses as ”control knobs” for tuning the
system towards desired final states, namely to maximize
the generation probability of different Fock states in the
signal mode of the cavity. We fixed the relative phase
between the pump pulses to π, such that ϕ1 = 0, ϕ2 = π,

and ϕ3 = 0. This choice is guided by our study shown
in Fig. 2, to maximize the single-photon probability in
the signal mode. This does not necessarily mean that
this phase choice is a global optimum for maximizing the
generation probability of other Fock states, yet it is a
reasonable choice, and mainly an attempt to limit the
space of control parameters in our optimization study.

For the parametric gain magnitudes, we consider val-
ues of ζ ≤ 15dB, which are experimentally achievable in
TMSV sources [5]. From this point onward, we express
parametric gain magnitudes in units of dB, calculated
as ζ[dB] = −10 log10( e

−2ζ), for easier comparison with
experimental works on TMSV sources. We also restrict
the total interaction time to ≤ 3 2π

Ω , as the duration of
coherent interactions between a quantum emitter and an
optical cavity is limited in practice [33]. In the next sec-
tion, we will briefly address the feasibility of realizing
our optimized pulse sequences, in terms of the required
interaction time, with respect to such realistic effects.

FIG. 3. (a-c) Left panels: Temporal evolution of probabil-
ities in a configuration with three pump pulses, optimized
for achieving maximum generation probability of (a) 1, (b)
2, and (c) 3 photons in the signal mode. The second pulse
has a relative phase of π compared to the other two and the
parametric gain of each pulse is indicated in each figure as
ζj . Right panels: The corresponding photon-number prob-
ability distributions in the signal mode at the output. (d)
The maximum obtained probabilities for generating photon
number states |1⟩ to |9⟩ in the signal mode, in the three pulse
configuration (yellow bars), and the maximum fundamentally
attainable probabilities for generating the |n, n⟩ states in a
conventional TMSV source (purple bars).

Under the expressed boundary conditions for our
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optimization with three pump pulses, we show in
Figs. 3(a,b,c), the pulse configurations that result in the
maximum achievable generation probability for the Fock
states |1⟩, |2⟩ and |3⟩ in the signal mode, respectively.
The probability of generating an n-photon Fock state in
the signal mode is calculated from summing up the mu-
tually exclusive probabilities of generating the |n, n, g⟩
and |n− 1, n, e⟩ states. As the signal mode does not in-
teract with the 2LS, the Fock state in it can eventually
escape a realistic cavity of finite quality factor for fur-
ther utilization. The left panels in Figs. 3(a-c) show the
temporal evolution of the probabilities, while the right
panels show the final distribution of the probabilities for
the signal-mode Fock states, where we find very high
probabilities for generation of these distinct Fock states.
Especially Figs. 3(a,b), show a near-on-demand genera-
tion of single- and two-photon Fock states, with 0.98 and
0.93 probabilities, respectively. In Fig. 3(d), we show
the maximum probabilities for generation of Fock states
with photon numbers up to ns = 9, that can be obtained
in our three-pulse optimization. With it, we also show
the corresponding maximum probabilities attainable us-
ing a conventional TMSV source for comparison, which
clearly demonstrates the enhancement achieved in the
hybrid system. As an example, the probability for gen-
erating the ns = 9 state is enhanced more than 10-fold
compared to the TMSV source. The exact pulse sequence
parameters for attaining each of the Fock states shown
in Fig. 3(d) are given in the Supplementary [31].

Effects of loss. The obtained results up to now are
only strictly valid in an idealized system, with no cavity
losses, 100% coupling of the 2LS radiation into the cav-
ity mode, and no internal dephasing of the 2LS, which

FIG. 4. (a-c) Temporal evolution of the |1, 1, g⟩ (red), |2, 2, g⟩
(blue), and |3, 3, g⟩ (green) states in the presence of different
amounts of cavity losses, quantified by γc, the decay rate for
both the signal and idler modes. The pump configuration for
each of the plots is identical to the corresponding optimized
lossless cases shown in Fig. 3; (d) The probabilities of detect-
ing ns = 1, 2, 3 photons in the signal mode immediately after
the third pump pulse.

are not fully achievable in practice [33]. Longer inter-
action times, give more time to these effects to neg-
atively affect the system dynamics. To take the first
step into investigating our scheme under non-ideal con-
ditions, we focus on the effects of having a finite qual-
ity factor for the cavity. We assume equal losses for
both signal and idler cavity modes, characterized by the
decay rate γc, and solve the Lindblad master equation
∂tρ̂ = 1

iℏ [Ĥ, ρ] − ∑
j

1
2 (ĉ

†
j ĉjρ + ρĉ†j ĉj − 2ĉjρĉ

†
j), where

ĉj =
√
γcâj with j = {i, s} are the jump operators [33].

We simulated the lossy hybrid system for the same sets of
pump parameters as in Fig. 3(a-c). The results are shown
in Fig. 4, where we only show the temporal evolution of
the |1, 1, g⟩ [(a)], |2, 2, g⟩ [(b)], and |3, 3, g⟩ [(c)] states for
three values of the decay rate γc = {0.001, 0.008, 0.03}Ω.
As expected, the cavity loss reduces the probabilities of
obtaining the target states, with the higher-order states
suffering more due to their higher photon number. To
emphasize this, the probabilities for obtaining a Fock
state with ns = 1, 2, 3 photons in the signal mode im-
mediately after the third pulse are shown in Fig. 4(d),
where each set of bars corresponds to a particular value of
γc and the values shown are obtained by tracing-out the
idler and 2LS degrees of freedom. In the supplementary
[31], we present a rough calculation to connect the used
γc values to the Purcell factor of an optical cavity, con-
sidering common range of solid-sate-emitter parameters
for the 2LS [17, 33, 34], where in our estimation, state-of-
the-art micro/nanostructured optical cavities can reach
these requirements [35–37].

Discussion and conclusion. Our results are obtained by
considering only a portion of the full control-parameter
space of the hybrid system. Further expanding the search
to include more pulses, continuous relative phase varia-
tions, higher parametric gains, and frequency detuning
between the cavity modes and the 2LS, could lead to
further enhancing the generation probabilities, to poten-
tially reach near-deterministic generation of higher Fock
states, or even other classes of non-Gaussian states for
continuous variable quantum information processing [38].
Moreover, we only investigated loss with configurations
optimized under lossless conditions. With an optimiza-
tion under lossy conditions, one might identify pulse se-
quences that make the process more robust to losses.

Importantly, the hybrid source inherits the tunability
of a TMSV source. Specially, the frequency spectrum of
the output photons in the signal mode can be fully con-
trolled by the energy conservation relation ωs = ωp−ω0,
only by tuning the frequency spectrum of the pump
pulses and the resonances of the nonlinear cavity, even
while the 2LS is unchanged. This opens the door to fun-
damentally new opportunities for optical quantum tech-
nologies, starting with near-deterministic generation of
Fock states for different applications in quantum com-
puting, communication, and sensing, which commonly
operate in very different wavelength ranges. Moreover,
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with this scheme, one could in principle realize many
indistinguishable sources of Fock states by using many
frequency-distinguishable solid-state emitters [17].

Finally, although we had photonic systems in mind,
the predicted dynamics are independent of the frequency
range of operation and could potentially be adapted to
other quantum information processing platforms, e.g. for
microwave quantum-state generation in superconducting
circuits [39, 40], motional quantum-state generation in
trapped ions [41, 42], and generating phonon-photon ex-
citations in optomechanical systems [43].
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Setzpfandt,1, 3 Ulf Peschel,4 Joachim Ankerhold,2 and Sina Saravi1

1Institute of Applied Physics, Abbe Center of Photonics,
Friedrich-Schiller University Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany

2Institute for Complex Quantum Systems and IQST,
University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany

3Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena, Germany
4Institute of Condensed Matter Theory and Solid State Optics,

Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
(Dated: April 25, 2024)

CONTENTS

S1. The interaction Hamiltonian S-1

S2. Effects of pump relative phase in a two-pulse configuration S-1

S3. System dynamics and numerical procedures S-2

S4. Estimation of Purcell factor from cavity decay rate for realistic optical systems S-3

References S-4

S1. THE INTERACTION HAMILTONIAN

The nonlinear interaction inside the crystal and the interaction of the emitter with the idler mode are described by

the total Hamiltonian Ĥ(t) = Ĥ0 + ĤNL(t) + ĤJC. Here, ĤNL(t) = ℏΓE(t) e−iωptâ†i â
†
s + H.c. is the Hamiltonian of a

two-mode parametric amplifier excited by monochromatic pump pulses of frequency ωp, âi and âs are the annihilation
operators for the idler and signal modes, respectively, Γ is the nonlinear coupling constant and E(t) is the temporal

envelope of the pump pulses; ĤJC = iℏΩ
2 âiσ̂

† + H.c. is the Jaynes-Cummings (JC) Hamiltonian, where Ω is the

single-photon Rabi frequency and σ̂ is the atomic lowering operator [S1]; finally, Ĥ0 = ℏ(ωiâ
†
i âi + ωsâ

†
sâs) + ℏω0σ̂

†σ̂
contains the free Hamiltonians of the cavity modes and the emitter. As both the nonlinear and JC interactions are
assumed to be resonant (with ω0 = ωi and ωp = ωi + ωs), after we transition into the interaction picture via the

transformation Û0 = e−
i
ℏ Ĥ0t, the total interaction Hamiltonian takes the form

Ĥ(t) = ℏΓE(t)â†i â†s + iℏΩâiσ̂† + H.c. (S1)

S2. EFFECTS OF PUMP RELATIVE PHASE IN A TWO-PULSE CONFIGURATION

As discussed in the main text, the relative phase between the pump pulses exciting the nonlinear cavity is one of
the parameters that influences the final distribution of multi-pair states at the output of the hybrid source. In the
two-pulse example in Fig. 2(b), we showed the dependence of the probability of obtaining a single photon in the signal
mode as a function of the magnitude ζ2 and phase ϕ2 of the parametric gain of the second pump pulse, for a fixed
delay time T1. For the set of parameters and parameter ranges investigated, the single photon probability exhibits
a maximum for ϕ2 = π. While our simulations indicate (as will be shown here) that a global maximum for the
three parameters considered {ζ2, ϕ2, T1} is always attained for ϕ2 = π, the single photon probability can exhibit local
maxima at different values of ϕ2, when T1 is varied. This behavior is shown in Fig. S1, where we see that the single
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photon probability (again calculated by adding the probabilities of the |1, 1, g⟩ and |0, 1, e⟩ states) can exhibit either
a single maximum for ϕ2 = π at shorter T1, or multiple maxima at ϕ2 ̸= π at longer T1, with the exact value of T1 at
which the behavior changes depending on the value of ζ2. Regardless of ζ2, the single maximum at ϕ2 = π is always
the highest value.

Figure S1. The probability of having a single photon in the signal mode in a two pulse configuration, as a function of the
parametric gain phase ϕ2 and delay time T1 of the second pulse. The second pulse has a fixed gain magnitude ζ2 for each plot,
with the value increasing from left to right, as indicated by the axis above the figures. In all cases the gain of the first pulse is
fixed to r1 ≈ 0.58.

S3. SYSTEM DYNAMICS AND NUMERICAL PROCEDURES

In order to efficiently perform a sweep of parameters, to evaluate the possible output states for the three-pulse
configuration discussed in the main text, we make use of the assumption that the duration of each pump pulse is
much shorter than the few-photon Rabi periods of the 2LS. As we will show here, this allows the nonlinear and 2LS
dynamics to be evaluated separately and avoids the need for integrating the full Schrödinger equation for each set of
pulse parameters.

In the interaction picture, the evolution operator of the hybrid system is written as

Û(t) = T exp

[
− i

ℏ

∫ t

−∞
dt′ Ĥ(t′)

]
, (S2)

where, Ĥ(t′) is given by Eq. S1 and T indicates the time-ordering superoperator. By expanding the interaction
Hamiltonian according to Eq. S1 we obtain

Û(t) = T exp

{
− i

ℏ

∫ t

−∞
dt′

[
ℏΓE(t′)â†i â†s + iℏΩâiσ̂† + H.c.

]}
. (S3)

We now assume that the pump field envelope E(t′) consists of a sequence of temporally distinct pulses as E(t′) =∑
j Ej(t′), where Ej(t′) = |Ej(t′)| eiϕj is the envelope of the j-th pulse consisting of a time-dependent amplitude |Ej(t′)|

and arbitrary time-independent phase ϕj .
We can divide the total interaction time into intervals during a pump pulse, of duration δTj , and intervals in-

between pulses, of duration Tj . In-between the j-th and j + 1-th pulses, we have E(t) ≈ 0 and can neglect the
nonlinear interaction, thus, the evolution over that time interval is well approximated by

Û
(j)
2LS = exp

[
TjΩâiσ̂

† −H.c.
]
. (S4)

For intervals during a pulse, the assumption δTj ≪ 2π
Ω results in the contributions from the 2LS interaction being

negligible in comparison to the nonlinear interaction. Thus, the evolution of the system due to the j-th pump pulse is

well-approximated by Û
(j)
NL = T exp

{
−iΓ

∫
j
dt′

[
Ej(t′)â†i â†s + E∗

j (t
′)âiâs

]}
. The form of Û

(j)
NL can be further simplified

by recalling Ej(t′) = |Ej(t′)| eiϕj and rewriting the integrand in the exponential as |Ej(t′)|
(
eiϕj â†i â

†
s + e−iϕj âiâs

)
,

which leaves the operator part of the integrand time-independent and eliminates the need for explicit time-ordering

in the expression for Û
(j)
NL, which takes on the form

Û
(j)
NL = exp

[
−i

(
rj â

†
i â

†
s + r∗j âiâs

)]
, (S5)
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where we defined rj = Γ
∫
j
dt′ Ej(t′). This operator has the exact form of a two-mode squeezing operator with the

parametric gain rj = ζj e
iϕj [S2] and generates a TMSV state when acting on a vacuum initial state. Another

consequence of the definition Eq. S5 is that the nonlinear part of the evolution is completely described by the
parametric gain associated with the pulse and the exact shape of the pulse does not affect the result.

By taking into account the above conclusions, the total evolution operator of the hybrid system up to the time t,
excited by a series of temporally-distinct pulses can be represented as

Û(t) ≈
∏

j

Û
(j)
2LSÛ

(j)
NL, (S6)

where the pairs of operators are ordered from left to right in descending order with respect to j.
In order to efficiently evaluate the state at the output of a large set of pump pulse configurations, we calculated

the matrix representation of Û
(j)
2LS and Û

(j)
NL in a sufficiently large basis set and sequentially applied them to the initial

state |0, 0, g⟩. The process was repeated for all combinations of pulse parameters involved, i.e. {ζ1, T1, ζ2, T2, ζ3},
to obtain the various parameter dependencies shown in Figs. 2 and S1, as well as to find the optimal configurations
for the particular Fock states, whose temporal evolution is shown in Fig. 3. In all of the aforementioned cases, we
found that a composite basis {|n, n, g⟩ , |n− 1, n, e⟩} with up to n = 60 represents a good balance between numerical
accuracy and computation time. Yet, we note, that this number depends on the total parametric gain that the system
experiences and a larger composite basis should be used if higher gain magnitudes or more pulses are considered.

Once the optimum pulse configurations were found using the above-explained method, we obtained and plotted
the temporal evolution of the system for particular pulse configurations. This was done using the QuTiP library in
Python [S3], both to solve the Schrödinger equation for the lossless system (shown in Figs. 1 and 3) and to solve the
Lindblad master equation in the lossy system (shown in Fig. 4). Finally, in the table below, we show the optimal
three-pulse-configuration parameters, corresponding to the maximum probabilities for obtaining the Fock states with
up to ns = 9, shown in Fig. 3(d).

Fock state P ζ1 [dB] T1 [ 2π
Ω
] ζ2 [dB] T2 [ 2π

Ω
] ζ3 [dB]

|1⟩ 0.98 4.76 1.11 12.86 0.19 12.39
|2⟩ 0.93 8.10 1.41 12.86 0.34 10.96
|3⟩ 0.85 9.53 1.49 13.34 0.50 10.00
|4⟩ 0.74 9.53 1.49 13.34 0.65 9.53
|5⟩ 0.65 8.57 1.49 13.34 0.80 9.05
|6⟩ 0.58 8.57 1.49 13.34 0.95 8.57
|7⟩ 0.52 9.05 1.49 13.34 1.11 8.10
|8⟩ 0.47 9.53 1.49 13.34 1.26 7.62
|9⟩ 0.42 10.00 1.49 13.34 1.41 7.15

Table S1. The maximum probabilities and corresponding parameter values for the optimal pump pulse configurations for
generating Fock states up to ns = 9 in the three-pulse configuration.

S4. ESTIMATION OF PURCELL FACTOR FROM CAVITY DECAY RATE FOR REALISTIC OPTICAL
SYSTEMS

We assume a spontaneous decay rate of Γ0 = 109s−1 for the 2LS, which is in the same order of magnitude of many
common solid-state quantum emitters [S4–S6]. With a center wavelength of the idler mode at λ0 = 600nm, and a

mode volume of V = 10λ3
0 for the cavity, we find the single-photon Rabi frequency Ω =

√
3cΓ0λ2

0

2πV ≈ 1.6 × 1011 s−1

[S7], and can use it to calculate the quality factors Q = 2πc
λ0γc

, associated with each of the values of γc. Thus, to

achieve system dynamics corresponding to the solid lines in Fig. 4(a,b,c), we require a cavity with a quality factor of
Q ≈ 1.9× 107, while to obtain dynamics corresponding to the dashed and dotted lines, we require quality factors of
Q ≈ 2.5×106 and Q ≈ 6.5×105, respectively. Although the range of investigated values of γc correspond to the strong
coupling regime (γc ≪ Ω), we can calculate a Purcell factor for the cavity F = 3

4π2
Q

V/λ3 [S4], corresponding to these

three Q values. We then find the values of F ≈ 5×103, F ≈ 1.9×104, and F ≈ 1.4×105 for the smallest to largest of
the quality factors. We point out, that although these Purcell factors are quite large, they are within reach in realistic
photonic structures, such as photonic crystal cavities [S8], fiber-based microcavities [S9], or hybrid-plasmonic cavities
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