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The focus is on understanding the quantum thermodynamics of strongly coupled non-Markovian quantum
systems. To this end, a non-trivial, non-Markovian model of a central spin surrounded by a spin bath is taken
up, and its exact evolution is derived for arbitrary system-bath couplings. The fundamental quantum thermody-
namic quantities, such as system and bath internal energies, work, heat, entropy production, and ergotropy, are
calculated using the dynamics and original system (bath) Hamiltonian. An explicit expression for the work, a
mismatch between the system and bath internal energies, is derived. Further, an interesting observation relevant
to the spin bath acting as a charger is made in a scenario where the central spin is envisaged as a quantum battery.
The role of a canonical Hamiltonian in calculating the above thermodynamic quantities, a recently developed
technique, is also investigated.

I. INTRODUCTION

A reliable description of quantum systems involves the in-
teraction with their surroundings. These interactions substan-
tially impact the dynamics of the system. The theory of open
quantum systems [1–3] provides a framework for studying
such systems. Quantum systems that can perform quantum in-
formation theoretic tasks, for example, trapped ions [4], quan-
tum dots [5], NMR qubits [6], Josephson junctions [7], and
many more, are subjected to environmental interactions. The
theory of open quantum systems has found numerous appli-
cations in quantum information and its interface with other
aspects of quantum physics [1, 8–22].

With impressive advancements in technology, rapid inroads
have been made into the development of quantum technolo-
gies and quantum devices [23–26]. The impact of open sys-
tem effects on these is indelible. The principles of quan-
tum thermodynamics play an important role in these devel-
opments [27–29]. The theoretical emphasis is to place the
foundations of thermodynamics on a firm footing in the quan-
tum regime [27, 30–32]. On the technological and experi-
mental front, these ideas can be used in the understanding
and implementation of devices such as quantum batteries and
heat engines [24, 33–44]. In this context, traditional involve-
ment of open system ideas has been made using the Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) dynamical evolu-
tion [9, 10]. However, the development of theory, as well as
experiment, demands pushing into regimes beyond that gov-
erned by the GKLS evolution, viz., where strong-coupling
non-Markovian (NM) effects play a significant role.

Non-Markovian open quantum systems exemplify the deli-
cate relationship between a quantum system and its surround-
ings. These systems, unlike their Markovian counterparts, re-
tain a memory of their past, leading to a rich dynamical behav-
ior [45–50]. Many of these scenarios do not have a clear dis-
tinction between system and environment timelines. A promi-
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nent signature of non-Markovian evolution is the revival of
quantum properties [47], the analysis of which is vital for a
fundamental understanding of the system’s dynamics at arbi-
trary coupling with the environment. The study of the dy-
namics of thermodynamic quantities in the presence of strong
system-bath coupling in the non-Markovian regime is a chal-
lenging task [18, 51, 52]. A number of techniques have been
developed in recent times to tackle the dynamics of such sys-
tems. These include the Hamiltonian of mean force [31, 53],
reaction coordinate method, which probes strong coupling ef-
fects by reaction coordinate mapping of the Hamiltonian [54–
57], pseudomodes technique [58, 59], and the method of hi-
erarchical equations of motion, a numerical approach making
use of the influence-functional formalism [60, 61]. In the con-
text of the impact of open system ideas on quantum thermo-
dynamics, the information-theoretic approach provides a deep
understanding [28].

One of the cornerstones of the field of strong-coupling non-
Markovian quantum thermodynamics is to correctly define the
fundamental thermodynamic quantities such as heat, work, in-
ternal energy, ergotropy, and entropy production in the quan-
tum regime [62–66]. This is essential for the definition of ther-
modynamic laws of strongly coupled NM quantum systems.
In this context, a recently developed technique of canonical
Hamiltonian and minimal dissipator constructed with trace-
less Lindblad operators [67] has been utilized to address these
issues [68, 69]. Here, the canonical Hamiltonian rather than
the system self-Hamiltonian is used to study the impact of
strong coupling and non-Markovian effects on the system.
When in a strong coupling situation, the system evolves under
the modified ‘canonical Hamiltonian,’ which contains infor-
mation about its energies.

In this work, we study the strong-coupling non-Markovian
quantum thermodynamics of a central spin interacting with
a spin bath [70–74]. The baths can be broadly placed into
two categories [75]: (a) Bosonic and (b) spin baths. The
spin-boson model [8] and the Caldeira-Leggett model [11]
are well-known examples of bosonic baths. The dynamics of
these types of models have been studied in the literature [1–
3]. Conversely, when dealing with spin baths [76], frequent
use is made of perturbative methods or time-dependent quan-
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tum master equations [77–79]. Studying these systems is cru-
cial for understanding magnetic systems [80], quantum spin
glasses [81], quantum batteries [82], NV-center [83], and su-
perconducting systems [77], among others.

Here, we develop the exact reduced dynamics of the central
spin model. This is then used to understand the quantum ther-
modynamic properties of the central spin. To this effect, we
calculate the thermodynamic quantities of this system using
two methods. First, a use is made of the system and the bath
Hamiltonian, where the work done by the bath can be seen as
the mismatch between the change in the system and the bath’s
internal energies. This is next benchmarked by adopting the
canonical Hamiltonian, as the replacement for the system’s
Hamiltonian [68], to calculate the corresponding quantities.
The aim is to arrive at the correct forms of the quantities, such
as heat, work, internal energy, entropy production, and er-
gotropy in strongly coupled non-Markovian quantum systems
and the correct forms of the corresponding laws of quantum
thermodynamics, taking the central spin model as an example.

The work is organized as follows. In Sec. II, we briefly dis-
cuss the theory of canonical Hamiltonian. The exact dynam-
ics of the central spin model and the corresponding canonical
Hamiltonian are developed in Sec. III. Section IV discusses
the quantum thermodynamic quantities of the system using
the original system and the bath Hamiltonian, where we cal-
culate the system’s heat, work, internal energy, entropy pro-
duction, and ergotropy. In Sec. V, the same calculations are
revisited using the canonical Hamiltonian approach. This is
followed by the conclusion in Sec. VI.

II. THE THEORY OF CANONICAL HAMILTONIAN

The evolution of a closed quantum system under the influ-
ence of a Hamiltonian H is obtained using the von Neumann
equation

dρ
dt
= −i[H, ρ], (1)

where ρ is the density matrix of the closed quantum system.
The equation of motion assumes an even more sophisticated
form when the closed system is broken into two subsystems,
say S and B. In general, S is referred to as an open quantum
system (whose dynamics is of interest) surrounded by a bath
B. In this scenario, the Hilbert space structure becomes H =
HS ⊗HB and the dynamics of subsystem S boils down to

dρS

dt
= Lt(ρS ), (2)

where Lt is a linear superoperator in a finite-dimensional
Hilbert space of HS . This Hermiticity-preserving and
Trace Annihilating or HPTA dynamical map Lt can be rede-
fined if a suitable yet arbitrary Hermitian operator HS (t) is
chosen. To this end, the new form becomes

dρS

dt
= −i[HS (t), ρS ] +Dt(ρS ). (3)

This relatively convenient separation of terms involves one
Hamiltonian part HS (t) and one dissipator partDt, which col-
lectively puts it into the form of a quantum master equation.
From [10, 84], it can be shown that there always exists jump
operators L j and real coefficients γ j that puts the dissipator
part into the form,

D(ρS ) =
∑

j

γ j

(
L jρS L†j −

1
2

{
L†j L j, ρS

})
. (4)

Even in this ‘Lindbladian’ form, there are ambiguities. Con-
sider the set of transformations, [2, 67]

L j → L j + α j(t)IS , (5)

HS (t)→ HS (t) +
∑

j

γ j

2i
(
α jL

†

j − ᾱL j
)
, (6)

on the Lindblad (jump) and Hamiltonian operators, respec-
tively. It leaves the structure −i[HS (t), ρS ] +Dt(ρS ) intact. To
get rid of this ambiguity and to render a unique dissipator, the
jump operators L′js need to be trace-less, as shown in [84].
When the Lindbladian dissipator is so structured, then the
Hamiltonian part of the master equation becomes the canoni-
cal Hamiltonian. This canonical Hamiltonian contains infor-
mation beyond just the system Hamiltonian about the part of
the open system that evolves unitarily. A convenient way to
find out the canonical Hamiltonian is given by

Hcanonical =
1

2id

∑
j

γ j

(
Tr(E j)E

†

j − Tr(E†j )E j

)
, (7)

where the E j’s are the pseudo-Kraus operators obtained from
the decomposition of the Lindbladian superoperator and d is
the dimension of the system [67]. Just like any completely
positive superoperator admits a Kraus operator representation,
any HPTA superoperator admits a pseudo-Kraus representa-
tion,

L(ρ) =
∑

j

γ jE jρE†j , (8)

where γ j’s are real coefficients. Further, the form of the mini-
mal dissipator is given by

Dt(ρ) = L(ρ) + i[Hcanonical, ρ]

=
∑

j

γ j

(
E jρE†j +

1
2d

[
Tr(E j)E

†

j − Tr(E†j )E j, ρ
])
, (9)

which upon using the identity
∑

j γ jE
†

j E j = 0 reduces to the
form of Eq. (4), with L j being given by

L j = E j −
Tr(E j)

d
I. (10)

We shall next calculate the canonical Hamiltonian of a central
spin surrounded by a spin bath, where the central spin inter-
acts uniformly with the bath.
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III. THE CENTRAL SPIN MODEL

In the central spin model, a spin-1/2 particle is surrounded
by N other spins in a circular formation [71–73], and the cen-
tral spin interacts uniformly with the bath spins. Here, the
total Hilbert space of all N bath spins is conveniently reduced
to an N+1 dimensional space using the collective angular mo-
mentum operators. The Hamiltonian (for ℏ = 1) of the total
system is given by,

H = HS + HB + V

=
ω0

2
σ0

z +
ω

N
Jz +

ϵ
√

N

(
σ0

xJx + σ
0
y Jy

)
, (11)

where ω0 is the transition frequency of the central spin-1/2
particle, ϵ is the interaction strength between the system and
the bath with

√
N being the scaling factor. ω/N is the scaled

frequency of the bath. The evolution of the composite system
S -B for an arbitrary initial state ρS B(0) = ρS (0) ⊗ ρB(0), as-
suming separable initial condition, of the total system (where
ρS (0) and ρB(0) are the initial states of the central spin and the
bath, respectively) by means of the global unitary U = e−iHt

is given by

ρS B(t) = e−iHt {ρS (0) ⊗ ρB(0)} eiHt. (12)

The reduced state of the central spin system after tracing out
the bath is given by

ρS (t) = TrB

[
e−iHt {ρS (0) ⊗ ρB(0)} eiHt

]
, (13)

where H is the total Hamiltonian. Here, we consider the Gibbs
state as the initial state of the bath, which is given by

ρB(0) =
e−βHB

Z
=

1
Z

N∑
n=0

e−
βω
2 (1− 2n

N ) |n⟩ ⟨n| , (14)

where β = 1/T , |n⟩ is the standard computational basis, and
Z =

∑N
n=0 e−

βω
2 (1− 2n

N ). To find out the exact dynamics of
the system, we derive the spectral decomposition of the total
Hamiltonian H. The nature of the eigenvalues and eigenvec-
tors of the total Hamiltonian of the central spin model is il-
lustrated in Appendix A. We use these eigenvalues and eigen-
vectors in Eq. (13) to obtain the exact dynamics of the central
spin system. Considering an arbitrary initial state of the sys-

tem ρS (0) =
(
ρ00(0) ρ01(0)
ρ10(0) ρ11(0)

)
, the density matrix dictating the

evolution of the central spin is given by

ρS (t) =
(
α(t)ρ00(0) + η(t)ρ11(0) δ(t)ρ01(0)

δ∗(t)ρ10(0) (1 − α(t))ρ00(0) + (1 − η(t))ρ11(0)

)
, (15)

where α(t) = 1
Z

[
e−

βω
2 + S n(t)

]
with

S n(t) =
N∑

n=1

e−
βω
2 (1− 2n

N )

(

χ+(n)2

1 + χ+(n)2

)2

+

(
χ−(n)2

1 + χ−(n)2

)2

+

(
χ+(n)2χ−(n)2[

1 + χ+(n)2] [1 + χ−(n)2] ) 2 cos

 t
√

b2
n + 4a2

n

N


 . (16)

Further,

η(t) =
1
Z

N∑
n=1

e−
βω
2

(
1− 2(n−1)

N

) 
(

χ+(n)
1 + χ+(n)2

)2

+

(
χ−(n)

1 + χ−(n)2

)2

+

(
χ+(n)χ−(n)[

1 + χ+(n)2] [1 + χ−(n)2] ) 2 cos

 t
√

b2 + 4a2
n

N


 , (17)

and in the non-diagonal terms,

δ∗(t) =
1
Z

{
1

1 + χ+(1)2

[
e−i

{
λ+(1)− (ω+ω0)

2

}
t− βω

2 + χ+(N)2e−i
{
λ+(N)− (ω+ω0)

2

}
t+ βω

2

]
+

1
1 + χ−(1)2

[
e−i

{
λ−(1)− (ω+ω0)

2

}
t− βω

2 + χ−(N)2e−i
{
λ−(N)− (ω+ω0)

2

}
t+ βω

2

]}
+

1
Z

N∑
n=2

e−
βω
2

[
1− 2(n−1)

N

] { e−iλ+(n)t

1 + χ+(n)2 +
e−iλ−(n)t

1 + χ−(n)2 + e−iλ+(n−1)t χ+(n − 1)2

1 + χ+(n − 1)2 + e−iλ−(n−1)t χ−(n − 1)2

1 + χ−(n − 1)2

}
. (18)

Here, χ±(n), b and an comes from the structure of the eigen-
vectors of the total Hamiltonian H discussed in Appendix A.
The dynamical map Φ(t) of the system in the superoperator

space is given by

Φ(t) =


α(t) 0 0 η(t)

0 δ(t) 0 0
0 0 δ∗(t) 0

1 − α(t) 0 0 1 − η(t)

 . (19)
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Now, from the relation L = ˙Φ(t)Φ(t)−1, one can find out the
matrix form of the Lindbladian superoperator, given below

L =


α̇(t)[1−η(t)]+η̇(t)[α(t)−1]

α(t)−η(t) 0 0 −α̇(t)η(t)+η̇(t)α(t)
α(t)−η(t)

0 δ̇(t)
δ(t) 0 0

0 0 δ̇∗(t)
δ∗(t) 0

−α̇(t)[1−η(t)]−η̇(t)[α(t)−1]
α(t)−η(t) 0 0 α̇(t)η(t)−η̇(t)α(t)

α(t)−η(t)

 . (20)

This is used to find out the canonical Hamiltonian of the cen-
tral spin model.

A. The canonical Hamiltonian

Following the pseudo-Kraus operator formalism given in
[67, 68], we can calculate the canonical Hamiltonian of the
central spin system, which is given by

Hcan
S (t) = Ω(t)σz, (21)

where

Ω(t) = −
1
d

(
Λ3(t)

ℑ
[
y3(t)

]
1 + |y3(t)|2

+ Λ4(t)
ℑ

[
y4(t)

]
1 + |y4(t)|2

)
. (22)

Here,

Λ3 =
1
2

(
ζ(t) − Γ(t) −

√[
Γ(t) + ζ(t)

]2
+ 4 |Θ(t)|2

)
,

Λ4 =
1
2

(
ζ(t) − Γ(t) +

√[
Γ(t) + ζ(t)

]2
+ 4 |Θ(t)|2

)
, (23)

such that

ζ(t) =
α̇(t)[1 − η(t)] + η̇(t)[α(t) − 1]

α(t) − η(t)
,

Γ(t) =
−α̇(t)η(t) + η̇(t)α(t)

α(t) − η(t)
,

Θ(t) =
δ̇(t)
δ(t)

, (24)

and

y3(t) =
ζ(t) + Γ(t) −

√[
Γ(t) + ζ(t)

]2
+ 4|Θ(t)|2

2Θ∗(t)
,

y4(t) =
ζ(t) + Γ(t) +

√[
Γ(t) + ζ(t)

]2
+ 4|Θ(t)|2

2Θ∗(t)
. (25)

ℑ(·) denotes the imaginary part of (·). Further, D(0) = ω0
2 . In

Fig. 1, we plot the factor D(t) with time t. As time progresses,
the factor D(t) shows an oscillatory behavior with time around
the line of ω0

2 ; however, asymmetric. The minimal dissipator
can be found using Eq. (9).

After the CPTP map is applied, partial tracing is done to
extract the system’s density matrix. This process of tracing
out amounts to a loss of the mutual information between the
system and the bath and the local information of the bath [28].

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ω
(t

)

ω0

2

ε = 1.0

ε = 0.5

ε = 0.1

ε = 0.01

FIG. 1. Variation of the factor Ω(t) present in the canonical Hamilto-
nian Hcan

S (t) [Eq. (21)] with time t for different values of system-bath
interaction parameter ϵ. The values of parameters are chosen to be
N = 50,T = 0.1, ω = 4, and ω0 = 3.5.

In [67, 68], it was shown that the canonical Hamiltonian is a
unique Hamiltonian when the dissipator in the master equa-
tion is minimized with respect to a specific norm in the su-
peroperator space. This canonical Hamiltonian contains the
information of both the system and the bath. It effectively
drives the system density matrix while in the influence of the
bath.

In [56, 85], an effective Hamiltonian is talked about.
Through methods like reaction coordinate [56] transforma-
tion, the original Hamiltonian is replaced by a mathematically
similar effective Hamiltonian such that it has explicit depen-
dence on coupling parameters, allowing for interpretations of
strong coupling cases [51].

Having discussed the dynamics of the central spin system,
we now move on to study its thermodynamical aspects in the
subsequent section.

IV. QUANTUM THERMODYNAMICAL PROPERTIES OF
THE CENTRAL SPIN MODEL

Using the exact dynamics of the central spin system dis-
cussed above, we calculate the entropy production, heat, and
work. Further, we calculate the maximum amount of work
extractable from the system; that is, its ergotropy.

A. Entropy production, heat and work

Considering the global system-bath dynamics for arbitrary
initial states of the system and the bath [Eq. (12)], a formu-
lation for the entropy production was developed in [28, 86].
Here, the dynamical evolution of the system is obtained by
tracing out the bath, which is the origin of the irreversibility.
The entropy production accounts for the contribution of two
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processes, one where we discard any information stored lo-
cally in the state of the bath, and the other is the non-local
information shared between the system and the bath. The en-
tropy production is given by

Σ = IρS B(t)(S : B) + S
[
ρB(t)∥ρB(0)

]
, (26)

where IρS B (S : B) = S (ρS ) + S (ρB) − S (ρS B) is the mu-
tual information of any bipartite system S B with S (ρ) =
−Tr(ρ ln ρ) being the von Neumann entropy and S (ρ∥σ) =
Tr {ρ ln ρ − ρ lnσ} is the quantum relative entropy. The first
term in the above equation quantifies the amount of shared in-
formation that is lost if we trace out the bath, and the second
term quantifies how the bath is pushed away from equilibrium.
Using the forms of mutual information and quantum relative
entropy, the entropy production can be rewritten as

Σ = S
[
ρS B(t)∥ρS (t) ⊗ ρB(0)

]
. (27)

Further, when we consider the thermal state to be the initial
state of the bath, which is the case considered here [Eq. (14)],
the entropy production boils down to

Σ = ∆S S + βQB, (28)

where ∆S S = S [ρS (t)] − S [ρS (0)] is the change in the von
Neumann entropy of the system and

QB = Tr
{
HB

[
ρB(t) − ρB(0)

]}
(29)

is the total change in energy of the environment during the uni-
tary evolution of the total system, where ρB(t) = TrS [ρS B(t)].
Equation (28) with Σ ≥ 0 is the standard form of the second
law of thermodynamics.

Furthermore, the change in the internal energy of the central
spin system is given by

∆US = Tr {ρS (t)HS } − Tr {ρS (0)HS } . (30)

From the first law of thermodynamics, the total change in the
internal energy of the system is given by

∆US = W − QB, (31)

where W is the work performed by the bath, with W > 0
means the work is performed on the system and QB is given
in Eq. (29). Meanwhile, the work (W) can also be seen as the
mismatch between the energy changes of the system ∆US and
the bath QB.

We use the Bloch vector representation for the reduced state
of the central spin system to calculate the thermodynamic
quantities discussed above. The Bloch vector representation
of a single qubit density matrix is given by

ρS (t) =
1
2

(
1 + z(t) x(t) − iy(t)

x(t) + iy(t) 1 − z(t)

)
, (32)

where k(t) = Tr {σkρS (t)} for (k = x, y, z), with σk being the
Pauli spin matrices. On comparing the above equation with
Eq. (15), we get

z(t) = 2
[
α(t)ρ00(0) + η(t)ρ11(0)

]
− 1,

x(t) = 2ℜ{δ(t)ρ01(0)} ,
y(t) = −2ℑ {δ(t)ρ01(0)} . (33)

0.0

0.2

0.4

∆
U
S

(a)

ε = 1.0

ε = 0.5

ε = 0.01

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

Q
B

(b)

ε = 1.0

ε = 0.5

ε = 0.01

0 5 10 15 20
0.0

0.2

0.4

W

(c)

ε = 1.0

ε = 0.5

ε = 0.01

0 5 10 15 20
0.0

0.2

0.4

0.6

Σ

(d)

ε = 1.0

ε = 0.5

ε = 0.01

t

FIG. 2. Variation of (a) change in the internal energy of the system
∆US , (b) change in the energy of the bath QB, (c) Work done by the
bath W, and (d) entropy production Σ with time t. The parameters
are chosen to be N = 50, ω = 3, ω0 = 3.25, and T = 0.25. Further,
the system’s initial state is taken to be 1

2 |0⟩ +
√

3
2 |1⟩.

The change in the internal energy ∆US of the central spin sys-
tem is now given by

∆US =
ω0

2
[z(t) − z(0)] . (34)

The calculation of the reduced state of the bath is cumber-
some. Hence, we resort to numerical means by tracing out the
system from the composite system-bath state [Eq. (12)], that
is,

ρB(t) = TrS

{
e−iHtρS (0) ⊗ ρB(0)eiHt

}
. (35)

This state is used to calculate the change in energy of the bath
QB, and then work done W by the bath is calculated using
W = ∆US + QB, where ∆US is obtained from Eq. (34).

The change in the internal energy of the bath can also be
calculated using the bath heat current [61]. Consider a system
H′S coupled to a heat bath H′B via an interaction Hamiltonian
H′I . The system heat current Q̇′S (t), in this case, is given by

Q̇′S (t) = d
dt ⟨H

′
S (t)⟩ − Ẇ ′(t), where Ẇ ′(t) =

〈
∂H′S (t)
∂t

〉
. The av-

erage ⟨·⟩ = Tr
[
ρS B(t)·

]
. Using the relation between the ex-

pectation value of a quantum mechanical operator and the ex-
pectation value of the commutator between the operator and
the Hamiltonian of the system, the system heat current can be
rewritten as

Q̇′S (t) = i
〈
[H′I(t),H

′
S (t)]

〉
, (36)

which for a constant H′S becomes the rate of change in the
system’s internal energy. Considering the rate of change in
the bath energy Q̇′B(t) = d

dt

〈
H′B(t)

〉
for a constant H′B, we get

the following relation between the Q̇′B(t) and the Q̇′S (t)

Q̇′B(t) = −Q̇′S (t) −
d
dt
⟨H′I(t)⟩ . (37)
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Replacing H′I and H′S in the above equation with the interac-
tion Hamiltonian V and the system Hamiltonian HS , respec-
tively, from Eq. (11), we get an alternate expression for the
change in the internal energy of the bath QB, that is,

QB =

∫ t

0
dτ

{
−Q̇S (τ) −

d
dτ
⟨V(τ)⟩

}
= −

∫ t

0
dτ {i ⟨[V(τ),HS (τ)]⟩} + ⟨V(0)⟩ − ⟨V(t)⟩ . (38)

Notice that the first term on the right side of the above equa-
tion denotes the negative of the change in the internal energy
of the system for a constant HS , which is the case considered
here. To this end, the second term on the RHS of the above
equation balances the difference between the change in the
internal energies of the system and the bath. Therefore, this
term provides the work done by the bath on the system, that
is,

W = Tr
[
V {ρS B(0) − ρS B(t)}

]
. (39)

This form is particularly useful as it brings out how, in a gen-
eral scenario of strong system-bath coupling and under con-
stant Hamiltonians, the work done by the bath can be explic-
itly computed, saving the need to calculate the change in the
internal energies of the system and the bath. It is also worth
mentioning that this amount of work must be supplied to turn
off the interaction between the system and the bath. Inter-
estingly, from Fig. 2(c), we observe that the amount of work
required to turn off the interaction is zero in the case of weak
coupling (ϵ = 0.01) and increases with an increase in the cou-
pling strength. This observation is consistent with the litera-
ture [65].

The variations of the above-mentioned thermodynamic
quantities with time are plotted in Fig. 2. We observe that
the change in the internal energy of the system ∆US is positive
and undergoes revivals in time, as depicted by the oscillations.
For higher values of system-bath interaction parameter ϵ, we
observe well-defined wavepacket-like structures. Further, at
a very low value of ϵ, the system’s internal energy change is
approximately zero. The above observation matches the vari-
ations in the change in the energy of the bath QB and the work
done by the bath W. The values of the QB are zero for weak
coupling (ϵ = 0.01), which is consistent with the GKLS con-
dition, and are otherwise negative, denoting that the energy
of the bath decreases during the dynamics, and the positive
values of W denote that the bath works on the system. This
observation is consistent with the first law of thermodynam-
ics; that is, the energy of the bath decreases while it works on
the system. In the process, the internal energy of the system
increases.

Furthermore, we plot the variation of the entropy produc-
tion Σ with time in Fig. 2(d). We observe that the entropy
production is positive during the system’s dynamics, which
is consistent with the second law of thermodynamics. More-
over, the entropy production is zero for the very weak inter-
action case, reminiscent of the GKLS condition, as compared
to the strong one. The entropy production for the values of
interaction strength ϵ between 0.5 and 1 saturates around 0.6,

with the latter case being oscillatory. Interestingly, the oscil-
lations in the values of entropy production indicate a negative
entropy production rate, which is generally observed in non-
Markovian systems [64, 68].

B. Ergotropy

The maximum amount of work that can be extracted from a
quantum system under the influence of some time-dependent
cyclic potential is called the ergotropy of the system [87]

W[ρS (t)] = Tr
[
ρS (t)HS

]
− Tr

[
ρ

p
S HS

]
. (40)

Here, HS is the system Hamiltonian, and ρ
p
S is a final state

that evolved from a state potent of work production ρS (t), that
is, the passive state. After an external time-dependent cyclic
potential has done the maximum work, the state has turned
into a passive state, which would be, in general, different from
the Gibbs state attained for macroscopic systems. Once the
passive state is reached, no more work can be extracted from
it through any cyclic process. The spectral decomposition of
the passive state and the Hamiltonian of the system is given
by

ρ
p
S =

∑
j

r j |ϵ j⟩ ⟨ϵ j| ,

HS =
∑

k

ϵk |ϵk⟩ ⟨ϵk | , (41)

where the eigenvalues r j and ϵ j have the following ordering:
r1 ≥ r2 ≥ r3... as ϵ1 ≤ ϵ2 ≤ ϵ3... . Thus, the passive state is
defined in such a way that the minimum energy state has the
maximum population. For the central spin system (or, for any
single qubit system with HS =

ω0
2 σz [37]), using the Bloch

vector form of the system’s state at any time t, discussed in
Eq. (32), the expression for the ergotropy is given by

W[ρ(t)] =
ω0

2

[
z(t) +

√
x(t)2 + y(t)2 + z(t)2

]
. (42)

The ergotropy can be further divided into its incoher-
ent (Wi) and coherent parts (WC) [88], such that W =

Wi +WC . The incoherent ergotropy can be calculated in
a similar manner as the ergotropy of the system by replac-
ing the system’s state ρS (t) in Eq. (40) with a dephased
state ρD

S (t). From Eq. (32), the dephased state is given by
ρD

S (t) = 1
2 {[1 + z(t)] |0⟩ ⟨0| + [1 − z(t)] |1⟩ ⟨1|}, where |0⟩ (|1⟩)

denotes the excited (ground) state of the system. The pas-
sive state ρD,p

S corresponding to this dephased state depends
on the sign of z(t). For the single qubit systems with Hamil-
tonian HS =

ω0
2 σz and with positive z(t), the incoherent er-

gotropy boils down toWi[ρS (t)] =W[ρD
S (t)] = ω0z(t), which

for negative z(t) becomes zero. Thus, the coherent ergotropy
WC[ρS (t)] is equal to the ergotropy W[ρS (t)] for negative
z(t) andWC[ρS (t)] = ω0

2

[ √
x(t)2 + y(t)2 + z(t)2 − z(t)

]
for z(t)

being positive.
Ergotropy serves as an important quantifier for the charg-

ing and discharging behavior of the system. The system is
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FIG. 3. Variation of η(t) from Eq. (17) and ergotropyW[ρS (t)] of the
central spin system with time t for initial ground state. Here, ω0 =

2.5, and ω = 2.0. The black-dashed line corresponds to η(t) = 0.5.

said to be charging (discharging) when its ergotropy increases
(decreases). To this end, the central spin can be visualized
as a quantum battery, with the spin bath acting as a charger.
A similar analysis in the case of open quantum systems with
the system being surrounded by a bosonic bath has been done
in [37, 38], where the system was initially taken to be in a pos-
itive ergotropy state and the bath acted as a re-charger (due to
non-Markovian evolution). However, in the case of the spin
bath considered here, we seek whether the bath can act as a
charger, that is, whether the bath itself can lead to a state giv-
ing some positive ergotropy, even if we take an initial state
with zero ergotropy. To check this, let us consider the central
spin system to be initially in a ground state ρS (0) = |1⟩ ⟨1|,
which is a passive state, from Eq. (40). For this initial state,
the factors x(t) and y(t) from Eq. (32) remain zero at any time
t. The ergotropyW[ρS (t)] in this case is given by

W[ρS (t)] =
ω0

2
[z(t) + |z(t)|] for ρS (0) = |1⟩ ⟨1| . (43)

In the case of the ground state, the value of the z(0) = −1,
and therefore, W[ρS (0)] = 0. However, the factor z(t) can
become positive, thereby making ergotropy positive as time
progresses. The condition on z(t) > 0 leads to η(t) > 1

2 , with
the help of Eq. (33).

Figure 3 shows the variation of the η(t) with respect to time.
It is observed that η(t) crosses the 1/2 line when the interac-
tion strength ϵ is increased. Further, it is interesting to note
that upon increasing the temperature of the bath, η(t) is greater
than 1/2 at multiple times. This suggests that the tendency of
the bath to act as a charger increases as temperature increases.
The number of spins in the bath N also favors the role of the
bath as a charger, as in this case, too, the number of times η(t)
is greater than 1/2 increases with an increase in N, as can be
seen from Fig. 3(c). Figure 3(d) is an example where the ini-
tial state of the system has zero ergotropy, yet the ergotropy
revives multiple times throughout the evolution due to the bath
acting as a charger.

V. ROLE OF THE CANONICAL HAMILTONIAN

In the preceding section, we discussed the quantum ther-
modynamics of the central spin system using the system’s
bare Hamiltonian HS and the reduced state of the system at
any time t. However, the dynamics of the reduced state of
the system is obtained from a quantum master equation hav-
ing a canonical Hamiltonian Hcan

S , as discussed in Sec. III A.
Therefore, it becomes natural to discuss the role of the canon-
ical Hamiltonian in calculating the thermodynamical observ-
ables [68, 69]. To this end, we calculate the change in energy
of the system by replacing the system’s Hamiltonian with the
canonical Hamiltonian, that is,

∆ŨS (t) = Tr
[
Hcan

S (t)ρS (t)
]
− Tr

[
Hcan

S (0)ρS (0)
]
. (44)

The change in internal energy of the system can be broken
into two parts, which are δW̃S (t) and δQ̃S (t). The expressions
for these quantities are given by

δW̃S (t) =
∫ t

0
dτ Tr

[
Ḣcan

S (τ)ρS (τ)
]
,

δQ̃S (t) =
∫ t

0
dτ Tr

[
Hcan

S (τ)ρ̇S (τ)
]
. (45)

Here, the relation ∆ŨS (t) = δW̃S (t) + δQ̃S (t) resembles the
first law of thermodynamics.

One may argue that the canonical Hamiltonian contains the
effect of the bath even when the bath is partially traced and
that it should be used to calculate expectation values of the
thermodynamical quantities. By this argument, we observe
that the system’s Hamiltonian becomes time-dependent even
if we take a time-independent initial Hamiltonian of the sys-
tem. We have already seen in the previous section that the
work done on the system can be calculated as the mismatch
between the internal energies of the system and the bath.
However, we observe here that by using the canonical Hamil-
tonian, we can get non-zero work solely due to the time de-
pendence of the system’s Hamiltonian, Eq. (45). This analysis
was introduced in [68], where the time dependence of Hcan

S (t)
was held responsible for the exchange of energy between the
open system and the bath. As a result of this definition of heat
exchange, entropy production can be defined by

Σ̃ = ∆S S (t) − βδQ̃S (t), (46)

where ∆S S (t) is given in Eq. (28). It is interesting to note
here that upon comparing the above equation with Eq. (28),
the quantities QB and δQ̃S (t) seem to play a similar role, albeit
with opposite signs.

We take a moment here and investigate whether tracing out
the system has any effect on the bath, that is, whether the
bath’s Hamiltonian also changes in a similar way as the sys-
tem’s Hamiltonian changes. This may not happen when the
bath is too big to be affected by the operation of tracing out
the system. However, in the case of a finite bath, which we
have considered here, the bath Hamiltonian may also change.
To this end, we need to modify the definition of the change
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in the internal energy of the bath by replacing HB in Eq. (29)
with a time-dependent one, such that

∆ŨB(t) = Tr
[
H̃B(t)ρB(t)

]
− Tr

[
H̃B(0)ρB(0)

]
. (47)

But to calculate the time-dependent Hamiltonian H̃B(t) of the
bath, we need to know the map for the evolution of the bath,
which is a highly non-trivial task. Nevertheless, we can adopt
a different way of calculating the change in the energy of the
bath ∆ŨB(t). Analogous to Eq. (38), we can compute the bath
heat current in the present scenario. Previously, we condi-
tioned the bath Hamiltonian to be time-independent and de-
rived the expression for the change in the internal energy of
the bath. In the present scenario, the rate of change in the in-
ternal energy of the bath is given by ∆ ˙̃UB =

d
dt

〈
H̃B(t)

〉
. Again,

using the relation between the expectation of any quantum
mechanical operator and the expectation value of the commu-
tator between the operator and the total Hamiltonian of the
system, we can rewrite ∆ ˙̃UB as

∆
˙̃UB = −i

〈
[H̃B(t),V]

〉
+

〈
∂H̃B(t)
∂t

〉
. (48)

Invoking the fact that the interaction and the total Hamiltoni-
ans are still time-independent, we get

∂Hcan
S (t)
∂t

= −
∂H̃B(t)
∂t

. (49)

Furthermore, along similar lines as above, the rate of change
in the expectation value of ⟨V(t)⟩ is given by

d
dt
⟨V(t)⟩ = −i

{〈
[V,Hcan

S (t)]
〉
+

〈
[V, H̃B(t)]

〉}
, (50)

and the rate of change in the internal energy of the system can
be written as

∆
˙̃US (t) =

d
dt

〈
Hcan

S (t)
〉
= −i

〈
[Hcan

S ,V]
〉
+

〈
∂Hcan

S (t)
∂t

〉
. (51)

Notice that the first term on the extreme right side of the above
equation is equal to δ ˙̃QS (t), and the second term is equal to the
δ ˙̃WS (t). Further, by combining the above equations, we can
rewrite the expression for the change in the internal energy
of the bath ∆ŨB(t) in the presence of a time-dependent bath
Hamiltonian, which is given by

∆ŨB(t) = Tr
[
V {ρS B(0) − ρS B(t)}

]
− ∆ŨS (t). (52)

Interestingly, the above equation matches the form of the first
law of thermodynamics provided in Eq. (31). In this case,
the mismatch in the change in the internal energies of the sys-
tem ∆ŨS (t) and the bath ∆ŨB(t) is balanced by the first term
on the right side. This term is the same as in Eq. (39) for
the work done by the bath. Therefore, even in the case of
a time-dependent system and bath Hamiltonian and for con-
stant interaction and total Hamiltonian, the work done by the
bath on the system is given by Eq. (39). Having defined the
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FIG. 4. Variation of (a) the change in the internal energy of the sys-
tem, (b) the change in the internal energy of the bath, (c) the entropy
production, and (d) δQ̃S and δW̃S with time. The parameters are
chosen to be: N = 50, ω = 3, ω0 = 3.5, ϵ = 0.5, and T = 0.1. The
system is initially in the thermal state e−βHS /Z, where Z = Tr

(
e−βHS

)
.

above thermodynamic quantities for a time-dependent system
and bath Hamiltonian, it would be interesting to construct a
quantity similar to entropy production using ∆ŨB(t), inspired
by Eq. (28). We call it Σ′, where

Σ′ = ∆S + β∆ŨB(t). (53)

The thermodynamic quantities computed in this section us-
ing the canonical Hamiltonian are plotted in Fig. 4, along
with the corresponding quantities from the previous section
to benchmark their variations. From an immediate inspec-
tion, we see that the quantities calculated using the canon-
ical Hamiltonian are ambiguous. The entropy production,
Fig. 4(c), can be observed to be negative when computed us-
ing Eq. (46), violating the second law of thermodynamics.
This equation of entropy production has two problems. First,
it is calculated in the system’s subspace, albeit considering the
canonical Hamiltonian carries the effect of the bath even after
it is traced out. A similar observation of this expression of
entropy production being negative was also observed in [86].
The other issue is that even if we replace the canonical Hamil-
tonian with the system’s Hamiltonian and further take it to be
time-independent, the expression for the entropy production Σ
from Eq. (28) doesn’t match Eq. (46) due to the presence of
work done by the bath W. Furthermore, it is observed from
Fig. 4(c) that the entropy production Σ in the form of Eq. (28)
preserves the second law of thermodynamics (Σ ≥ 0) for the
same set of parameters. We also plot the quantity Σ′, Eq. (53),
where we replace the internal energy change of the bath QB in
Eq. (28) by the internal energy change of the bath due to time-
dependent bath Hamiltonian ∆ŨB(t). However, this quantity
also goes negative at various points in time. We refrain from
calling it an expression of entropy production because even if
we consider a time-dependent bath Hamiltonian, the entropy
production [Eq. (27)], for the initial thermal state of the bath,
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results in Eq. (28) and not in Eq. (53).
The involvement of the canonical Hamiltonian in calculat-

ing the heat exchange and work done further poses an issue
with the first law of thermodynamics. In this section, we have
seen that there are two possible definitions of the first law of
thermodynamics. In the first, δW̃S (t) and δQ̃S (t) from Eq. (45)
can be clubbed together to represent the first law of thermo-
dynamics. Here, non-zero work is obtained because of the
canonical Hamiltonian Hcan

S (t). However, from Figs. 4(a) and
(b), it can be observed that at the start of the dynamics, the
change in the internal energy of the system ∆ŨS (t) is posi-
tive, and so is the change in the internal energy of the bath
∆ŨB(t). Further, in the same temporal regime, the work done
δW̃S is negative, Fig. 4(d), depicting that the system works on
the bath, and the heat is transferred to the system as δQ̃S (t)
is positive. This observation reveals that on using the canoni-
cal Hamiltonian, we get a scenario where the system and the
bath both gain energy, and the system works on the bath while
heat is transferred to the system. This scenario is ambiguous
as it requires some external source to supply energy, which is
absent here. The other definition of the first law of thermo-
dynamics comes from Eq. (52). In this scenario, again, we
have the same problem where the system and the bath both
gain energy at the same time. However, the work done by
the bath, which is the mismatch between the system and the
bath energies W = ∆ŨS (t)+∆ŨB(t), is initially positive when
∆ŨS (t) and ∆ŨB(t) are positive. In this case, the work is done
by the bath on the system, in contradiction to the work done
δW̃S being negative, as seen above. Therefore, there is an am-
biguity in the definition of the work, too. These issues make
the formulation of the first law using canonical Hamiltonian
ambiguous.

The above ambiguities resolve when we consider the orig-
inal time-independent system Hamiltonian HS , Eq. (11),
for calculating the expectation values of the thermodynamic
quantities. In this case, as observed in the previous section,
the system gains energy while the bath loses energy, and the
mismatch between them is the work done by the bath on the
system, which is positive. This scenario is consistent with the
first law of thermodynamics. Further, on considering HS as
the system Hamiltonian during the dynamics, we get δW̃S = 0,
and δQ̃S (t) = ∆ŨS (t) = ∆US . Therefore, the ambiguity re-
garding the work done by the bath also resolves and is given
by Eq. (39). Moreover, using the time-independent system
and bath Hamiltonian HS and HB, respectively, the entropy
production is also positive, in consonance with Eq. (28) that
considers irreversibility arising due to tracing out the bath.
This scenario is consistent with the second law of thermody-
namics.

The case discussed above can be thought of from a dif-
ferent perspective: when we trace out the bath, the reduced
state of the system, which has evolved in time, carries the ef-
fect of the bath at any time. After tracing out the bath, the
expectation values of the thermodynamic quantities should
be calculated using the original system and bath Hamiltoni-
ans, which are initially time-independent here. To this end,
we show in Fig. 5, the energy of the reduced system at any
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FIG. 5. Variation of expectation value ⟨HS ⟩ using Schrödinger
picture ⟨HS ⟩ = Tr

[
HS ρS (t)

]
and Heisenberg picture ⟨HS ⟩ =

Tr
[
HS (t)ρS (0)

]
, along with the analogous expressing using the

canonical Hamiltonian Tr
[
Hcan

S (t)ρS (t)
]

with time. The parameters
are: ω = 3.5, ω0 = 3.0, ϵ = 1.0,N = 50 and T = 0.10. The initial
state is taken to be (a) the excited state and (b) the ground state.

time, calculated using the expression ⟨HS ⟩ = Tr
[
HS ρS (t)

]
in the Schrödinger picture, where the state ρS (t) is evolved.
At the same time, we plot the expectation value ⟨HS ⟩ =

Tr
[
HS (t)ρS (0)

]
using the Heisenberg picture. Here, HS (t) is

given by

HS (t) = TrB

[
ρB(0)

{
eiHt (HS ⊗ IB) e−iHt

}]
, (54)

where H is the total Hamiltonian, as given in Eq. (11). The
equivalence of both plots validates the above statement re-
garding the expectation value of thermodynamic quantities in
the two pictures. This can be used to benchmark the expecta-
tion value computed using the canonical Hamiltonian, as de-
picted by the green-dashed curve in the figures, where its non-
equivalence to the expectation values from the Schrödinger
and Heisenberg pictures is evident. The mismatch with the
canonical Hamiltonian is much greater when the system is
initially in the ground state as compared to when it starts in
the excited state. Hence, the canonical Hamiltonian technique
does not appear to be suitable for the calculation of quantum
thermodynamic quantities.

VI. CONCLUSION

This work is devoted to understanding the quantum thermo-
dynamics of strongly coupled non-Markovian quantum sys-
tems. In this context, correct definitions of the fundamental
quantum thermodynamic quantities, such as heat, work, en-
tropy production, and ergotropy, as well as the laws of quan-
tum thermodynamics, need to be carefully examined. We ad-
dressed this issue by taking up a non-trivial model of a central
spin immersed in a spin bath and derived its exact reduced dy-
namics. This was then utilized to calculate the above thermo-
dynamic quantities using the original system and bath Hamil-
tonian, where the work done by the bath is the deficit between
the system and bath internal energies. This led to appropriate
definitions of various thermodynamic quantities and provided
consistency with the laws of thermodynamics. Thus, for ex-
ample, a positive entropy production, verifying the second law
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of quantum thermodynamics, was observed. However, the en-
tropy production rate was sometimes negative, which is typi-
cal behavior of non-Markovian quantum systems. An interest-
ing result, relevant to the charging-discharging behavior of the
central spin, was obtained using ergotropy. In the present case
of the spin bath, we arrived at a situation where the bath itself
could act as a charger, such that it gained positive ergotropy
even if initially the ergotropy was zero. This is in contrast to
what was observed earlier for a harmonic oscillator bath act-
ing as a charger and, hence, puts the role of the central spin
model as a quantum battery in perspective. Furthermore, the
above thermodynamic quantities were calculated using the re-
cently developed canonical Hamiltonian approach, which led
to inconsistencies in the definition of the first and second laws
of thermodynamics. It is hoped that this work will provide a
stepping stone towards understanding the quantum thermody-
namics of strongly coupled non-Markovian systems.
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APPENDIX A: THE SPECTRAL DECOMPOSITION OF THE
TOTAL HAMILTONIAN

The total Hamiltonian for the central spin model is given in
Eq. (11). The spectral decomposition of the total Hamiltonian
is given by

H =
N∑

n=1

λ±(n) |ψ±(n)⟩ ⟨ψ±(n)| +
(
ω + ω0

2

)
|0⟩S |0⟩B ⟨0|S ⟨0|B

−

(
ω + ω0

2

)
|1⟩S |N + 1⟩B ⟨1|S ⟨N + 1|B , (55)

where

|ψ±(n)⟩ =
1√

1 + χ±(n)2
(χ± |0⟩S |n⟩B + |1⟩S |n − 1⟩B) , (56)

and

λ±(n) =
{N − (2n − 1)}ω ±

√
b2 + 4a2

n

2N
. (57)

|i⟩ is the standard computational basis in the above equations.
The factor χ±(n) is given by

χ±(n) =
−bn ±

√
b2 + 4a2

n

2an
, (58)

where b = ω − Nω0, and

an = ϵ
√

N

√
N
2

(N
2
+ 1

)
−

(
−

N
2
+ n − 1

)(
−

N
2
+ n

)
. (59)

Here, N is the number of bath spins, and n is the eigen-
value(eigenvector) index in the range 1 ≤ n ≤ N.

[1] U. Weiss, Quantum Dissipative Systems (WORLD SCIEN-
TIFIC, 2011), ISBN 9789814374927, URL http://dx.doi.
org/10.1142/8334.

[2] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, 2007), ISBN
9780199213900, URL https://doi.org/10.1093/

acprof:oso/9780199213900.001.0001.
[3] S. Banerjee, Open Quantum Systems: Dynamics of

Nonclassical Evolution, Texts and Readings in Physi-
cal Sciences (Springer Nature Singapore, 2018), ISBN
9789811331824, URL https://books.google.co.in/

books?id=s-11DwAAQBAJ.
[4] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995), URL
https://link.aps.org/doi/10.1103/PhysRevLett.74.

4091.
[5] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998),

URL https://link.aps.org/doi/10.1103/PhysRevA.

57.120.
[6] D. G. Cory, A. F. Fahmy, and T. F. Havel, Proceedings

of the National Academy of Sciences 94, 1634 (1997),
https://www.pnas.org/doi/pdf/10.1073/pnas.94.5.1634, URL
https://www.pnas.org/doi/abs/10.1073/pnas.94.5.

1634.
[7] H. Rauch, Physica Scripta 1998, 24 (1998), URL https://
dx.doi.org/10.1238/Physica.Topical.076a00024.

[8] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.
Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59,
1 (1987), URL https://link.aps.org/doi/10.1103/

RevModPhys.59.1.
[9] V. Gorini, A. Kossakowski, and E. C. G. Sudar-

shan, Journal of Mathematical Physics 17, 821 (1976),
ISSN 0022-2488, https://pubs.aip.org/aip/jmp/article-
pdf/17/5/821/19090720/821 1 online.pdf, URL https:

//doi.org/10.1063/1.522979.
[10] G. Lindblad, Communications in Mathematical Physics 48,

119–130 (1976), ISSN 1432-0916, URL http://dx.doi.
org/10.1007/BF01608499.

[11] A. Caldeira and A. Leggett, Annals of Physics 149, 374 (1983),
ISSN 0003-4916, URL https://www.sciencedirect.com/
science/article/pii/0003491683902026.

[12] R. Feynman and F. Vernon, Annals of Physics 24, 118 (1963),
ISSN 0003-4916, URL https://www.sciencedirect.com/
science/article/pii/000349166390068X.

http://dx.doi.org/10.1142/8334
http://dx.doi.org/10.1142/8334
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://books.google.co.in/books?id=s-11DwAAQBAJ
https://books.google.co.in/books?id=s-11DwAAQBAJ
https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
https://link.aps.org/doi/10.1103/PhysRevA.57.120
https://link.aps.org/doi/10.1103/PhysRevA.57.120
https://www.pnas.org/doi/abs/10.1073/pnas.94.5.1634
https://www.pnas.org/doi/abs/10.1073/pnas.94.5.1634
https://dx.doi.org/10.1238/Physica.Topical.076a00024
https://dx.doi.org/10.1238/Physica.Topical.076a00024
https://link.aps.org/doi/10.1103/RevModPhys.59.1
https://link.aps.org/doi/10.1103/RevModPhys.59.1
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
https://www.sciencedirect.com/science/article/pii/0003491683902026
https://www.sciencedirect.com/science/article/pii/0003491683902026
https://www.sciencedirect.com/science/article/pii/000349166390068X
https://www.sciencedirect.com/science/article/pii/000349166390068X


11

[13] S. Nakajima, Progress of Theoretical Physics 20, 948 (1958),
ISSN 0033-068X, https://academic.oup.com/ptp/article-
pdf/20/6/948/5440766/20-6-948.pdf, URL https:

//doi.org/10.1143/PTP.20.948.
[14] R. Zwanzig, The Journal of Chemical Physics 33, 1338

(1960), ISSN 0021-9606, https://pubs.aip.org/aip/jcp/article-
pdf/33/5/1338/18820045/1338 1 online.pdf, URL https://
doi.org/10.1063/1.1731409.

[15] S. Banerjee and R. Ghosh, Phys. Rev. A 62, 042105 (2000),
URL https://link.aps.org/doi/10.1103/PhysRevA.

62.042105.
[16] S. Banerjee and R. Ghosh, Phys. Rev. E 67, 056120 (2003),

URL https://link.aps.org/doi/10.1103/PhysRevE.

67.056120.
[17] S. Banerjee, R. Srikanth, C. M. Chandrashekar, and P. Rungta,

Phys. Rev. A 78, 052316 (2008), URL https://link.aps.
org/doi/10.1103/PhysRevA.78.052316.

[18] G. Thomas, N. Siddharth, S. Banerjee, and S. Ghosh, Phys.
Rev. E 97, 062108 (2018), URL https://link.aps.org/
doi/10.1103/PhysRevE.97.062108.

[19] J. Naikoo, A. K. Alok, S. Banerjee, and S. U. Sankar, Phys.
Rev. D 99, 095001 (2019), URL https://link.aps.org/
doi/10.1103/PhysRevD.99.095001.

[20] J. Naikoo, A. K. Alok, and S. Banerjee, Phys. Rev. D
97, 053008 (2018), URL https://link.aps.org/doi/10.
1103/PhysRevD.97.053008.

[21] K. Dixit, J. Naikoo, S. Banerjee, and A. K. Alok, The European
Physical Journal C 79 (2019), ISSN 1434-6052, URL http:
//dx.doi.org/10.1140/epjc/s10052-019-6609-7.

[22] S. Omkar, R. Srikanth, S. Banerjee, and A. K. Alok, Quan-
tum Information and Computation 16, 757–770 (2016), ISSN
1533-7146, URL http://dx.doi.org/10.26421/QIC16.
9-10-2.

[23] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermo-
dynamics: Emergence of Thermodynamic Behavior Within
Composite Quantum Systems (Springer Berlin Heidelberg,
2009), ISBN 9783540705109, URL http://dx.doi.org/
10.1007/978-3-540-70510-9.

[24] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso,
Thermodynamics in the Quantum Regime: Fundamental As-
pects and New Directions (Springer International Publishing,
2018), ISBN 9783319990460, URL http://dx.doi.org/
10.1007/978-3-319-99046-0.

[25] S. Vinjanampathy and J. Anders, Contemporary Physics 57,
545 (2016), https://doi.org/10.1080/00107514.2016.1201896,
URL https://doi.org/10.1080/00107514.2016.

1201896.
[26] A. Kumar, S. Lahiri, T. Bagarti, and S. Banerjee, Physica A:

Statistical Mechanics and its Applications 623, 128832 (2023),
ISSN 0378-4371, URL https://www.sciencedirect.com/
science/article/pii/S0378437123003874.

[27] R. Kosloff, Entropy 15, 2100 (2013), ISSN 1099-4300, URL
https://www.mdpi.com/1099-4300/15/6/2100.

[28] G. T. Landi and M. Paternostro, Rev. Mod. Phys. 93,
035008 (2021), URL https://link.aps.org/doi/10.

1103/RevModPhys.93.035008.
[29] S. Deffner and S. Campbell, Quantum Thermodynamics,

2053-2571 (Morgan & Claypool Publishers, 2019), ISBN
978-1-64327-658-8, URL https://dx.doi.org/10.1088/
2053-2571/ab21c6.

[30] R. Alicki, Journal of Physics A: Mathematical and Gen-
eral 12, L103 (1979), URL https://dx.doi.org/10.1088/
0305-4470/12/5/007.

[31] P. Talkner and P. Hänggi, Rev. Mod. Phys. 92, 041002
(2020), URL https://link.aps.org/doi/10.1103/

RevModPhys.92.041002.
[32] S. Lahiri, S. Banerjee, and A. M. Jayannavar, Quantum In-

formation Processing 20, 372 (2021), ISSN 1573-1332, URL
http://dx.doi.org/10.1007/s11128-021-03260-4.

[33] R. Alicki and M. Fannes, Phys. Rev. E 87, 042123 (2013),
URL https://link.aps.org/doi/10.1103/PhysRevE.

87.042123.
[34] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, New

Journal of Physics 17, 075015 (2015), URL https://dx.
doi.org/10.1088/1367-2630/17/7/075015.

[35] N. Van Horne, D. Yum, T. Dutta, P. Hänggi, J. Gong,
D. Poletti, and M. Mukherjee, npj Quantum Information 6
(2020), ISSN 2056-6387, URL http://dx.doi.org/10.
1038/s41534-020-0264-6.

[36] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri,
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